Linear Algebra

Chapter 1. Vectors, Matrices, and Linear Systems Section 1.1. Vectors in Euclidean Spaces—Proofs of Theorems

- Page 16 Number 10
- 2 Page 16 Number 14
- 3 Page 17 Number 40(a)
- Page 17 Number 41(a)
- 5 Page 16 Number 22
- 6 Page 16 Number 28

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \ \vec{v} = [-2, 0, 1, 6], \text{ and } \vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ = [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]by Definition 1.1(3), "Scalar Multiplication" = [3, 6, 3, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2] simplifying

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \ \vec{v} = [-2, 0, 1, 6], \ \text{and} \ \vec{w} = [3, -5, 1, -2].$ Solution. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ = [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]by Definition 1.1(3), "Scalar Multiplication"

$$= \hspace{.1in} [3,6,3,0] + [-2,0,1,6] - [3,-5,1,-2] \hspace{.1in} \text{simplifying}$$

$$= [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]$$

by Definition 1.1(1), "Vector Addition"

 $= \ [1,6,4,6]-[3,-5,1,-2] \text{ simplifying} \\$

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \ \vec{v} = [-2, 0, 1, 6], \ \text{and} \ \vec{w} = [3, -5, 1, -2].$ **Solution**. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ = [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]by Definition 1.1(3), "Scalar Multiplication" = [3, 6, 3, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2] simplifying = [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]by Definition 1.1(1), "Vector Addition" = [1, 6, 4, 6] - [3, -5, 1, -2] simplifying = [1-(3), 6-(-5), 4-(1), 6-(-2)]by Definition 1.1(2), "Vector Subtraction" = [-2, 11, 3, 8] simplifying. So we conclude $|3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$.

Linear Algebra

January 20, 2019

3 / 11

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0], \ \vec{v} = [-2, 0, 1, 6], \ \text{and} \ \vec{w} = [3, -5, 1, -2].$ **Solution**. We have $3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$ = [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]by Definition 1.1(3), "Scalar Multiplication" = [3, 6, 3, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2] simplifying = [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]by Definition 1.1(1), "Vector Addition" = [1, 6, 4, 6] - [3, -5, 1, -2] simplifying = [1-(3), 6-(-5), 4-(1), 6-(-2)]by Definition 1.1(2), "Vector Subtraction" = [-2, 11, 3, 8] simplifying. So we conclude $|3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$.

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), "Scalar Multiplication," and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:

Then by the parallelogram property of addition:

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i , v_i , and w_i are real numbers.

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i, v_i , and w_i are real numbers. Then

$$(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n]$$

= $[u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n]$
by Definition 1.1(1), "Vector Addition"

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i, v_i , and w_i are real numbers. Then

$$\begin{aligned} (\vec{u} + \vec{v}) + \vec{w} &= ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n] \\ &= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n] \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \\ &= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n] \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \end{aligned}$$

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i, v_i , and w_i are real numbers. Then

$$(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n]$$

= $[u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n]$
by Definition 1.1(1), "Vector Addition"
= $[(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n]$

by Definition
$$1.1(1)$$
, "Vector Addition"

 $= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]$ since addition of real numbers is associative

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, "Vectors in \mathbb{R}^n ," we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i, v_i , and w_i are real numbers. Then

$$\begin{aligned} (\vec{u} + \vec{v}) + \vec{w} &= ([u_1, u_2, \dots, u_n] + [v_1, v_2, \dots, v_n]) + [w_1, w_2, \dots, w_n] \\ &= [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n] + [w_1, w_2, \dots, w_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \\ &= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \dots, (u_n + v_n) + w_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \end{aligned}$$

$$= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]$$

since addition of real numbers is associative

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof (continued). ...

$$(\vec{u} + \vec{v}) + \vec{w} = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)]$$

= $[u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]$
by Definition 1.1(1), "Vector Addition"

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof (continued). ...

$$\begin{aligned} (\vec{u} + \vec{v}) + \vec{w} &= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)] \\ &= [u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \\ &= [u_1, u_2, \dots, u_n] + ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n]) \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \\ &= \vec{u} + (\vec{v} + \vec{w}). \end{aligned}$$

Page 17 Number 40(a) (continued)

Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R} . Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof (continued). ...

$$\begin{aligned} (\vec{u} + \vec{v}) + \vec{w} &= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \dots, u_n + (v_n + w_n)] \\ &= [u_1, u_2, \dots, u_n] + [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \\ &= [u_1, u_2, \dots, u_n] + ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n]) \\ &\quad \text{by Definition 1.1(1), "Vector Addition"} \\ &= \vec{u} + (\vec{v} + \vec{w}). \end{aligned}$$

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$\begin{aligned} r(\vec{v} + \vec{w}) &= r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n]) \\ &= r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \end{aligned}$$

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$\begin{aligned} r(\vec{v} + \vec{w}) &= r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n]) \\ &= r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \\ &= [r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)] \\ & \text{by Definition 1.1(3), "Scalar Multiplication"} \end{aligned}$$

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$r(\vec{v} + \vec{w}) = r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])$$

= $r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]$
by Definition 1.1(1), "Vector Addition"
= $[r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)]$
by Definition 1.1(3), "Scalar Multiplication"
= $[rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n]$
since multiplication distributes
over addition in the real numbers

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

$$\begin{aligned} r(\vec{v} + \vec{w}) &= r([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n]) \\ &= r[v_1 + w_1, v_2 + w_2, \dots, v_n + w_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \\ &= [r(v_1 + w_1), r(v_2 + w_2), \dots, r(v_n + w_n)] \\ & \text{by Definition 1.1(3), "Scalar Multiplication"} \\ &= [rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n] \\ & \text{since multiplication distributes} \\ & \text{over addition in the real numbers...} \end{aligned}$$

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof (continued). ...

r

$$(\vec{v} + \vec{w}) = [rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n]$$

= $[rv_1, rv_2, \dots, rv_n] + [rw_1, rw_2, \dots, rw_n]$
by Definition 1.1(1), "Vector Addition"
= $r[v_1, v_2, \dots, v_n] + r[w_1, w_2, \dots, w_n]$
by Definition 1.1(3), "Scalar Multiplication"
= $r\vec{v} + r\vec{w}$.

Page 17 Number 41(a) (continued)

Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R} . Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof (continued). ...

r

$$\begin{aligned} (\vec{v} + \vec{w}) &= [rv_1 + rw_1, rv_2 + rw_2, \dots, rv_n + rw_n] \\ &= [rv_1, rv_2, \dots, rv_n] + [rw_1, rw_2, \dots, rw_n] \\ & \text{by Definition 1.1(1), "Vector Addition"} \\ &= r[v_1, v_2, \dots, v_n] + r[w_1, w_2, \dots, w_n] \\ & \text{by Definition 1.1(3), "Scalar Multiplication"} \\ &= r\vec{v} + r\vec{w}. \end{aligned}$$

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector [1, -2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $[c^2, -4] = [r, -2r]$.

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector [1, -2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $[c^2, -4] = [r, -2r]$. So we need both $c^2 = r$ and -4 = -2r. Since -4 = -2r then we must have r = 2. With r = 2 and $c^2 = r = 2$ we must have that either $c = \sqrt{2}$ or $c = -\sqrt{2}$.

Page 16 Number 22. Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector [1, -2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), "Scalar Multiplication," $[c^2, -4] = [r, -2r]$. So we need both $c^2 = r$ and -4 = -2r. Since -4 = -2r then we must have r = 2. With r = 2 and $c^2 = r = 2$ we must have that either $c = \sqrt{2}$ or $c = -\sqrt{2}$.

Page 16 Number 28. Find all scalars *c* (if any) such that the vector $\vec{i} + c\vec{j} + (c-1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c-1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$?

Page 16 Number 28. Find all scalars *c* (if any) such that the vector $\vec{i} + c\vec{j} + (c-1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c-1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c-1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$. So we need $c \in \mathbb{R}$ such that

$$\begin{array}{rcl}
1 &=& r_1 + 3r_2 & (1) \\
c &=& 2r_1 + 6r_2 & (2) \\
c - 1 &=& r_1 + 3r_2 & (3)
\end{array}$$

Page 16 Number 28. Find all scalars *c* (if any) such that the vector $\vec{i} + c\vec{j} + (c-1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c-1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c-1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$. So we need $c \in \mathbb{R}$ such that

$$\begin{array}{rcl}
1 &=& r_1 + 3r_2 & (1) \\
c &=& 2r_1 + 6r_2 & (2) \\
c - 1 &=& r_1 + 3r_2 & (3)
\end{array}$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need c = 2.

Page 16 Number 28. Find all scalars *c* (if any) such that the vector $\vec{i} + c\vec{j} + (c-1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c-1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c-1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$. So we need $c \in \mathbb{R}$ such that

$$\begin{array}{rcl}
1 &=& r_1 + 3r_2 & (1) \\
c &=& 2r_1 + 6r_2 & (2) \\
c - 1 &=& r_1 + 3r_2 & (3)
\end{array}$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need c = 2. With c = 2, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when c = 2. We can take $r_1 = 1$ and $r_2 = 0$, for example. \Box

Page 16 Number 28. Find all scalars *c* (if any) such that the vector $\vec{i} + c\vec{j} + (c-1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$. **Solution.** By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c-1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c-1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$. So we need $c \in \mathbb{R}$ such that

$$\begin{array}{rcl}
1 &=& r_1 + 3r_2 & (1) \\
c &=& 2r_1 + 6r_2 & (2) \\
c - 1 &=& r_1 + 3r_2 & (3)
\end{array}$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need c = 2. With c = 2, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when c = 2. We can take $r_1 = 1$ and $r_2 = 0$, for example. \Box