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Chapter 10. Infinite Sequences and Series
10.4 Comparison Tests

Theorem 10. The (Direct) Comparison Test

Let Z a, be a series with no negative terms.
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(a) E a, converges if there is a convergent series E c, with a, < ¢,
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for all n > N, for some integer N.
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(b) Zan diverges if there is a divergent series of nonnegative terms
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Z d, with a, > d, for all n > N, for some integer V.
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Proof. For part (a), the partial sums of Z a, are bounded above by
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Therefore by the corollary to Theorem 6, the result holds.
For part (b), the partial sums of Z a, are not bounded above (for if
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they were, then the partial sums of Z d,, would be bounded and it would
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be convergent). Therefore Z a, diverges. Q.E.D.
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Example. Page 580 Number 20.

Theorem 11. Limit Comparison Test

Suppose that a,, > 0 and b, > 0 for all n > N (N a positive integer).
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1. If lim 22 — c, 0 < ¢ < oo, then Zan and Z b, both converge or
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both diverge.
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2. 1f lim = — 0 and Z b, converges, then Z @, CONVerges.
n=1
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3. If lim 2 = oo and Z b, diverges, then Z a, diverges.
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Proof of (1). Since ¢/2 > 0, there exists an integer N such that for all

(0%
n > N we have | — — ¢

< g = €. So for n > N it follows that
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If E b,, converges then E (5) b, converges and E a, converges by
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the Direct Comparison Test. If Z b, diverges, then Z <g) b, diverges
n=1 n=1

and Z a,, diverges by the Direct Comparison Test. Q.E.D.
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Example. Page 580 Numbers 28 and 38.



