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Chapter 10. Infinite Sequences and Series

10.7 Power Series

Definition. An expression of the form
∞
∑

n=0

cnx
n = c0 + c1x + c2x

2 + · · · + cnx
n + · · ·

is a power series about x = 0. An expression of the form
∞
∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n + · · ·

is a power series about x = a. The term cn(x − a)n is the nth term, the

number a is the center.

Note. We are interested in finding the values of x for which the above

power series converge. By convention, a power series centered at a always

converges to c0 for x = a (notice that the summation notation implies

that we consider 00, but this is just a short-coming of the notation - the

0th term is always c0).

Example. We know that

∞
∑

n=0

xn = 1+x+x2 +x3 + · · ·+xn + · · · forms

a geometric series and converges for |x| < 1 to
1

1 − x
.
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Example. For what x does

∞
∑

n=0

3nxn

n!
converge?

Solution. By the Ratio Test, the series of absolute values satisfies

ρ = lim
n→∞

|an+1|

|an|
= lim

n→∞

3n+1|x|n+1

(n + 1)!

n!

3n|x|n
= lim

n→∞

3|x|

n + 1
= 0.

Therefore this series converges for all x, and the original series converges

absolutely for all x.

Corollary to Theorem 18. There are three possibilities for

∞
∑

n=0

cn(x−

a)n with respect to convergence.

1. There is a positive number R such that the series diverges for |x−a| >

R but converges absolutely for |x − a| < R. The series may or may

not converge at either of the endpoints x = a − R and x = a + R.

2. The series converges for all x (that is, R = ∞).

3. The series converges at x = a and diverges elsewhere (that is, R = 0).

Definition. The number R of the above corollary is the radius of con-

vergence, and the set of all values of x for which the series converges is

the interval of convergence.
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Example. Page 595 Example 3b. Find the interval of convergence for
∞
∑

n=1

(−1)n−1
x2n−1

2n − 1
.

Note. To find the interval of convergence for a power series:

1. Use the Ratio Test (or the Root Test) to find the interval where the

series converges absolutely.

2. If the interval of absolute convergence is finite, test for convergence

or divergence at each endpoint. Use a comparison Test, the Integral

Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a−R < x < a + R, then the

series diverges for |x − a| > R.

Example. Page 600 Number 8.
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Theorem 19. The Series Multiplication Theorem for Power

Series

If A(x) =
∞
∑

n=0

anx
n and B(x) =

∞
∑

n=0

bnx
n converge absolutely for |x| < R

and if

cn = a0bn + a1bn−1 + a2bn−2 + · · · + an−1b1 + anb0 =
n
∑

k=0

akbn−k,

then
∞
∑

n=0

cnx
n converges absolutely to A(x)B(x) for |x| < R:

(

∞
∑

n=0

anx
n

)

·

(

∞
∑

n=0

bnx
n

)

=

∞
∑

n=0

cnx
n.

Theorem 21. The Term-by-Term Differentiation Theorem

If

∞
∑

n=1

cn(x − a)n converges for a − R < x < a + R for some R > 0, it

defines a function f :

f (x) =

∞
∑

n=0

cn(x − a)n, a − R < x < a + R.

Such a function has derivatives of all orders inside the interval of con-

vergence and is said to be analytic. We can obtain the derivatives by

differentiating the original series term by term:

f ′(x) =

∞
∑

n=1

ncn(x − a)n−1



10.7 Power Series 5

f ′′(x) =

∞
∑

n=2

n(n − 1)cn(x − a)n−2,

and so on. Each of these derived series converges at every interior point

of the interval of convergence of the original series.

Note. The proof of Theorem 21 is found in an advanced calculus class or

in an introductory analysis class (such as our MATH 4217/5217 Analysis).

The following two theorems are other results from a more advanced class.

Theorem 22. The Term-by-Term Integration Theorem

Suppose that

f (x) =
∞
∑

n=0

cn(x − a)n

converges for a − R < x < a + R (R > 0). Then

∞
∑

n=0

cn

(x − a)n+1

n + 1

converges for a − R < x < A + R and
∫

f (x) dx =

∞
∑

n=0

cn

(x − a)n+1

n + 1
+ C

for a − R < x < a + R.

Example. Page 804 number 52.


