Chapter 6. Applications of Definite Integrals 6.3 Lengths of Plane Curves

Definition. If a curve C is described by the parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where f^{\prime} and g^{\prime} are continuous and not simultaneously zero on $[\alpha, \beta]$ and if C is traverses exactly once as t increases from α to β, then the length of C is

$$
\begin{aligned}
& L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t . \\
& =\int_{\alpha}^{\beta} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t .
\end{aligned}
$$

Examples. Page 452 number 2.

Definition. Function f is smooth if it's derivative in continuous. If f is smooth on $[a, b]$, the length of the curve $y=f(x)$ from a to b is the number

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If g is smooth on $[c, d]$, the length of the curve $x=g(y)$ from c to d is the number

$$
L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Figure 5.27, page 415 of Edition 10

Figure 5.29, page 418 of Edition 10

Example. Page 452 number 12.

Examples. Page 452 number 26.

Examples. Page 453 number 33.

