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Chapter 9. First-Order Differential Equations

9.1 Solutions, Slope Fields, and Euler’s Method

Definition. A first-order differential equation is a relation

d

dx
[y(x)] = f (x, y(x))

in which f (x, y) is a function of two variables defined on a region in the

xy-plane. A solution of this equation is a differentiable function y = y(x)

defined on an interval of x-values such that

d

dx
[y(x)] = f (x, y(x))

on that interval. The general solution is the set of all solutions and

involves a constant of integration. A particular solution is a solution

satisfying a given initial condition y(x0) = y0. The first-order differential

equation together with an initial condition form a first-order initial value

problem.

Note. We encountered this idea in Section 7.2.
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Note. We can graph little hash-marks to indicate the slope dy/dx =

f (x, y) at various points in the xy−plane to give some idea of the “flow”

of a solution. Such a collection of hash-marks is called a slope field for

the differential equation.

Example. The slope field for the differential equation
dy

dx
= y − x is

given below, along with the particular solution which passes through the

point (0, 2/3).

Figure 9.2 page 516

Example. Page 520 number 4.
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Note. (Euler’s Method) Given a differential equation dy/dx = f (x, y)

and an initial condition y(x0) = y0, we can approximate the solution

y = y(x) by its linearization

L(x) = y(x0) + y′(x0)(x − x0) or L(x) = y0 + f (x0, y0)(x − x0).

The function L(x) gives a good approximation to the solution y(x) in a

short interval about x0:

Page 517 Figure 9.4

The basis of Euler’s Method is to patch together a string of linearizations

to approximate the curve over a long stretch.

We know the point (x0, y0) lies on the solution curve. Suppose that we

specify a new value for the independent variable to be x1 = x0 + dx. If
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the increment dx is small, then

y1 = L(x1) = y0 + f (x0, y0)dx

is a good approximation to the exact solution value y = y(x1). So from the

point (x0, y0), which lies exactly on the solution curve, we have obtained

the point (x1, y1) which lies very close to the point (x1, y(x1)) on the

solution curve:

Page 517 Figure 9.5

Using the point (x1, y1) and the slope f (x1, y1) of the solution curve

through (x1, y1) we take a second step. Setting x2 = x1 + dx, we use the

linearization of the solution curve through (x1, y1):

y2 = y1 + f (x1, y1)dx.
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This gives the next approximation (x2, y2) to values along the solution

curve y = y(x) with slope f (x2, y2) to obtain the third approximation

y3 = y2 + f (x2, y2)dx,

and so on. In general, we have

yn = yn−1 + f (xn−1, yn−1)dx.

We are literally building an approximation to one of the solutions by

following the direction of the “slope field” of the differential equation.

Note. We have xn = x0 + n dx.

Page 517 Figure 9.6
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Example. Page 521 number 12.

Note. It might be tempting to reduce the step size more and more in

Euler’s Method in order to obtain better accuracy. However, this requires

additional computation time and more importantly adds to the buildup of

round-off errors due to the approximate representations of numbers. The

analysis of errors and the investigation of methods to reduce it when mak-

ing numerical calculations are important and are explored in a Numerical

Analysis class. In fact, in such a class you will see that there are numerical

methods more accurate and more sophisticated than Euler’s method.

Example. Page 663 Example 3. Use Euler’s Method to solve the I.V.P.

y′ = 1 + y, y(0) = 1,

on the interval x ∈ [0, 1], starting at x0 = 0 and taking dx = 0.1. Compare

the approximations with the values of the exact solution y = 2ex
−1. (See

Table 9.2 on page 520.)


