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Chapter 10. Infinite Sequences and Series
10.3 The Integral Test

o0

Note. Given a series E a,, we have two questions:

n=1

1. Does the series converge?

2. If it converges, what is its sum?

o0

Corollary of Theorem 6. A series Z a, of nonnegative terms con-

n=1
verges if its partial sums are bounded from above.

Proof. Theorem 6 (of section 10.1) implies that a monotonic increasing
sequence which is bounded above must converge. A positive term series
will have partial sums which form a monotonic increasing sequence. Since

we have hypothesized that the sequence of partial sums is bounded, the

result follows. Q.E.D.
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Theorem 9. The Integral Test
Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where

f is a continuous, positive, decreasing function of x for all z > N (N

o0 00
a positive integer). Then the series Z a, and the integral / f(z)dx
N

n=N
both converge or both diverge.

Proof. Since a finite number of terms does not affect the convergence
of a series, we may assume that N = 1 without loss of generality. Under
the hypotheses of f as continuous and decreasing, we can consider the

following rectangles (left):

y=f) " y=f)

a4
ﬂ2 a?

iy

Figure 10.11 page 572

The areas of the rectangles are aq, as, as, . . ., a,, and since f is decreasing,

these rectangles are circumscribed over f and we have

n+1
/ flx)de <ay+as+ -+ ap.
1
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If we consider inscribed rectangles, then we have the picture above (right).

Excluding aq, we see that
n
as+as+aqs+---+a, S/ f(z)dx,
1

or that

n
a1+a2+a3+---+an§a1+/ f(ilf)d(l?
1

Therefore we know that

n+1 n
/ f(x)dx§a1+a2+a3+---+an§a1+/ f(il?):lj
1 1

If / f(z) dx is finite, then the right-hand inequality shows that Z ay,
1

n=1

is finite. If / f(z)dx is infinite, then the left-hand inequality shows
1

that » _ a, is infinite. Q.E.D.

n=1

Example. Page 575 Number 4.
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Theorem. p-Series

A series of the form

o0

1111 1

is called a p-series. A p series converges if p > 1 and diverges if p < 1.

Proof. We prove this using the Integral Test. First, suppose p # 1. Then

* dx b da P\ |
/ —zlim(/—)zlim( )
1 P b—o0 1 xP b—oo \ —p + 1 1

1 1 1
= lim [ —— (B 7" —1)) = i —1
bing;lo (1 — p<b )> bi)rgo I1—0p (bp—l )

1
p—1’

p>1

00, p < 1.
Therefore both the integral and the series converge if p > 1, and both

diverge if p < 1. Next, suppose that p = 1. Then

00 b
/ d_x: lim d_x: lim (lnx \Z{) = lim (Inb—1In1) = oc.
1

xT b—o00 1 X b—o00 b—o00

By the integral test, the series diverges when p = 1. Q.E.D.

Definition. The p-series with p = 1 is the harmonic series.
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Note. Let’s briefly explore the rate at which the harmonic series diverges.
How many terms must we add in the harmonic series to get a partial sum

greater than 20. Consider these two graphs:

Figure 8.14 from Edition 10

We see that the 4th partial sum is less than 1 + In4, and in general
the n? partial sum will be less than 1 + Inn. Therefore we need at least
1+Inn > 20, orn > e ~ 178,482, 301. We can use a similar argument
with circumscribed rectangles to see that the n!” partial sum is greater
than In(n 4+ 1), and so we find that to get the partial sum greater than 20,

we would need at most n = e’ — 1 ~ 485, 165, 194.
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Theorem. Bounds for the Remainder in the Integral Test.
Suppose {ay} is a sequence of positive terms with a;, = f(k), where f is a
continuous positive decreasing function of = for all x > n, and that ) a,

converges to S. Then the remainder r, = S — s,, satisfies the inequalities

/ool fla)de < R, < /noo f(w) da.

Proof. Notice that R, =S — s, = ay41 + apyo + ap 3+ - - -. Consider
Figure 10.11a again. By considering the areas of the rectangles with the

area under the curve y = f(x) for z > n, we see that

00
Rn:an+1+an+2+an+3+"'2/ f(x)dx
n—+1

Similarly, From Figure 10.11b, we find an upper bound with

(0. @]
R,=a,,1+a,9+a,3+ < / f(z)dz.
n

Q.E.D.

Example. Page 575 Number 32, Page 576 Number 50.



