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Chapter 8. Techniques of Integration
8.6 Numerical Integration

Note. If we start with a regular partition, then we can approximate

definite integrals using trapezoids instead of rectangles.
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We let Ax =

and the area of the kth trapezoid is
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b
Definition. In the Trapezoid Rule, the integral / f(z)dx, is approx-

imated by
Ax
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This approximation is based on a regular partition of [a, b] where Az =

(b—a)/n, xy =a+ kAz, and y = f(xp).

Theorem la. We can estimate the error involved in using the Trapezoid
Rule to approximate a definite integral. If f” is continuous and M is any
upper bound for the values of | f”| on [a, b], then
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where h = Az = (b — a)/

Note. If f(z) = ma + b then f’(xz) =0 and E7 = 0. So the Trapezoid

Rule gives exact values for such functions.

Examples. Page 494 number 8 I abc.
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Note. Instead of approximating y = f(x) with straight line segments,
we can approximate it with parabolas. We then integrate to find the area

under the parabolas. This leads to Simpson’s Rule.
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Definition. In Simpson’s Rule, the integral / f(z)dzx, is approxi-

mated by
h
S = (o g+ 2y + dys + o+ 2y Ay ).

This approximation is based on a regular partition of |a, b] of size n where

n is even, and where Ax = h = (b—a)/n, vy = a+ kh, and y. = f(xy).

Theorem 1b. We can estimate the error involved in using Simpson’s
Rule to approximate a definite integral. If (4 is continuous and M is any
upper bound for the values of | fY] on [a, b], then
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where h = (b —a)/

Note. If f is a third degree polynomial then f™®(z) = 0 and Eg = 0.

So Simpson’s Rule gives exact values for such functions.

Examples. Page 494 number 8 II abc, and page 494 number 24.



