Chapter 10. Infinite Sequences and Series 10.1 Sequences

Note. We now shift gears and consider a more theoretical, less tangible concept than those with which we have recently dealt.

Definition. An infinite sequence of numbers is a function whose domain is the set of positive integers. We denote the sequence $\{f(n) \mid n \in \mathbb{N}\}$ as $\{a_n\}$ where $f(n) = a_n$.

Definition. The sequence $\{a_n\}$ converges to the number L if for every $\epsilon > 0$ there exists an integer N such that for all n > N we have

$$|a_n - L| < \epsilon.$$

If no such number L exists, then the sequence $\{a_n\}$ diverges. If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$ and call L the limit of the sequence.

Figure 10.2 page 552

Example 1a. Let $a_n = \frac{1}{n}$. Prove that $\lim_{n \to \infty} a_n = 0$.

Proof. Let $\epsilon > 0$ be given. Let N be an integer greater than $1/\epsilon$. Then for all n > N we have $0 < a_n = 1/n < 1/N < \epsilon$, or $|a_n - 0| < \epsilon$. Therefore $\lim_{n \to \infty} a_n = 0$. Q.E.D. **Definition.** The sequence $\{a_n\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than N, $a_n > M$. If this condition holds, we write

$$\lim_{n \to \infty} a_n = \infty \text{ or } a_n \to \infty.$$

Similarly if for every number m there is an integer N such that for all n > N we have $a_n < m$, then we say $\{a_n\}$ diverges to negative infinity and write

$$\lim_{n \to \infty} a_n = -\infty \text{ or } a_n \to -\infty$$

Figure 10.3 page 553

Example. Page 559 Number 30.

Theorem 1. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers and let Aand B be real numbers. If $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$ then **1.** Sum Rule: $\lim_{n \to \infty} (a_n + b_n) = A + B$. **2.** Difference Rule: $\lim_{n \to \infty} (a_n - b_n) = A - B$. **3.** Product Rule: $\lim_{n \to \infty} (a_n b_n) = AB$. **4.** Constant Multiple Rule: $\lim_{n \to \infty} (kb_n) = kB$. **5.** Quotient Rule: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$, if $B \neq 0$.

Note. The proofs for each of these is similar to the proofs of the corresponding results for functions.

Example. Page 559 Number 32.

Theorem 2. The Sandwich Theorem for Sequences.

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N and is $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$ also. **Example.** Page 559 Number 46.

Theorem 3. The Continuous Function Theorem for Sequences

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \to f(L)$.

Theorem 4. Suppose that f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then $\lim_{x\to\infty} f(x) = L$ implies that $\lim_{n\to\infty} a_n = L$.

Note. Theorem 4 allows us to use L'Hôpital's Rule on sequences.

Example. Page 555 Example 7.

Theorem 5. The following six sequences converge to the limits listed below:

- 1. $\lim_{n \to \infty} \frac{\ln n}{n} = 0.$
- **2.** $\lim_{n \to \infty} \sqrt[n]{n} = 1.$
- **3.** $\lim_{n \to \infty} x^{1/n} = 1$ for x > 0.

4. $\lim_{n \to \infty} x^n = 0 \text{ for } |x| < 1.$ 5. $\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$ 6. $\lim_{n \to \infty} \frac{x^n}{n!} = 0.$

Definition. A sequence can be defined recursively by giving:

- **1.** The value(s) of the initial term or terms and
- A rule, called a *recursion formula*, for calculating any later term from terms that precede it.

Example 10c. The *Fibonacci sequence* is defined recursively as: $a_1 = a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$. The first few terms therefore are: 1, 1, 2, 3, 5, 8, 13, 21, 44, 65, ...

Definition. A sequence $\{a_n\}$ with the property that $a_n \leq a_{n+1}$ for all n is called a *nondecreasing sequence*. It is called *nonincreasing* if $a_n \geq a_{n+1}$ for all n. A sequence is *monotone* if it is either nondecreasing or nonincreasing. **Definition.** A sequence $\{a_n\}$ is bounded from above if there exists a number M such that $a_n \leq M$ for all n. The number M is an upper bound for $\{a_n\}$. If M is an upper bound for $\{a_n\}$ but no number less than M is an upper bound for $\{a_n\}$, then M is the least upper bound for $\{a_n\}$. The sequence is bounded from below if there exists a number msuch that $m \leq a_n$ for all n. The number m is a lower bound for $\{a_n\}$. If it is bounded from above and below, then $\{a_n\}$ is a bounded sequence.

Theorem 6. The Monotonic Sequence Theorem.

If a sequence $\{a_n\}$ is both bounded and monotonic, then the sequence converges.

Note. The proof of Theorem 6 depends heavily on the very definition of the real numbers. Appendix A.6 gives some details in the form of the *Completeness Property*. This property states that every *set* of real numbers with an upper bound, has a least upper bound.

Example. Page 560 number 86; page 561 Number 131.