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Chapter 10. Infinite Sequences and Series

10.1 Sequences

Note. We now shift gears and consider a more theoretical, less tangible

concept than those with which we have recently dealt.

Definition. An infinite sequence of numbers is a function whose domain

is the set of positive integers. We denote the sequence {f (n) | n ∈ N} as

{an} where f (n) = an.

Definition. The sequence {an} converges to the number L if for every

ε > 0 there exists an integer N such that for all n > N we have

|an − L| < ε.

If no such number L exists, then the sequence {an} diverges. If {an}

converges to L, we write lim
n→∞

an = L and call L the limit of the sequence.
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Figure 10.2 page 552

Example 1a. Let an =
1

n
. Prove that lim

n→∞
an = 0.

Proof. Let ε > 0 be given. Let N be an integer greater than 1/ε. Then

for all n > N we have 0 < an = 1/n < 1/N < ε, or |an − 0| < ε.

Therefore lim
n→∞

an = 0. Q.E.D.
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Definition. The sequence {an} diverges to infinity if for every number

M there is an integer N such that for all n larger than N , an > M . If

this condition holds, we write

lim
n→∞

an = ∞ or an → ∞.

Similarly if for every number m there is an integer N such that for all

n > N we have an < m, then we say {an} diverges to negative infinity

and write

lim
n→∞

an = −∞ or an → −∞.

Figure 10.3 page 553

Example. Page 559 Number 30.
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Theorem 1. Let {an} and {bn} be sequences of real numbers and let A

and B be real numbers. If lim
n→∞

an = A and lim
n→∞

bn = B then

1. Sum Rule: lim
n→∞

(an + bn) = A + B.

2. Difference Rule: lim
n→∞

(an − bn) = A − B.

3. Product Rule: lim
n→∞

(anbn) = AB.

4. Constant Multiple Rule: lim
n→∞

(kbn) = kB.

5. Quotient Rule: lim
n→∞

an

bn
=

A

B
, if B 6= 0.

Note. The proofs for each of these is similar to the proofs of the corre-

sponding results for functions.

Example. Page 559 Number 32.

Theorem 2. The Sandwich Theorem for Sequences.

Let {an}, {bn}, and {cn} be sequences of real numbers. If an ≤ bn ≤ cn

holds for all n beyond some index N and is lim
n→∞

an = lim
n→∞

cn = L, then

lim
n→∞

bn = L also.
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Example. Page 559 Number 46.

Theorem 3. The Continuous Function Theorem for Sequences

Let {an} be a sequence of real numbers. If an → L and if f is a function

that is continuous at L and defined at all an, then f (an) → f (L).

Theorem 4. Suppose that f (x) is a function defined for all x ≥ n0 and

that {an} is a sequence of real numbers such that an = f (n) for n ≥ n0.

Then lim
x→∞

f (x) = L implies that lim
n→∞

an = L.

Note. Theorem 4 allows us to use L’Hôpital’s Rule on sequences.

Example. Page 555 Example 7.

Theorem 5. The following six sequences converge to the limits listed

below:

1. lim
n→∞

lnn

n
= 0.

2. lim
n→∞

n

√
n = 1.

3. lim
n→∞

x1/n = 1 for x > 0.
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4. lim
n→∞

xn = 0 for |x| < 1.

5. lim
n→∞

(

1 +
x

n

)n

= ex.

6. lim
n→∞

xn

n!
= 0.

Definition. A sequence can be defined recursively by giving:

1. The value(s) of the initial term or terms and

2. A rule, called a recursion formula, for calculating any later term from

terms that precede it.

Example 10c. The Fibonacci sequence is defined recursively as: a1 =

a2 = 1, an = an−1 + an−2. The first few terms therefore are: 1, 1, 2, 3, 5,

8, 13, 21, 44, 65, . . .

Definition. A sequence {an} with the property that an ≤ an+1 for

all n is called a nondecreasing sequence. It is called nonincreasing if

an ≥ an+1 for all n. A sequence is monotone if it is either nondecreasing

or nonincreasing.
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Definition. A sequence {an} is bounded from above if there exists a

number M such that an ≤ M for all n. The number M is an upper

bound for {an}. If M is an upper bound for {an} but no number less

than M is an upper bound for {an}, then M is the least upper bound for

{an}. The sequence is bounded from below if there exists a number m

such that m ≤ an for all n. The number m is a lower bound for {an}. If

it is bounded from above and below, then {an} is a bounded sequence.

Theorem 6. The Monotonic Sequence Theorem.

If a sequence {an} is both bounded and monotonic, then the sequence

converges.

Note. The proof of Theorem 6 depends heavily on the very definition

of the real numbers. Appendix A.6 gives some details in the form of

the Completeness Property. This property states that every set of real

numbers with an upper bound, has a least upper bound.

Example. Page 560 number 86; page 561 Number 131.


