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Chapter 9. First-Order Differential Equations
9.2 First-Order Linear Equations

Definition. A first-order differential equation that can be written in
the form

dy

=+ Pla)y = Q)

where P and () are functions of x, is a linear first-order equation and the

above equation is the standard form of the D.E.

Theorem. The solution of the linear equation

1S

where

v(z) € el P@dr,

In the “formula” for v(x), we can simply set v equal to the exponentiation

of ANY antiderivative of P.
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Proof. First, we multiply both sides of the equation by some function v
(called an integrating factor) which will transform the left-hand side of
the D.E. into the derivative of the product v(z)y (this is a constraint on

v that we will deal with shortly):

Yy € —/v(x)Q(x) dx.

Now we must deal with the constraint on v:
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This last equation will hold if
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Inv € /Pda:

(notice v > 0 by hypothesis)

6lnv c edex

v € el P

Q.E.D.

Example. Page 526 numbers 8 and 16.
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Note. The diagram below represents an electrical circuit whose total
resistance is a constant R ohms and whose self-inductance, shown as a
coil, is L henries, also a constant. There is a switch whose terminal at
a and b can be closed to connect a constant electrical source of V' volts.
Ohm’s Law, V = RI, has to be modified for such a circuit. The modified
form is

di

L—+Ri=YV,
dt+ ) )

where ¢ is the intensity of the current in amperes and ¢ is the time in
seconds. By solving this equation, we can predict how the current ¢ will

flow after the switch is closed.
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Example. Page 527 number 28. Solution: 7 = o —e (RIL)E
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Note. In the above problem, we have

vV Vv vV Vv Vv
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From the graph of the solution, we see why i = V/R is called a steady-

state value. In fact, the solution is expressed as the sum of a steady state

solution V/R and a transient solution —(V/R)e~ /L1,
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