Chapter 6. Applications of Definite Integrals6.4 Moments and Centers of Mass

Definition. Suppose masses m_1, m_2, \ldots, m_n are distributed along the *x*-axis at coordinates x_1, x_1, \ldots, x_m respectively. The moment of the system about the origin is

 $m_1x_1+m_2x_2+\cdots+m_nx_n.$

Figure from page 454.

Note. If g is the gravitational constant, then the *torque* of the above system is

$$g(m_1x_1+m_2x_2+\cdots+m_nx_n).$$

If we try to balance the system at the origin then:

- 1. It tips down on the left side if torque is negative.
- 2. It tips down on the right side if torque is positive.
- 3. It is balanced if torque is zero.

Definition. The *moment* of the system above about the point \overline{x} is

$$(x_1 - \overline{x})m_1 + (x_2 - \overline{x})m_2 + \dots + (x_n - \overline{x})m_n = \sum_{k=1}^n (x_k - \overline{x})m_k.$$

The *torque* about \overline{x} is moment times the gravitational constant (and so is measured in units of force times distance). The *center of mass* is the coordinate \overline{x} about which the moment is 0:

$$\overline{x} = \frac{\sum_{k=1}^{n} m_k x_k}{\sum_{k=1}^{n} m_k}.$$

Note. The center of mass is the moment about the origin divided by total mass.

Definition. A thin straight wire whose density is given by $\delta(x)$ has the following:

Moment about the Origin: $M_0 = \int_a^b x \delta(x) dx$

Mass: $M = \int_{a}^{b} \delta(x) dx$ Center of Mass: $\overline{x} = \frac{M_{0}}{M}$.

Example. Page 463 number 12.

Definition. Suppose masses m_1, m_2, \ldots, m_k are placed in the (x, y)plane at points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ respectively. Then define

- 1. Mass: $\sum_{k=1}^{n} m_k$
- 2. Moment About the *x*-Axis: $M_x = \sum_{k=1}^n m_k y_k$

3. Moment About the *y*-Axis: $M_y = \sum_{k=1}^n m_k x_k$.

The center of mass is then $(\overline{x}, \overline{y})$ where $\overline{x} = \frac{M_y}{M}$ and $\overline{y} = \frac{M_x}{M}$.

Note. The above definition is really just a two dimensional version of our original one dimensional "moment about the origin" definition.

Figure 6.33 page 458

Figure 6.34 page 458

Take a slice (dx or dy) of mass dm. Suppose the center of mass of this slice is \tilde{x}, \tilde{y} .

Definition. For the region above, define

- 1. Moment About the *x*-Axis: $M_x = \int \tilde{y} \, dm$.
- 2. Moment About the *y*-Axis: $M_y = \int \tilde{x} \, dm$.
- 3. Mass: $\int dm$.

The center of mass is then $(\overline{x}, \overline{y})$ where $\overline{x} = \frac{My}{M}$ and $\overline{y} = \frac{M_x}{M}$.

Examples. Page 463 number 22a (answer: $\overline{x} = 4/\pi, \overline{y} = 4/\pi$). Page 463 number 28 ($dm = \delta(x) dx$). Page 464 number 40 ($dm = \arctan k \delta$).

HAVE A NICE DAY!