Chapter 10. Infinite Sequences and Series 10.4 Comparison Tests

Theorem 10. The (Direct) Comparison Test

Proof. For part (a), the partial sums of $\sum_{n=1}^{\infty} a_n$ are bounded above by

$$M = a_1 + a_2 + \dots + a_n + \sum_{n=N+1}^{\infty} c_n$$

Therefore by the corollary to Theorem 6, the result holds.

For part (b), the partial sums of $\sum_{n=1}^{\infty} a_n$ are not bounded above (for if they were, then the partial sums of $\sum_{n=1}^{\infty} d_n$ would be bounded and it would

be convergent). Therefore $\sum_{n=1}^{\infty} a_n$ diverges. Q.E.D.

Example. Page 580 Number 20.

Theorem 11. Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N a positive integer).

1. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, $0 < c < \infty$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.

2. If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$
 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
3. If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof of (1). Since c/2 > 0, there exists an integer N such that for all n > N we have $\left| \frac{a_n}{b_n} - c \right| < \frac{c}{2} \equiv \epsilon$. So for n > N it follows that $-\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2},$ $\frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2},$ $\left(\frac{c}{2}\right) b_n < a_n < \left(\frac{3c}{2}\right) b_n.$

If
$$\sum_{n=1}^{\infty} b_n$$
 converges then $\sum_{n=1}^{\infty} \left(\frac{3c}{2}\right) b_n$ converges and $\sum_{n=1}^{\infty} a_n$ converges by
the Direct Comparison Test. If $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} \left(\frac{c}{2}\right) b_n$ diverges
and $\sum_{n=1}^{\infty} a_n$ diverges by the Direct Comparison Test. Q.E.D.

Example. Page 580 Numbers 28 and 38.