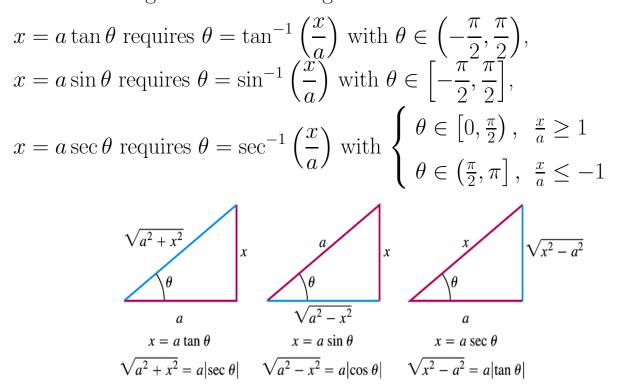
Chapter 8. Techniques of Integration8.3 Trigonometric Substitution


Note. In this section, we consider integrals involving expressions of the forms

- **1.** $a^2 + x^2$
- **2.** $a^2 x^2$
- **3.** $x^2 a^2$

in "inconvenient" places (such as under square root radicals). We make the following substitutions in each case:

x	expression E	E becomes	dx
$a \tan \theta$	$a^2 + x^2$	$a^2 \sec^2 \theta$	$a \sec^2 \theta \ d\theta$
$a\sin\theta$	$a^2 - x^2$	$a^2\cos^2 heta$	$a\cos hetad heta$
$a \sec \theta$	$x^2 - a^2$	$a^2 \tan^2 \theta$	$a \sec \theta \tan \theta d\theta$

Note. After we convert from x values (say) to trig functions of θ (say), we will eventually need to reverse the process and convert back to x's. We will do so using a "reference triangle." We will find:

Page 467 Figure 8.2

Examples. Page 470 numbers 8 and 36, page 471 number 51.

Example. Find the arclength of the graph of $y = x^2$ for $x \in [0, 1]$.