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Chapter 10. Infinite Sequences and Series

10.6 Alternating Series, Absolute and

Conditional Convergence

Note. The convergence tests investigated so far apply only to series with

nonnegative terms. In this section, we learn how to deal with series that

may have negative terms. An important example is the alternating series,

whose terms alternate in sign. We also learn which convergent series can

have their terms rearranged (that is, changing the order in which they

appear) without changing their sum.

Definition. A series in which terms are alternately positive and negative

is an alternating series.

Theorem 14. The Alternating Series Test (Leibniz’s Theo-

rem)

The series
∞∑

n=1

(−1)n+1un = u1 − u2 + u3 − u4 + · · ·

converges if all three of the following are satisfied:
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1. The un’s are all positive,

2. un ≥ un+1 for all n ≥ N , for some integer N , and

3. lim
n→∞

un = 0.

Proof. If n is an even integer, say n = 2m, then the sum of the first n

terms is

s2m = (u1 − u2) + (u3 − u4) + · · · + (u2m−1 − u2m)

= u1 − (u2 − u3) − (u4 − u5) − · · · − (u2m−2 − u2m−1) − u2m.

From the first equality, we see that s2m is the sum of m nonnegative terms,

since each term in parentheses is positive or zero. Hence s2m+2 ≥ s2m,

and the sequence {s2m} is nondecreasing. The second equality implies

that s2m ≤ u1. Since {s2m} is nondecreasing and bounded from above by

u1, it has a limit L.

If n is an odd integer, say n = 2m + 1, then the sum of the first n

terms is s2m+1 = s2m + u2m+1. Since lim
n→∞

un = 0, then lim
m→∞

s2m+1 =

lim
m→∞

s2m + u2m+1 = L + 0 = L. Combining these results, we see that

lim
n→∞

sn = L (see Exercise 131 section 10.1). Q.E.D.
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Note. The following figure illustrates how Theorem 14 works:

Page 586 Figure 10.13

This figure shows how the alternating series converges. The partial sums

keep “overshooting” the limit as they go back and forth on the number

line, gradually closing in as the terms tend to zero. If we stop at the

nth partial sum, we know that the next term (±un+1) will again cause

us to overshoot the limit in the positive direction or negative direction,

depending on the sign carried by un+1. This gives us a convenient bound

for the truncation error, which we state in the following theorem.

Theorem 15. The Alternating Series Estimation Theorem

If the alternating series

∞∑

n=1

(−1)n+1un satisfies the conditions of Theorem

8, then the truncation error for the nth partial sum is less than un+1 and

has the same sign as the unused term.
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Example. Prove that the alternating harmonic series

∞∑

n=1

(−1)n+1

n
is

convergent, but that the corresponding series of absolute values is not

convergent. Find a bound for the truncation error after 99 terms.

Definition. A series
∞∑

n=1

an converges absolutely if the corresponding

series of absolute values

∞∑

n=1

|an| converges. A series that converges but

does not converge absolutely converges conditionally.

Examples. Page 591 Numbers 8 and 18.

Theorem 10. The Absolute Convergence Test

If
∞∑

n=1

|an| converges, then
∞∑

n=1

an converges.

Proof. For each n,

−|an| ≤ an ≤ |an|, so 0 ≤ an + |an| ≤ 2|an|.

If
∞∑

n=1

|an| converges, then
∞∑

n=1

2|an| converges and, by the (Direct) Com-

parison Test, the nonnegative series

∞∑

n=1

(an+|an|) converges. The equality
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an = (an + |an|)− |an| lets us express

∞∑

n=1

an as the difference of two con-

vergent series:

∞∑

n=1

an =

∞∑

n=1

(an + |an| − |an|) =

∞∑

n=1

(an + |an|) −

∞∑

n=1

|an|.

Therefore
∞∑

n=1

an converges. Q.E.D.

Example. Page 591 Number 32.

Example. Page 589 Example 5 By Theorem 14, the alternating p-series
∞∑

n=1

(−1)n−1

np
converges for all p > 0. We have seen that for p > 1

the series, in fact, converges absolutely. However, since for 0 < p ≤

1 the regular p-series diverge, we see that the alternating p-series are

conditionally convergent for these values of p.

Theorem 17. The Rearrangement Theorem for Absolutely

Convergent Series

If

∞∑

n=1

an converges absolutely and b1, b2, . . . , bn, . . ., is any arrangement of

the sequence {an}, then

∞∑

n=1

bn converges absolutely and

∞∑

n=1

bn =

∞∑

n=1

an.



10.6 Alternating Series, Absolute and Conditional Convergence 6

Note. A more interesting result than the Rearrangement Theorem is the

following:

Theorem. A conditionally convergent series can be rearranged to con-

verge to any desired limit (including −∞ or +∞), or to diverge.

Example. We can rearrange the alternating harmonic series to converge

to 1. We start with the first term 1/1 and then subtract 1/2. Next we

add 1/3 and 1/5, which brings the total back to 1 or above. Then we add

consecutive negative terms until the total is less than 1. We continue in this

manner: When the sum is less than 1, add positive terms until the total

is 1 or more, then subtract (add negative) terms until the total is again

less than 1. This process can be continued indefinitely. Because both the

odd numbered terms and the even-numbered terms of the original series

approach 0 as n → ∞, the amount by which our partial sums exceed

1 or fall below it approaches 0. So the new series converges to 1. The

rearranged series starts like this:

1

1
−

1

2
+

1

3
+

1

5
−

1

4
+

1

7
+

1

9
−

1

6
+

1

11
+

1

13
−

1

8
+

1

15
+

1

17
−

1

10
+

1

19

+
1

21
−

1

12
+

1

23
+

1

25
−

1

14
+

1

27
−

1

16
+ · · ·


