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Chapter 8. Techniques of Integration

8.7 Improper Integrals

Note. In this section, we are interested in finding the area under a

curve over an infinite interval. This arises, in particular, in probability

and statistics when looking at, for example, the area under the normal

distribution.

Definition. Integrals with infinite limits of integration are improper

integrals of Type I:

1. If f (x) is continuous on [a,∞), then

∫ ∞

a

f (x) dx = lim
b→∞

∫ b

a

f (x) dx.

2. If f (x) is continuous on (−∞, b], then
∫ b

−∞
f (x) dx = lim

a→−∞

∫ b

a

f (x) dx.

3. If f (x) is continuous on (−∞,∞), then
∫ ∞

−∞
f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞

c

f (x) dx.
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In parts 1 and 2, if the limit is finite, the improper integral converges and

the limit is the value of the improper integral. If the limit fails to exist, the

improper integral diverges. In part 3, the integral on the left-hand side of

the equation converges if both improper integrals on the right-hand side

converge; otherwise it diverges and has no value.

Figure 8.13b page 496

Example. Example 2 page 497: Evaluate

∫ ∞

−∞

dx

1 + x2
.

Example. Evaluate

∫ ∞

1

1

x
dx.



8.7 Improper Integrals 3

Definition. Integrals of functions that become infinite at a point within

the interval of integration are improper integrals of Type II:

1. If f (x) is continuous on (a, b], then
∫ b

a

f (x) dx = lim
c→a+

∫ b

c

f (x) dx.

2. If f (x) is continuous on [a, b), then
∫ b

a

f (x) dx = lim
c→b−

∫ c

a

f (x) dx.

3. If f (x) is continuous on [a, c)
⋃

(c, b], then
∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx.

In parts 1 and 2, if the limit is finite, the improper integral converges and

the limit is the value of the improper integral. In the limit fails to exist,

the improper integral diverges. In part 3, the integral on the left-hand side

of the equation converges if both integrals on the right-hand side values;

otherwise it diverges.
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Figures 8.16, 8.17, and 8.18 pages 499 and 500.

Example. Page 505 number 28.
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Note. When we cannot evaluate an improper integral directly (often the

case in practice) we first try to determine whether it converges or diverges.

If the integral diverges, that’s the end of the story. If it converges, we can

then use numerical methods to approximate its value.

Theorem 2. Direct Comparison Test

Let f and g be continuous on [a,∞) with 0 ≤ f (x) ≤ g(x) for all x ≥ a.

Then

1.

∫ ∞

a

f (x) dx converges if

∫ ∞

a

g(x) dx converges.

2.

∫ ∞

a

g(x) dx diverges if

∫ ∞

a

f (x) dx diverges.

Example. Page 505 Number 52.

Theorem 3. Limit Comparison Test

If the positive functions f and g are continuous on [a,∞) and if

lim
x→∞

f (x)

g(x)
= L, 0 < L < ∞,

then ∫ ∞

a

f (x) dx and

∫ ∞

a

g(x) dx

both converge or both diverge.
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Example. Page 505 Number 48.

Note. Sometimes the Limit Comparison Test is easier than the Direct

Comparison Test, since we don’t have to worry about inequalities.

Example. Evaluate

∫ ∞

2

dx
√

x2 + 1
.

Example. Page 506 number 74 (Gabriel’s Horn).

Note. Consider the function f (x) =
1

σ
√

2π
e−(x−µ)2/(2σ2). This is the

“bell curve” or normal distribution. We are interested in showing that∫ ∞

−∞
f (x) dx = 1 (since this is a probability distribution). This is equiv-

alent to evaluating

∫ ∞

−∞
e−x2

dx. Unfortunately, it IS IMPOSSIBLE to

antidifferentiate e−x2

. . . well, not so fast! Maybe we can try one more

trick. . . This story is to be concluded in section 10.7.


