Chapter 7. Integrals and Transcendental Functions

7.4. Relative Rates of Growth

Note. On page 444, the text describes how fast the exponential function $f(x) = e^x$ grows. If I graph $y = e^x$ on the whiteboard with the axes calibrated by centimeters. We get the following values:

x (cm)	$\approx e^x \ (\mathrm{cm})$	Approximate Distance
0	1	width of marker
1	2.72	1 inch
2	7.4 (3 in)	Diameter of a Baseball
3	20 (8 in)	Diameter of a Cantelope
4	55 (22 in)	Top of Whiteboard
5	148 (5 ft)	
6	403 (13 ft)	Past the Ceiling
7	1096 (37 ft)	
8	2980 (99 ft)	
9	8103 (270 ft)	Football Field
10	22,026 (734 ft)	
12	$162,755 \ (1 \text{ mile})$	
15	3,269,017 (20 miles)	
17	24,154,953 (150 miles)	Low Earth Orbit
24	$2.65 \times 10^{10} (164,596 \text{ miles})$	2/3 to Moon
30	$1.07 \times 10^{13} \ (66,402,674 \ miles)$	2/3 to Sun
43	4.73×10^{18} (5 light-years)	Nearest Star to Solar System
56	2.09×10^{24} (2 million light-years)	Andromeda Galaxy
65	1.68×10^{28} (15 billion light-years)	Edge of the Universe

In contrast to this, is the slow rate of growth of the logarithmic function $\ln x$.

Definition. Let f(x) and g(x) be positive for x sufficiently large.

1. f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \text{ or equivalently if } \lim_{x \to \infty} \frac{g(x)}{f(x)} = 0$$

2. f and g grow at the same rate as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

where L is finite and positive.

Example. Let $f(x) = e^x$ and $g(x) = x^n$ for some positive integer n. Show that f grows faster than g.

Definition. A function f is of smaller order than g as $x \to \infty$ if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, We indicate this by writing f = o(g) ("f is little-oh of g").

Definition. Let f(x) and g(x) be positive for x sufficiently large. Then f is of at most the order of g as $x \to \infty$ if there is a positive integer Mfor which $\frac{f(x)}{g(x)} \leq M$ for x sufficiently large. We indicate this be writing f = O(g) ("f is big-oh of g).

Note. If f = O(g), then f and g are asymptotically multiples of each other.

Example. Page 449 10e, 11 and 18.