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Chapter 7. Integrals and Transcendental

Functions

7.2. Exponential Change and Separable Differential

Equations

Note. Suppose we are interested in a quantity y (population, radioactive

element, money) that increases or decreases at a rate proportional to the

amount present. If we also know the amount present at time t = 0, say

y0, we can find y as a function of t by solving the following initial value

problem.

Differential equation: dy

dt
= ky

Initial condition: y = y0 when t = 0.

The constant function y = 0 is a solution of the differential equation but

we usually aren’t interested in that solution. To find nonzero solutions,
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we separate the variables and integrate.

dy

y
= k dt

ln |y| ∈ kt + C

eln |y| = ekt+c where c ∈ C

|y| = ecekt where c ∈ C

y = ±ecekt

y = Aekt where A = ±ec.

By allowing A to take on the value 0 in addition to all the possible values

we can include the solution y = 0. Therefore the general solution to the

given differential equation is y = Aekt where A is an arbitrary constant.

Note. If y changes at a rate proportional to the amount present (dy/dx =

ky) and y = y0 when t = 0, then

y = y0e
kt,

where k > 0 represents growth and k < 0 represents decay. This is call the

Law of Exponential Change and k is the rate constant of the equation.

Example. Page 434 numbers 30 and 32.
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Definition. A first-order differential equation is a relation

d

dx
[y(x)] = f (x, y(x))

in which f (x, y) is a function of two variables defined on a region in the

xy-plane. A solution of this equation is a differentiable function y = y(x)

defined on an interval of x-values such that

d

dx
[y(x)] = f (x, y(x))

on that interval. The initial condition that y(x0) = y0 amounts to requir-

ing the solution curve y = y(x) to pass though the point (x0, y0).

Example. Page 434 number 6.

Definition. The equation y′ = f (x, y) is separable if f can be expressed

as a product of a function of x and a functions of y. The differential

equation then has the form

dy

dx
= g(x)H(y) =

g(x)

h(y)

where H(y) =
1

h(y)
.
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Note. If h(y) 6= 0, we can separate the variables by dividing both sides

by h, obtaining

1

h(y)

dy

dx
= g(x)

∫
1

h(y)

dy

dx
dx =

∫
g(x) dx

∫
1

h(y)
dy =

∫
g(x) dx

(Notice that the last two lines claim that two sets are equal.) With x and

y now separated, we simply integrate each side to get the solutions. We

seek by expressing y either explicitly or implicitly as a function of x, up

to an arbitrary constant.

Example. Page 434 number 16.

Note. When an atom emits some of its mass as radiation, the remainder

of the atom reforms to make an atom of some new element. This pro-

cess of radiation and change is radioactive decay, and an element whose

atoms go spontaneously through this process is radioactive. For example,

radioactive carbon-14 decays into nitrogen.

Experiments have shown that at any given time, the rate at which a

radioactive element decays (as measured by the number of nuclei that
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change per unit of time) is approximately proportional to the number of

radioactive nuclei present. Thus, the decay of a radioactive element is

described by the equation dy/dt = −ky, k > 0. If y0 is the number of

radioactive nuclei present at time zero, the number still present at any

later time will be

y = y0e
−kt, k > 0.

Definition. The half-life of a radioactive element is the time required

for half of the radioactive nuclei present in a sample to decay.

Note. We can calculate half-life by asking t =? when y = y0/2. This

gives y0/2 = y0e
−kt or 1/2 = e−kt. By taking logarithms of both sides of

this last equation, we get ln(1/2) = ln e−kt = −kt. From this it follows

that t = −(ln 1/2)/k = (ln 2)/k.

Example. The following radioactive isotopes are commonly used for

determining ages of rocks:
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Isotope Half-Life Daughter Product

K-40 1.3 billion years Ar-40

U-238 4.5 billion years Pb-206

U-235 713 million years Pb-207

Th-232 14.1 billion years Pb-208

Rb-87 49 billion years Sr-87

When a rock is formed, it contains U-238 and no Pb-206. After some

time, the rock contains only 49% of the original amount of U-238 (the rest

having decayed into Pb-206). How old is the rock?

Note. If H is the temperature of an object in an environment of tem-

perature HS, then according to Newton’s Law of Cooling, the objects

temperature changes at a rate proportional to the difference of H and

HS. That is,
dH

dt
= −k(H − HS).

If H0 is the initial temperature of the object, then we get

H − HS = (H0 − HS)e−kt.

Example. Page 435 number 42.


