Linear Algebra

Chapter 1. Vectors, Matrices, and Linear Systems Section 1.1. Vectors in Euclidean Spaces—Proofs of Theorems

- [Page 16 Number 10](#page-2-0)
- [Page 16 Number 14](#page-6-0)
- [Page 17 Number 40\(a\)](#page-10-0)
- [Page 17 Number 41\(a\)](#page-18-0)
- [Page 16 Number 22](#page-25-0)
- [Page 16 Number 28](#page-28-0)

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \vec{v} = [-2, 0, 1, 6],$ and $\vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ $=$ [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2] by Definition 1.1(3), "Scalar Multiplication" $=$ [3, 6, 3, 0] + [-2, 0, 1, 6] – [3, -5, 1, -2] simplifying

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \vec{v} = [-2, 0, 1, 6],$ and $\vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ $=$ [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]

by Definition 1.1(3), "Scalar Multiplication"

$$
= [3,6,3,0] + [-2,0,1,6] - [3,-5,1,-2] \text{ simplifying}
$$

$$
= [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]
$$

by Definition 1.1(1), "Vector Addition"

 $=$ [1, 6, 4, 6] – [3, –5, 1, –2] simplifying

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \vec{v} = [-2, 0, 1, 6],$ and $\vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ $=$ [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2] by Definition 1.1(3), "Scalar Multiplication" $=$ [3, 6, 3, 0] + [-2, 0, 1, 6] – [3, -5, 1, -2] simplifying $=$ $[3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]$ by Definition 1.1(1), "Vector Addition" $=$ [1, 6, 4, 6] – [3, –5, 1, –2] simplifying $= [1 - (3), 6 - (-5), 4 - (1), 6 - (-2)]$ by Definition 1.1(2), "Vector Subtraction" $= [-2, 11, 3, 8]$ simplifying. So we conclude $3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$. □

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \vec{v} = [-2, 0, 1, 6],$ and $\vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ $=$ [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2] by Definition 1.1(3), "Scalar Multiplication" $=$ [3, 6, 3, 0] + [-2, 0, 1, 6] – [3, -5, 1, -2] simplifying $=$ $[3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]$ by Definition 1.1(1), "Vector Addition" $=$ [1, 6, 4, 6] – [3, –5, 1, –2] simplifying $=$ $[1 - (3), 6 - (-5), 4 - (1), 6 - (-2)]$ by Definition 1.1(2), "Vector Subtraction" $=$ [-2, 11, 3, 8] simplifying. So we conclude $3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$. □

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

 -27

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

 -27

Then by the parallelogram property of addition:

 \Box

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n], \vec{v} = [v_1, v_2, \ldots, v_n],$ and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i , v_i , and w_i are real numbers.

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \dots, u_n], \vec{v} = [v_1, v_2, \dots, v_n],$ and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i , v_i , and w_i are real numbers. Then

$$
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n]
$$

=
$$
[u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n]
$$

by Definition 1.1(1), "Vector Addition"

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \dots, u_n], \vec{v} = [v_1, v_2, \dots, v_n],$ and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i , v_i , and w_i are real numbers. Then

$$
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, ..., u_n] + [v_1, v_2, ..., v_n]) + [w_1, w_2, ..., w_n]
$$

\n
$$
= [u_1 + v_1, u_2 + v_2, ..., u_n + v_n] + [w_1, w_2, ..., w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, ..., (u_n + v_n) + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \dots, u_n], \vec{v} = [v_1, v_2, \dots, v_n],$ and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i , v_i , and w_i are real numbers. Then

$$
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n]
$$

=
$$
[u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n]
$$

by Definition 1.1(1), "Vector Addition"
=
$$
[(u_1 + v_1) + w_2(u_2 + v_2) + w_3(u_1 + v_1)] + w_3
$$

$$
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n]
$$

by Definition 1.1(1), "Vector Addition"

 $=$ $[u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n)]$ since addition of real numbers is associative

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \dots, u_n], \vec{v} = [v_1, v_2, \dots, v_n],$ and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i , v_i , and w_i are real numbers. Then

$$
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n]
$$

\n
$$
= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"

$$
= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]
$$

since addition of real numbers is associative

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

$$
(\vec{u} + \vec{v}) + \vec{w} = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]
$$

= $[u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]$
by Definition 1.1(1), "Vector Addition"

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

$$
(\vec{u} + \vec{v}) + \vec{w} = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), ..., u_n + (v_n + w_n)]
$$

\n
$$
= [u_1, u_2, ..., u_n] + [v_1 + w_1, v_2 + w_2, ..., v_n + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [u_1, u_2, ..., u_n] + ([v_1, v_2, ..., v_n] + [w_1, w_2, ..., w_n])
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= \vec{u} + (\vec{v} + \vec{w}).
$$

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

$$
(\vec{u} + \vec{v}) + \vec{w} = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]
$$

\n
$$
= [u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [u_1, u_2, \dots, u_n] + ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= \vec{u} + (\vec{v} + \vec{w}).
$$

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = r([v_1, v_2, ..., v_n] + [w_1, w_2, ..., w_n])
$$

= $r[v_1 + w_1, v_2 + w_2, ..., v_n + w_n]$
by Definition 1.1(1), "Vector Addition"

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

= $r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]$
by Definition 1.1(1), "Vector Addition"
= $[r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)]$
by Definition 1.1(3), "Scalar Multiplication"

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

\n
$$
= r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)]
$$

\nby Definition 1.1(3), "Scalar Multiplication"
\n
$$
= [rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n]
$$

\nsince multiplication distributes
\nover addition in the real numbers...

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

\n
$$
= r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= [r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)]
$$

\nby Definition 1.1(3), "Scalar Multiplication"
\n
$$
= [rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n]
$$

\nsince multiplication distributes
\nover addition in the real numbers...

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = [rv_1 + rw_1, rv_2 + rw_2, ..., rv_n + rw_n]
$$

= [rv_1, rv_2, ..., rv_n] + [rw_1, rw_2, ..., rw_n]
by Definition 1.1(1), "Vector Addition"
= $r[v_1, v_2, ..., v_n] + r[w_1, w_2, ..., w_n]$
by Definition 1.1(3), "Scalar Multiplication"
= $r\vec{v} + r\vec{w}$.

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$
r(\vec{v} + \vec{w}) = [rv_1 + rw_1, rv_2 + rw_2, ..., rv_n + rw_n]
$$

\n
$$
= [rv_1, rv_2, ..., rv_n] + [rw_1, rw_2, ..., rw_n]
$$

\nby Definition 1.1(1), "Vector Addition"
\n
$$
= r[v_1, v_2, ..., v_n] + r[w_1, w_2, ..., w_n]
$$

\nby Definition 1.1(3), "Scalar Multiplication"
\n
$$
= r\vec{v} + r\vec{w}.
$$

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector $[1, -2]$.

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $[c^2, -4] = [r, -2r]$.

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector $[1, -2]$.

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $[c^2, -4] = [r, -2r]$. So we need both $c^2 = r$ and $-4 = -2r$. Since $-4 = -2r$ then we must have $r = 2$. With $r = 2$ and $c^2 = r = 2$ we must have that either $c = \sqrt{2}$ or $c = -\sqrt{2}$. \Box

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector $[1, -2]$.

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $\left[c^2, -4 \right] = \left[r, -2r \right]$. So we need both $c^2=r$ and $-4=-2r$. Since $-4=-2r$ then we must have $r = 2$. With $r = 2$ and $c^2 = r = 2$ we must have that either $c=\sqrt{2}$ or $c=-\sqrt{2}$. \Box

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$?

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}.$ So we need $c \in \mathbb{R}$ such that $1 - \frac{1}{2} - \frac{1}{2}$

$$
c = 2r_1 + 3r_2 \t\t (1)
$$

\n
$$
c = 2r_1 + 6r_2 \t\t (2)
$$

\n
$$
c - 1 = r_1 + 3r_2 \t\t (3)
$$

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + \vec{j} + (\vec{k} - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}.$ So we need $c \in \mathbb{R}$ such that $1 - r12r$ (1)

$$
c = 2r_1 + 6r_2 \qquad (2)
$$

\n
$$
c - 1 = r_1 + 3r_2 \qquad (3)
$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need $c = 2$.

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + \vec{j} + (\vec{k} - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}.$ So we need $c \in \mathbb{R}$ such that $1 - r_1 + 3r_2$ (1)

$$
c = 2r_1 + 6r_2 \qquad (2)
$$

\n
$$
c - 1 = r_1 + 3r_2 \qquad (3)
$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see **that we need** $c = 2$ **.** With $c = 2$, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when $c = 2$. We can take $r_1 = 1$ and $r_2 = 0$, for example. \Box

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + \vec{j} + (\vec{k} - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}.$ So we need $c \in \mathbb{R}$ such that $1 - r_1 + 3r_2$ (1)

$$
c = 2r_1 + 6r_2 \qquad (2)
$$

\n
$$
c - 1 = r_1 + 3r_2 \qquad (3)
$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need $c = 2$. With $c = 2$, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when $c = 2$. We can take $r_1 = 1$ and $r_2 = 0$, for example. \Box