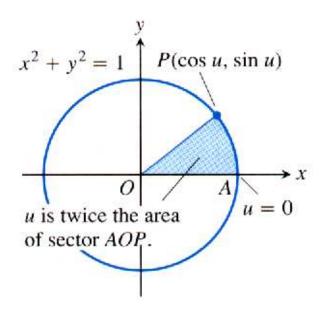
Chapter 7. Integrals and Transcendental Functions

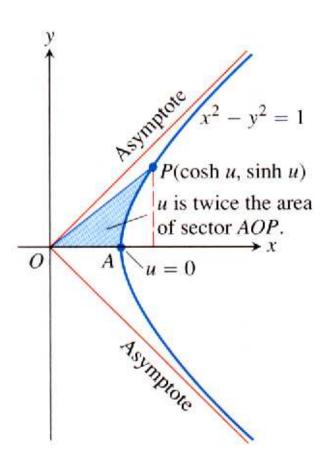
7.3. Hyperbolic Functions

Note. Recall that $\cos x$ and $\sin x$ are sometimes called the *circular functions*. This is because we can plot a point P on the circle $x^2 + y^2 = 1$ by letting $P = (\cos u, \sin u)$ where u is twice the area of the sector determined by A = (1, 0), O = (0, 0) and P:



Page 444 Figure from Exercise 86

Note. We can similarly define the *hyperbolic functions*. Consider the hyperbola $x^2 - y^2 = 1$. Choose a point P on the hyperbola and define u as twice the (signed) area determined by the sector A = (1,0), O = (0,0), and P. Now use the coordinates of P to define the hyperbolic trigonometric functions: $P = (\cosh u, \sinh u)$.



Page 444 Figure from Exercise 86

Note. We will use the exponential function to define the hyperbolic trig functions.

Definition. We define

Hyperbolic cosine of
$$x$$
: $\cosh x = \frac{e^x + e^{-x}}{2}$

Hyperbolic sine of
$$x$$
: $\sinh x = \frac{e^x - e^{-x}}{2}$

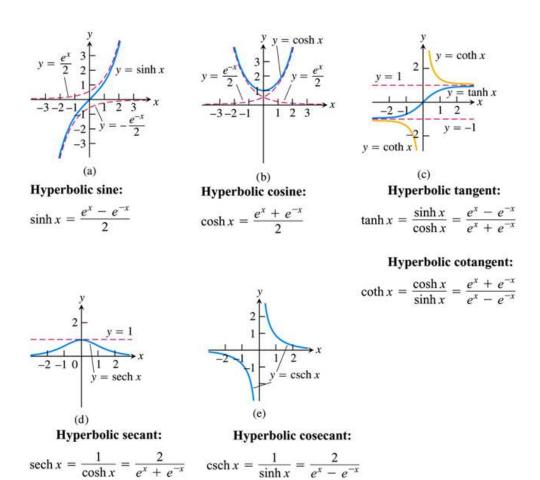
Hyperbolic tangent
$$x$$
: $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Hyperbolic cotangent of
$$x$$
: $\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

Hyperbolic secant of
$$x$$
: sech $x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$

Hyperbolic cosecant of
$$x$$
: csch $x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$

The graphs are:



From Table 7.3 page 436

Theorem. (Table 7.4) We have the following identities:

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$\cosh^2 x = \frac{\cosh 2x + 1}{2}$$

$$\sinh^2 x = \frac{\cosh 2x - 1}{2}$$

$$\tanh^2 x = 1 - \operatorname{sech}^2 x$$

$$\coth^2 x = 1 + \operatorname{csch}^2 x$$

Example. Page 441 number 2.

Theorem. (Table 7.5) We have the following differentiation properties:

$$\frac{d}{dx} \left[\sinh u \right] = \cosh u \frac{du}{dx}$$

$$\frac{d}{dx} \left[\cosh u \right] = \sinh u \frac{du}{dx}$$

$$\frac{d}{dx} \left[\tanh u \right] = \operatorname{sech}^{2} u \frac{du}{dx}$$

$$\frac{d}{dx} \left[\coth u \right] = - \operatorname{csch}^{2} u \frac{du}{dx}$$

$$\frac{d}{dx} \left[\operatorname{sech} u \right] = - \operatorname{sech} u \tanh u \frac{du}{dx}$$

$$\frac{d}{dx}\left[\operatorname{csch} u\right] = -\operatorname{csch} u\operatorname{coth} u\frac{du}{dx}$$

Example. Prove some of the results in the above theorem.

Theorem. (Table 7.6) We have the following integral properties:

$$\int \sinh u \, du = \cosh u + C$$

$$\int \cosh u \, du = \sinh u + C$$

$$\int \operatorname{sech}^{2} u \, du = \tanh u + C$$

$$\int \operatorname{csch}^{2} u \, du = -\coth u + C$$

$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

$$\int \operatorname{csch} u \coth u \, du = -\operatorname{csch} u + C$$

Proof. These are just the integral versions of the results in Table 7.5. Q.E.D.

Examples. Page 442 numbers 20 and 50.

Note. Since $\frac{d}{dx}[\sinh x] = \cosh x > 0$, then $\sinh x$ is an INCreasing function and so is one-to-one. The function $\cosh x$ is not one-to-one as we can see from the graph. The function $\operatorname{sech} x = 1/\cosh x$ is also not one-to-one. Therefore, to define the inverse functions of $\cosh x$ and $\operatorname{sech} x$, we must restrict the domains.

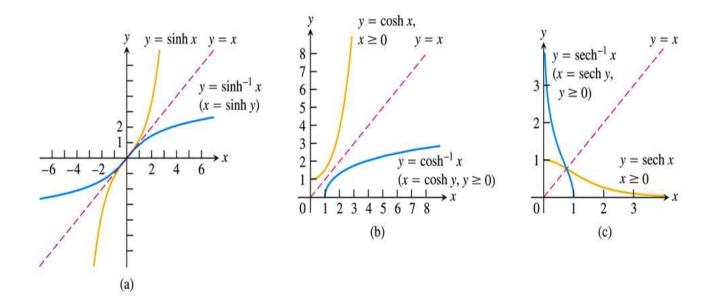
Definition. We define some inverse hyperbolic trig functions.

Define $y = \sinh^{-1} x$ if $x = \sinh y$. (The domain is then $x \in (-\infty, \infty)$.)

Define $y = \cosh^{-1} x$ if $x = \cosh y$ and $y \in [0, \infty)$. (The domain is then $x \in [1, \infty)$.)

Define $y = \operatorname{sech}^{-1} x$ if $x = \operatorname{sech} y$ and $y \in [0, \infty)$. (The domain is then $x \in (0, 1]$.)

Note. The graphs of the above defined three inverse hyperbolic trig functions are:

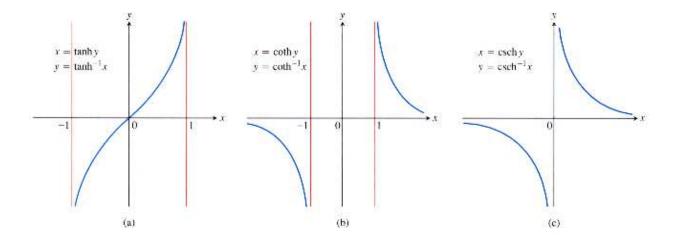


Page 439 Figure 7.5

Note/Definition. The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and therefore have inverses, denoted by

$$y = \tanh^{-1} x$$
, $y = \coth^{-1} x$, $y = \operatorname{csch}^{-1} x$.

The graphs of these functions are:



Page 439 Figure 7.6

Theorem. We can express the inverse hyperbolic trig functions in terms of the natural logarithm function as follows:

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}), \ x \in (-\infty, \infty).$$

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \ x \in [1, \infty).$$

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1 + x}{1 - x}, \ x \in (-1, 1).$$

$$\operatorname{sech}^{-1} x = \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right), \ x \in (0, 1].$$

$$\operatorname{csch}^{-1} x = \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), \ x \in (-\infty, 0) \cup (0, \infty).$$

$$\coth^{-1} x = \frac{1}{2} \ln \frac{x+1}{x-1}, \ x \in (-\infty, -1) \cup (1, \infty).$$

Theorem. (Table 7.7) We can verify the following identities:

$$\operatorname{sech}^{-1} x = \operatorname{cosh}^{-1} \frac{1}{x}$$
$$\operatorname{csch}^{-1} x = \sinh^{-1} \frac{1}{x}$$
$$\operatorname{coth}^{-1} x = \tanh^{-1} \frac{1}{x}$$

Theorem. (Table 7.8) The inverse hyperbolic trig functions are differentiated as follows:

$$\frac{d}{dx} \left[\sinh^{-1} u \right] = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

$$\frac{d}{dx} \left[\cosh^{-1} u \right] = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}, \ u \in (1, \infty)$$

$$\frac{d}{dx} \left[\tanh^{-1} u \right] = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}, \ u \in (-1, 1)$$

$$\frac{d}{dx} \left[\coth^{-1} u \right] = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}, \ u \in (-\infty, -1) \cup (1, \infty)$$

$$\frac{d}{dx} \left[\operatorname{sech}^{-1} u \right] = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}, \ u \in (0, 1)$$

$$\frac{d}{dx} \left[\operatorname{csch}^{-1} u \right] = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}, \ u \in (-\infty, 0) \cup (0, \infty)$$

Theorem. (Table 7.9) We have the following integrals involving inverse hyperbolic trig functions:

$$\int \frac{du}{\sqrt{a^2 + u^2}} = \sinh^{-1}\left(\frac{u}{a}\right) + C, \ a > 0$$

$$\int \frac{du}{\sqrt{a^2 + u^2}} = \cosh^{-1}\left(\frac{u}{a}\right) + C, \ u > a > 0$$

$$\int \frac{du}{a^2 - u^2} = \begin{cases} \frac{1}{a} \tanh^{-1}\left(\frac{u}{a}\right) + C & \text{if } u^2 < a^2 \\ \frac{1}{a} \coth^{-1}\left(\frac{u}{a}\right) + C & \text{if } u^2 > a^2 \end{cases}$$

$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \operatorname{sech}^{-1}\left(\frac{u}{a}\right) + C, \ 0 < u < a$$

$$\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{a}{a} \operatorname{csch}^{-1}\left|\frac{u}{a}\right| + C, \ u \neq 0$$

Examples. Page 442 number 70 and page 443 number 79.

Corrected 1/18/2020