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Chapter 6. Applications of Definite Integrals

6.3 Lengths of Plane Curves

Definition. If a curve C is described by the parametric equations

x = f (t), y = g(t), α ≤ t ≤ β, where f ′ and g′ are continuous and

not simultaneously zero on [α, β] and if C is traverses exactly once as t

increases from α to β, then the length of C is
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(f ′(t))2 + (g′(t))2 dt.

Examples. Page 452 number 2.

Definition. Function f is smooth if it’s derivative in continuous. If f

is smooth on [a, b], the length of the curve y = f (x) from a to b is the

number
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If g is smooth on [c, d], the length of the curve x = g(y) from c to d is

the number
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∫ d
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Figure 5.27, page 415 of Edition 10

Figure 5.29, page 418 of Edition 10
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Example. Page 452 number 12.

Examples. Page 452 number 26.

Examples. Page 453 number 33.


