Linear Algebra

Chapter 1. Vectors, Matrices, and Linear Systems
Section 1.1. Vectors in Euclidean Spaces—Proofs of Theorems
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Page 16 Number 10

Page 16 Number 10. Compute the linear combination 34 + V — w where
i=[1,2,1,0], ¥ =[-2,0,1,6], and w = [3, 5,1, —2].
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Page 16 Number 10

Page 16 Number 10

Page 16 Number 10. Compute the linear combination 34 + V — w where
i=[1,2,1,0], ¥ =[-2,0,1,6], and w = [3, 5,1, —2].
Solution. We have

36+v—-w = 3[1,2,1,0] +[-2,0,1,6] —[3,-5,1, 2]
= [3(1),3(2),3(1),3(0)] + [-2,0,1,6] — [3,-5,1, —2]
by Definition 1.1(3), “Scalar Multiplication”
= [3,6,3,0] +[-2,0,1,6] — [3, 5,1, —2] simplifying
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Page 16 Number 10

Page 16 Number 10

Page 16 Number 10. Compute the linear combination 34 + V — w where
i=[1,2,1,0], ¥ =[-2,0,1,6], and w = [3, 5,1, —2].
Solution. We have

3i+v—w = 3[1,2,1,01+[-2,0,1,6] — [3,-5,1,—2]

= [3(1),3(2),3(1),3(0)] +[—2,0,1,6] — [3, 5,1, —2]
by Definition 1.1(3), “Scalar Multiplication”
= [3,6,3,0] +[-2,0,1,6] — [3, 5,1, —2] simplifying
= [3+(-2),6+0,3+1,0+6]—[3,-5,1,-2]
by Definition 1.1(1), “Vector Addition”
= [1,6,4,6] — [3,—5, 1, —2] simplifying
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Page 16 Number 10

Page 16 Number 10. Compute the linear combination 34 + V — w where
i=[1,2,1,0], ¥ =[-2,0,1,6], and w = [3, 5,1, —2].

Solution. We have
3U+vVv—w =

3[1,2,1,0] + [-2,0,1,6] — [3, 5,1, ~2]
3(1),3(2),3(1), 3(0)] + [~2,0,1,6] — [3,—5, 1, —2]
by Definition 1.1(3), “Scalar Multiplication”
[3,6,3,0] +[-2,0,1,6] — [3,—5, 1, —2] simplifying
[3+(-2),6+0,3+1,0+6]—[3,-5,1,-2]

by Definition 1.1(1), “Vector Addition”

[1,6,4,6] — [3, 5,1, —2] simplifying
[1-(3),6—(-5),4—(1),6 - (-2)]

by Definition 1.1(2), “Vector Subtraction”

[—2,11, 3, 8] simplifying.

Soweconclude’3u+v—w—[ 2,11,3,8]. ‘D
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Page 16 Number 14

Page 16 Number 14. Reproduce the vectors in this figure and draw an
arrow representing —30 + 2w.

<l
sl
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Page 16 Number 14

Page 16 Number 14. Reproduce the vectors in this figure and draw an

arrow representing —30 + 2w.

<l
sl

Solution. From Definition 1.1(3), “Scalar Multiplication,”
and the geometric interpretation of vectors

(see the class notes, pages 2, 3, and 4)

we represent —34 and 2w as:

2w
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Page 16 Number 14

Page 16 Number 14. Reproduce the vectors in this figure and draw an

arrow representing —30 + 2w.

<l
sl

Solution. From Definition 1.1(3), “Scalar Multiplication,”
and the geometric interpretation of vectors

(see the class notes, pages 2, 3, and 4)

we represent —34 and 2w as:

2w
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Page 16 Number 14

Then by the parallelogram property of addition:
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
%

Prove (Al): (44 V) +w =0+ (
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+ V)+w =0+ (V+ w).

Proof. Since i, V,w € R", by Definition 1.A, “Vectors in R",” we have
that 0 =[u1, v, ..., up], V=[vi,v2,...,Vs], and w = [w1, wa, ..., wp]
where all u;, v;, and w; are real numbers.
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+ V)+w =0+ (V+ w).

Proof. Since i, V,w € R", by Definition 1.A, “Vectors in R",”

we have
that 0 =[u1, v, ..., up], V=[vi,v2,...,Vs], and w = [w1, wa, ..., wp]
where all u;, v;, and w; are real numbers. Then
(d+vV)+w = ([ur,uy...,un]+[vi,va, ... vn])+ [wi,wa, ..., wp
= [ur+ v, 4 vo, ..o Uy + vp] 4 W, wa, . Wy

by Definition 1.1(1), “Vector Addition”
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+ V)+w =0+ (V+ w).

Proof. Since i, V,w € R", by Definition 1.A, “Vectors in R",” we have
that 0 =[u1, v, ..., up], V=[vi,v2,...,Vs], and w = [w1, wa, ..., wp]
where all u;, v;, and w; are real numbers. Then
(d+vV)+w = ([ur,uy...,un]+[vi,va, ... vn])+ [wi,wa, ..., wp
= [ur+ v, 4 vo, ..o Uy + vp] 4 W, wa, . Wy

by Definition 1.1(1), “Vector Addition”
= [(r1 +wv1)+wa, (w2 + v2) + wa,...,(up+ Vo) + wy
by Definition 1.1(1), “Vector Addition”
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+ V)+w =0+ (V+ w).

Proof. Since i, V,w € R", by Definition 1.A, “Vectors in R",” we have
that 0 =[u1, v, ..., up], V=[vi,v2,...,Vs], and w = [w1, wa, ..., wp]
where all u;, v;, and w; are real numbers. Then

(d+vV)+w = ([ur,uy...,un]+[vi,va, ... vn])+ [wi,wa, ..., wp
= [+ wvi,u2+ v, ... up+ vp] + [wa,wa,. .., wy]
by Definition 1.1(1), “Vector Addition”
= [(u1 4+ v1) 4+ wi, (2 +v2) + wa, ..., (Un + Vi) + wy]
by Definition 1.1(1), “Vector Addition”
= [ui+(vi+wi), 0+ (vo+wa),...,un+ (Vo + wp)l
since addition of real numbers is associative
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Page 17 Number 40(a)

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+V)+w =1+ (V+w).

Proof (continued). ...

(d+V)+w = [nn+(v+w),up+ (vo+wa),...,un+ (vVp+ wy)]
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Page 17 Number 40(a)

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+V)+w =1+ (V+w).

Proof (continued). ...
(d+Vv)+w [t1+ (i +wr), 0+ (vo +wa), ... up+ (Vo + wy)]
= [ur,uz, ... up|+[vi+wi,vo+wa,...,vy+ wy
by Definition 1.1(1), “Vector Addition”
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Page 17 Number 40(a)

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let 4,v,w € R" and let r, s be scalars in R.
Prove (Al): (d+V)+w =1+ (V+w).

Proof (continued). ...

(G+v)+w = [u1+(vi+tw),ua+(va+wa),...,us+ (Vo+ wp)
= [ur,uz, ... up|+[vi+wi,vo+wa,...,vy+ wy
by Definition 1.1(1), “Vector Addition”
= [ur,u2,... up] + ([va,va,-.o, Vo] + [Wai, wo, ..., wy))
by Definition 1.1(1), “Vector Addition”
= 0+ (V+w).
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Page 17 Number 41(a)

Page 17 Number 41(a)

Page 17 Number 41(a). Let V,w € R" and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.
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Page 17 Number 41(a)

Page 17 Number 41(a)

Page 17 Number 41(a). Let V,w € R" and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof. Since vV, w € R", by Definition 1.A, “Vectors in R",” we have that
V=I[v,v,...,vy| and w = [wq, wy,

..., Wy] where all v; and w; are real
numbers.
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Page 17 Number 41(a)

Page 17 Number 41(a)

Page 17 Number 41(a). Let V,w € R" and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof. Since vV, w € R", by Definition 1.A, “Vectors in R",” we have that
V=I[v,v,...,vy| and w = [wq, wy,

..., Wy] where all v; and w; are real
numbers. Then

r(v+w) = r([vi,va,...,vo]+ [wi,wa, ..., wp])
rlvi +wi, va 4+ wa, ..., vy + wy
by Definition 1.1(1), “Vector Addition”
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Page 17 Number 41(a)

Page 17 Number 41(a)

Page 17 Number 41(a). Let V,w € R" and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof. Since vV, w € R", by Definition 1.A, “Vectors in R",” we have that
V=I[v,v,...,vy| and w = [wq, wy,

..., Wy] where all v; and w; are real
numbers. Then

r(v+w) = r([vi,va,...,vo]+ [wi,wa, ..., wp])
rlvi + wi,vo + wo, ..oy vy + wy)
by Definition 1.1(1), “Vector Addition”
= [r(vi +w1), r(vo+w2),...,r(vs+ wy)]
by Definition 1.1(3), “Scalar Multiplication”
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Page 17 Number 41(a)

Page 17 Number 41(a)

Page 17 Number 41(a). Let V,w € R" and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof. Since vV, w € R", by Definition 1.A, “Vectors in R",” we have that
V=|[v,v,...,vy] and W = [wy, wa, ..., w,| where all v; and w; are real
numbers. Then
r(v+w) = r([vi,va,...,vo]+ [wi,wa, ..., wp])
= rlvi+wi,vo+wa, ..., vy + wy
by Definition 1.1(1), “Vector Addition”
= [r(vi +w1), r(vo+w2),...,r(vs+ wy)]
by Definition 1.1(3), “Scalar Multiplication”
= [rvi+ rwi,rvo+ rway . v+ rwg)
since multiplication distributes
over addition in the real numbers. ..
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Page 17 Number 41(a)

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let Vv, w € R"” and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof (continued). ...
r(V4+w) = [rnva+ma,rvo+ s, ..o rvy + rwy)

[rva, rvo, .o v + [rwa, rwo, .o rw)

by Definition 1.1(1), “Vector Addition”
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Page 17 Number 41(a)

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let Vv, w € R"” and let r be a scalar in R. Prove
(S1): r(V+w) =rv+rw.

Proof (continued). ...

r(V4+w) = [rnva+ma,rvo+ s, ..o rvy + rwy)
= [rva, v, ... orvp] + [rwa, rwo, .o rwy)
by Definition 1.1(1), “Vector Addition”
= rlvi,va, ..., Vp| + rlwi,wa,. .., wy]
by Definition 1.1(3), “Scalar Multiplication”
= rv+rw.

OJ
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Page 16 Number 22

Page 16 Number 22. Find all scalars c (if any) such that the vector
[c?, —4] is parallel to the vector [1, —2].
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Page 16 Number 22

Page 16 Number 22. Find all scalars c (if any) such that the vector
[c?, —4] is parallel to the vector [1, —2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a
scalar multiple of the other, say [c?, —4] = r[1, —2] for scalar r € R. Then
by Definition 1.1(3), “Scalar Multiplication,” [c?, —4] = [r, —2r].

Linear Algebra January 20, 2019 10 /11



Page 16 Number 22

Page 16 Number 22. Find all scalars c (if any) such that the vector
[c?, —4] is parallel to the vector [1, —2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a
scalar multiple of the other, say [c?, —4] = r[1, —2] for scalar r € R. Then
by Definition 1.1(3), “Scalar Multiplication,” [c?, —4] = [r, —2r]. So we
need both ¢2 = r and —4 = —2r. Since —4 = —2r then we must have
r=2. With r =2 and ¢® = r = 2 we must have that either

’c:\/iorc:—\/ﬁ.‘D
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Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
7+ cj+ (¢ — 1)k is in the span of 7'+ 27+ k and 37+ 67+ 3k.
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Page 16 Number 28

Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
’+cj+ (c— 1)E is in the span of 7+ 27+ k and 37+ 67+ 3k.

Solution. By Definition 1.4, the span of 7+ 27+ k and 37+ 67+ 3k is the
set of all linear combinations of these two vectors. So the question
becomes: For which c € R is

T+ cT+ (c — 1)k = n(T+ 27+ k) + r(37+ 67+ 3Kk) for some 1, r» € R?
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Page 16 Number 28

Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
’+cj+ (c— 1)E is in the span of 7+ 27+ k and 37+ 67+ 3k.

Solution. By Definition 1.4, the span of 7+ 27+ k and 37+ 67+ 3k is the
set of all linear combinations of these two vectors. So the question

becomes: For which c € R is

T+ cT+ (c — 1)k = n(T+ 27+ k) + r(37+ 67+ 3Kk) for some 1, r» € R?
If this holds, 7+ c7+ (¢ — 1)k = (n + 3n)7+ (2r + 6r2)7+ (11 + 3n)k.

So we need ¢ € R such that
1 =
C =
c—1 =

rn—+3n
2r + 6n
rn—+3n
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Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
’+cj+ (c— 1)E is in the span of 7+ 27+ k and 37+ 67+ 3k.

Solution. By Definition 1.4, the span of 7+ 27+ k and 37+ 67+ 3k is the
set of all linear combinations of these two vectors. So the question
becomes: For which c € R is

T+ cT+ (c — 1)k = n(T+ 27+ k) + r(37+ 67+ 3Kk) for some 1, r» € R?
If this holds, 7+ c7'+ (c — 1)k = (r + 3r)7+ (2r + 6r2)7+ (1 + 3r2)k.
So we need ¢ € R such that

1 = n+3n (1)
c = 2r1 + 6!‘2 (2)
c—1 = n+3n (3)
Multiplying (1) by 2 gives 2 = 2r; + 6r2. Combining this with (2) we see

that we need ¢ = 2.
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Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
’+cj+ (c— 1)E is in the span of 7+ 27+ k and 37+ 67+ 3k.

Solution. By Definition 1.4, the span of 7+ 27+ k and 37+ 67+ 3k is the
set of all linear combinations of these two vectors. So the question
becomes: For which c € R is

T+ cT+ (c — 1)k = n(T+ 27+ k) + r(37+ 67+ 3Kk) for some 1, r» € R?
If this holds, 7+ c7'+ (c — 1)k = (r + 3r)7+ (2r + 6r2)7+ (1 + 3r2)k.
So we need ¢ € R such that

1 = n+3n (1)
c = 2r1 + 6!‘2 (2)
c—1 = n+3n (3)

Multiplying (1) by 2 gives 2 = 2r; + 6r2. Combining this with (2) we see
that we need ¢ = 2. With ¢ = 2, equation (3) gives 1 = r; + 3r> which is
(1). Therefore all three equations (1), (2), and (3) are satisfied when

We can take ; =1 and r», = 0, for example. [
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