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Page 16 Number 10

Page 16 Number 10

Page 16 Number 10. Compute the linear combination 3~u + ~v − ~w where
~u = [1, 2, 1, 0], ~v = [−2, 0, 1, 6], and ~w = [3,−5, 1,−2].
Solution. We have

3~u + ~v − ~w = 3[1, 2, 1, 0] + [−2, 0, 1, 6]− [3,−5, 1,−2]

= [3(1), 3(2), 3(1), 3(0)] + [−2, 0, 1, 6]− [3,−5, 1,−2]

by Definition 1.1(3), “Scalar Multiplication”

= [3, 6, 3, 0] + [−2, 0, 1, 6]− [3,−5, 1,−2] simplifying

= [3 + (−2), 6 + 0, 3 + 1, 0 + 6]− [3,−5, 1,−2]

by Definition 1.1(1), “Vector Addition”

= [1, 6, 4, 6]− [3,−5, 1,−2] simplifying

= [1− (3), 6− (−5), 4− (1), 6− (−2)]

by Definition 1.1(2), “Vector Subtraction”

= [−2, 11, 3, 8] simplifying.

So we conclude 3~u + ~v − ~w = [−2, 11, 3, 8]. �
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Page 16 Number 14

Page 16 Number 14

Page 16 Number 14. Reproduce the vectors in this figure and draw an
arrow representing −3~u + 2~w .

Solution. From Definition 1.1(3), “Scalar Multiplication,”
and the geometric interpretation of vectors
(see the class notes, pages 2, 3, and 4)
we represent −3~u and 2~w as:
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Page 16 Number 14

Then by the parallelogram property of addition:

�
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Page 17 Number 40(a)

Page 17 Number 40(a)

Page 17 Number 40(a). Let ~u, ~v , ~w ∈ Rn and let r , s be scalars in R.
Prove (A1): (~u + ~v) + ~w = ~u + (~v + ~w).

Proof. Since ~u, ~v , ~w ∈ Rn, by Definition 1.A, “Vectors in Rn,” we have
that ~u = [u1, u2, . . . , un], ~v = [v1, v2, . . . , vn], and ~w = [w1,w2, . . . ,wn]
where all ui , vi , and wi are real numbers.

Then

(~u + ~v) + ~w = ([u1, u2, . . . , un] + [v1, v2, . . . , vn]) + [w1,w2, . . . ,wn]

= [u1 + v1, u2 + v2, . . . , un + vn] + [w1,w2, . . . ,wn]

by Definition 1.1(1), “Vector Addition”

= [(u1 + v1) + w1, (u2 + v2) + w2, . . . , (un + vn) + wn]

by Definition 1.1(1), “Vector Addition”

= [u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn)]

since addition of real numbers is associative
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Page 17 Number 40(a) (continued)
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Page 17 Number 41(a)

Page 17 Number 41(a). Let ~v , ~w ∈ Rn and let r be a scalar in R. Prove
(S1): r(~v + ~w) = r~v + r ~w .

Proof. Since ~v , ~w ∈ Rn, by Definition 1.A, “Vectors in Rn,” we have that
~v = [v1, v2, . . . , vn] and ~w = [w1,w2, . . . ,wn] where all vi and wi are real
numbers.

Then

r(~v + ~w) = r([v1, v2, . . . , vn] + [w1,w2, . . . ,wn])

= r [v1 + w1, v2 + w2, . . . , vn + wn]

by Definition 1.1(1), “Vector Addition”

= [r(v1 + w1), r(v2 + w2), . . . , r(vn + wn)]

by Definition 1.1(3), “Scalar Multiplication”

= [rv1 + rw1, rv2 + rw2, . . . , rvn + rwn]

since multiplication distributes

over addition in the real numbers. . .
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Page 17 Number 41(a)

Page 17 Number 41(a) (continued)
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Page 16 Number 22

Page 16 Number 22

Page 16 Number 22. Find all scalars c (if any) such that the vector
[c2,−4] is parallel to the vector [1,−2].

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a
scalar multiple of the other, say [c2,−4] = r [1,−2] for scalar r ∈ R. Then
by Definition 1.1(3), “Scalar Multiplication,” [c2,−4] = [r ,−2r ].

So we
need both c2 = r and −4 = −2r . Since −4 = −2r then we must have
r = 2. With r = 2 and c2 = r = 2 we must have that either
c =

√
2 or c = −

√
2. �
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Page 16 Number 28

Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector
~ı + c~ + (c − 1)~k is in the span of ~ı + 2~ + ~k and 3~ı + 6~ + 3~k.
Solution. By Definition 1.4, the span of ~ı + 2~ + ~k and 3~ı + 6~ + 3~k is the
set of all linear combinations of these two vectors. So the question
becomes: For which c ∈ R is
~ı + c~ + (c − 1)~k = r1(~ı + 2~ + ~k) + r2(3~ı + 6~ + 3~k) for some r1, r2 ∈ R?

If this holds, ~ı + c~ + (c − 1)~k = (r1 + 3r2)~ı + (2r1 + 6r2)~ + (r1 + 3r2)~k.
So we need c ∈ R such that

1 = r1 + 3r2 (1)
c = 2r1 + 6r2 (2)

c − 1 = r1 + 3r2 (3)

Multiplying (1) by 2 gives 2 = 2r1 + 6r2. Combining this with (2) we see
that we need c = 2. With c = 2, equation (3) gives 1 = r1 + 3r2 which is
(1). Therefore all three equations (1), (2), and (3) are satisfied when
c = 2. We can take r1 = 1 and r2 = 0, for example. �
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