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Chapter 7. Integrals and Transcendental

Functions

7.1. The Logarithm Defined as an Integral

Note. In this section, we introduce the natural logarithm function using

definite integrals. However, to justify using the logarithm terminology

we must show that the function we introduce satisfies the usual proper-

ties of logarithms. We will do so using our definition and the “calculus

properties” which it satisfies.

Definition. For x > 0, define the natural logarithm function as

ln x =

∫ x

1

1

t
dt.

Note. It follows from the definition that for x ≥ 1, ln x is the area

under the curve y = 1/t for t ∈ [1, x]. All we can currently tell from

the definition, is that lnx < 0 for x ∈ (0, 1), ln 1 = 0, and lnx > 0 for

x ∈ (1,∞). We also see that ln x is an INCreasing function of x.
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Figure 7.1 page 418

Definition. The number e is that number in the domain of the natural

logarithm satisfying ln(e) = 1. Numerically, e ≈ 2.718281828459045.

Note. The number e is an example of a transcendental number (as

opposed to an algebraic number). The number π is also transcendental.

The text mentions this on page 422. The six trigonometric functions, the

logarithm functions, and exponential functions (to be defined soon) are

transcendental (thus the title of this chapter).
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Theorem. For x > 0 we have

d

dx
[lnx] =

1

x
.

If u = u(x) is a differentiable function of x, then for all x such that

u(x) > 0 we have

d

dx
[lnu] =

d

dx
[lnu(x)] =

y

1

u

[

du

dx

]

=
1

u(x)
[u′(x)] .

Proof. We have by the Fundamental Theorem of Calculus Part 1:

d

dx
[lnx] =

d

dx

[
∫ x

1

1

t
dt

]

=
1

x
.

By the Chain Rule

d

dx
[lnu(x)] =

y

d

du
[ln u]

du

dx
=

1

u

du

dx
.

Q.E.D.

Note. We can use the above result to show that for x 6= 0, we have
d

dx
[ln |x|] =

1

x
.

Examples. Page 426 numbers 14 and 26.
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Theorem. Properties of Logarithms. For any numbers b > 0 and

x > 0 we have

1. ln bx = ln b + lnx

2. ln
b

x
= ln b − lnx

3. ln
1

x
= − lnx

4. lnxr = r lnx.

Proof. First for 1. Notice that

d

dx
[ln bx] =

y

1

bx

d

dx
[bx] =

1

bx
b =

1

x
.

This is the same as the derivative of lnx. Therefore by Corollary 1 to

the Mean Value Theorem, ln bx and ln x differ by a constant, say ln bx =

ln x+k1 for some constant k1. By setting x = 1 we need ln b = ln 1+k1 =

0+k1 = k1. Therefore k1 = ln b and we have the identity ln bx = ln b+lnx.

Now for 2. We know by 1:

ln
1

x
+ lnx = ln

(

1

x
x

)

= ln 1 = 0.

Therefore ln
1

x
= − lnx. Again by 1 we have

ln
b

x
= ln

(

b
1

x

)

= ln b + ln
1

x
= ln b − lnx.
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Finally for 4. We have by the Chain Rule:

d

dx
[lnxr] =

y

1

xr

d

dx
[xr] =

1

xr
rxr−1 = r

1

x
= r

d

dx
[lnx] =

d

dx
[r lnx] .

As in the proof of 1, since ln xr and r ln x have the same derivative, we

have lnxr = r lnx + k2 for some k2. With x = 1 we see that k2 = 0 and

we have ln xr = r ln x. Q.E.D.

Theorem. If u is a differentiable function that is never zero then
∫

1

u
du = ln |u| + C = {ln |u(x)| + k | k ∈ R} .

Proof. We know the result holds for u(x) > 0. We must only establish

it for u(x) < 0. Notice that when u(x) < 0, −u(x) > 0, and |u(x)| =

−u(x)
∫

1

u
du =

∫

1

−u
d(−u) = ln(−u) + C = ln |u| + C.

Q.E.D.

Note. We can also express the previous theorem as
∫

1

u(x)
u′(x) dx = ln |u(x)| + C.

where u(x) is nonzero.
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Examples. Page 425 numbers 4 and 6.

Theorem. For u = u(x) a differentiable function,

∫

tan u du = − ln | cosu| + C = ln | sec u| + C

∫

cot u du = ln | sinu| + C = − ln | csc u| + C.

Proof. Both follow from u-substitution:
∫

tan x dx =

∫

sinx

cos x
dx

Let u = cos x

then du = − sinx dx

=

∫

−du

u
= −

∫

du

u

= − ln |u| + C = − ln | cos x| + C

= ln
1

| cosx|
+ C

= ln | sec x| + C.
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Next

∫

cot x dx =

∫

cos x

sinx
dx

Let u = sin x

then du = cos x dx

=

∫

du

u
=

∫

ln |u| + C

= ln | sinx| + C = − ln
1

| sinx|

= − ln | csc x| + C.

The theorem follows by another application of u-substitution. Q.E.D.

Theorem. For u = u(x) a differentiable function,
∫

sec u du = ln | sec u + tan u| + C

∫

csc u du = − ln | csc u + cot u| + C.

Proof. Both follow from u-substitution and a “trick.” Here’s the first
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one:

∫

sec x dx =

∫

sec x
sec x + tan x

sec x + tan x
dx =

∫

sec2 x + sec x tan x

sec x + tan x
dx

Let u = sec x + tanx

then du = (sec x tan x + sec2 x) dx

=

∫

du

u
= ln |u| + C = ln | sec x + tan x| + C.

The result follows by another application of u-substitution. The second

result follows similarly (see page 421). Q.E.D.

Note. It is clear that the domain of the natural logarithm function is

(0,∞). The range of the natural logarithm function is (−∞,∞), as

argued on page 420. We know that the natural logarithm function is

increasing, so it is one-to-one and has an inverse.

Definition. Define the natural exponential function as ex = ln−1 x =

exp x.

Note. The domain of ex is (−∞,∞) (the same as the range of ln x) and

the range of ex is (0,∞) (the same as the domain of ln x).
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Note. Since we have defined ex as the inverse of lnx, we immediately

have:

elnx = x for x ∈ (0,∞)

ln(ex) = x for all x.

Theorem. We have
d

dx
[ex] = ex.

Proof. Let y = ex = ln−1 x. Then

ln y = ln ex = x.

Then
d

dx
[ln y] =

d

dx
[x]

y

1

y

dy

dx
= 1

dy

dx
= y = ex.

This proof differs from that on page 422, which uses a theorem on the

derivative of inverse functions (from section 3.8). Q.E.D.
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Note. By combining the previous theorem with the Chain Rule we have

d

dx
[eu] =

y

eu

[

du

dx

]

.

Example. Differentiate f (x) = ecosx sec x.

Theorem. We have
∫

eu du = eu + C.

Proof. This is just a statement of the previous theorem in integral form.

Q.E.D.

Example. Page 426 number 20.

Theorem 1. For all numbers x, x1, and x2, the natural exponential ex

obeys the following laws:

1. ex1 · ex2 = ex1+x2.

2. e−x =
1

ex

3.
ex1

ex2

= ex1−x2
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4. (ex1)x2 = ex1x2 = (ex2)x1

Note. The proof of Theorem 1 is based on the definition of y = ex in

terms of x = ln y and properties of the natural logarithm function.

Definition. For any numbers a > 0 and x, the exponential function

with base a is given by ax = ex lna.

Note. We can use the above definition to show that Theorem 1 holds for

exponentials base a as well.

Theorem. If a > 0 and u is a differentiable function of x, then au is a

differentiable function of x and

d

dx
[au] = au ln a

du

dx
.

In terms of integrals,
∫

au du =
au

ln a
+ C.

Definition. For any positive number a 6= 1, the logarithm of x with

base a, denoted by loga x, is the inverse function of ax.
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Note. Since we have defined ax as the inverse of loga x, we immediately

have:

alog
a
x = x for x ∈ (0,∞)

loga(a
x) = x for all x.

Theorem. To convert logarithms from one base to another, we have the

formula (which we may take as a definition):

loga x =
logb x

logb a

or using natural logarithms:

loga x =
lnx

ln a
.

Proof. We set y = loga x and so ay = x. Taking natural logarithms, we

have ln ay = ln x, or y ln a = lnx and y =
ln x

ln a
. Therefore, y = loga x =

lnx

ln a
. Q.E.D.

Note. We can use the previous conversion result and the properties of

ln x to show that loga x satisfies all the usual properties of logarithms.
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Theorem. Differentiating a logarithm base a gives:

d

dx
[loga u] =

1

ln a

1

u

du

dx
.

Proof. This follows easily:

d

dx
[loga x] =

d

dx

[

ln x

ln a

]

=
1

ln a

d

dx
[ln x] =

1

ln a

1

x
.

Combining this result with the Chain Rule gives the theorem. Q.E.D.

Examples. Page 426 numbers 46 and 54.


