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Page 31 Number 8

Page 31 Number 8

Page 31 Number 8. Find the unit vector parallel to ~w = [−2,−1, 3]
which has the opposite direction.

Solution. If we divide ~w by the scalar ‖~w‖ > 0, we get a vector of length
1 (i.e., a unit vector; this process is called normalizing a vector). Such a
vector is in the same direction as ~w (by Definition 1.2 of “parallel and
same direction”).

By Definition 1.5, “Vector Norm,” we have
‖~w‖ =

√
(−2)2 + (−1)2 + (3)2 =

√
4 + 1 + 9 =

√
14, so

~w

‖~w‖
=

1√
14

[−2,−1, 3] =

[
−2√
14

,
−1√
14

,
3√
14

]
is a unit vector in the same

direction as ~w . To get a unit vector in the opposite direction, by
Definition 1.2, we simply multiply by −1 and take −~w/‖~w‖ as the desired

vector: −
~w

‖~w‖
= −

[
−2√
14

,
−1√
14

,
3√
14

]
=

[
2√
14

,
1√
14

,
−3√
14

]
. �
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Page 31 Number 12

Page 31 Number 12

Page 31 Number 12. Find the angle between ~u = [−1, 3, 4] and
~v = [2, 1,−1].

Solution. We have by definition that the desired angle is cos−1 ~u · ~v
‖~u‖‖~v‖

.

Now by Definition 1.5, “Vector Norm,”
‖~u‖ =

√
(−1)2 + (3)2 + (4)2 =

√
1 + 9 + 16 =

√
26 and

‖~v‖ =
√

(2)2 + (1)2 + (−1)2 =
√

4 + 1 + 1 =
√

6. Also, by Definition
1.6, “Dot Product,”
~u ·~v = [−1, 3, 4]·[2, 1,−1] = (−1)(2)+(3)(1)+(4)(−1) = −2+3−4 = −3.

So the angle between ~u and ~v is cos−1 ~u · ~v
‖~u‖‖~v‖

= cos−1 −3√
26
√

6
=

cos−1 −3√
156

. We can use a calculator to approximate the true answer to

find that the angle is roughly 103.90◦.
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Page 33 Number 42(b)

Page 33 Number 42(b)

Page 33 Number 42(b). Let ~u, ~v , ~w ∈ Rn. Prove the Distributive Law:
~u · (~v + ~w) = ~u · ~v + ~u · ~w .

Proof. Since ~u, ~v , ~w ∈ Rn, then by our first definition in Section 1.1, we
have that ~u = [u1, u2, . . . , un], ~v = [v1, v2, . . . , vn], and
~w = [w1,w2, . . . ,wn] where all ui , vi ,wi are real numbers.

Then

~u · (~v + ~w) = [u1, u2, . . . , un] · ([v1, v2, . . . , vn] + [w1,w2, . . . ,wn])

= [u1, u2, . . . , un] · [v1 + w1, v2 + w2, . . . , vn + wn]

by Definition 1.1.(1), “Vector Addition”

= u1(v1 + w1) + u2(v2 + w2) + · · ·+ un(vn + wn)

by Definition 1.6, “Dot Product”

= u1v1 + u1w1 + u2v2 + u2w2 + · · ·+ unvn + unwn

since multiplication distributes over addition in R

. . .
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Page 33 Number 42(b) (continued)
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Page 31 Number 14

Page 31 Number 14

Page 31 Number 14. Find the value of x such that [x ,−3, 5] is
perpendicular to ~u = [−1, 3, 4].

Solution. By the definition of perpendicular (see page 4 of the class
notes) we want x such that [x ,−3, 5] · [−1, 3, 4] = 0.

Now

[x ,−3, 5]·[−1, 3, 4] = (x)(−1)+(−3)(3)+(5)(4) = −x−9+20 = −x+11.

So to get a dot product of 0 we must have x = 11. �
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Page 31 Number 16

Page 31 Number 16

Page 31 Number 16. Find a nonzero vector in R3 which is perpendicular
to both ~u = [−1, 3, 4] and ~v = [2, 1,−1].

Solution. Let the desired vector be ~w = [w1,w2,w3]. By the definition of
perpendicular (see page 4 of the class notes) we need ~w · ~u = 0 and
~w · ~v = 0.

This gives

~w · ~u = [w1,w2,w3] · [−1, 3, 4]

= (w1)(−1) + (w2)(3) + (w3)(4) = −w1 + 3w2 + 4w3 = 0

and
~w · ~v = [w1,w2,w3] · [2, 1,−1]

= (w1)(2) + (w2)(1) + (w3)(−1) = 2w1 + w2 − w3 = 0.

So we need w1,w2,w3 ∈ R that satisfy both:

−w1 + 3w2 + 4w3 = 0 (1)
2w1 + w2 − w3 = 0. (2)

. . .
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Solution (continued). . . .
−w1 + 3w2 + 4w3 = 0 (1)
2w1 + w2 − w3 = 0. (2)

Adding 2 times equation (1) to equation (2) gives 0w1 + 7w2 + 7w3 = 0.
So we can take w2 = 1 and w3 = −1. Plugging these values into equation
(1) gives −w1 + 3(1) + 4(−1) = 0 and so −w1 − 1 = 0 or w1 = −1.

So a
choice for w1,w2,w3 is w1 = −1, w2 = 1, and w3 = −1. That is, we can

choose ~w = [w1,w2,w3] = [−1, 1,−1]. (In fact, any nonzero multiple of

this choice of ~w is also correct.)

Let’s check the orthogonality:

~w ·~u = [−1, 1,−1]·[−1, 3, 4] = (−1)(−1)+(1)(3)+(−1)(4) = 1+3−4 = 0

and

~w ·~v = [−1, 1,−1]·[2, 1,−1] = (−1)(2)+(1)(1)+(−1)(−1) = −2+1+1 = 0.

So, by the definition of perpendicular, ~w is perpendicular to both ~u and ~v ,
as required. �
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Page 26 Example 7, Parallelogram Law

Page 26 Example 7

Page 26 Example 7. Prove that the sum of the squares of the lengths of
the diagonals of a parallelogram in Rn is equal to the sum of the squares
of the lengths of the sides. This is the parallelogram relation or the
parallelogram law.

Proof. Let two of the sides of the parallelogram be determined by vectors
~v and ~w in standard position:

Then the lengths of the sides of the parallelogram are ‖~v‖, ‖~v‖, ‖~w‖, and
‖~w‖; the lengths of the diagonals are ‖~v + ~w‖ and ‖~v − ~w‖.
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Page 26 Example 7, Parallelogram Law

Page 26 Example 7 (continued)

Proof (continued). Expressing the squares of norms using dot products
as in Note 1.2.A:

‖~v + ~w‖2 + ‖~v − ~w‖2 = (~v + ~w) · (~v + ~w) + (~v − ~w) · (~v − ~w)

= (~v · ~v + 2~v · ~w + ~w · ~w)

+(~v · ~v − 2~v · ~w + ~w · ~w)

by Theorem 1.3(D1) and (D2),

“Commutivity and Distribution of Dot Product”

= 2~v · ~v + 2~w · ~w = 2‖~v‖2 + 2‖~w‖2.

So the sum of the squares of the lengths of the diagonals,
‖~v + ~w‖2 + ‖~v − ~w‖2, equals the sum of the squares of the lengths of the
sides, ‖~v‖2 + ‖~v‖2 + ‖~w‖2 + ‖~w‖2 = 2‖~v‖2 + 2‖~w‖2.
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Theorem 1.4, Schwarz’s Inequality

Theorem 1.4

Theorem 1.4. Schwarz’s Inequality.
Let ~v , ~w ∈ Rn. Then

|~v · ~w | ≤ ‖~v‖‖~w‖.

Proof. Let ~v , ~w ∈ Rn and let r and s be any scalars in R. Then
‖r~v + s~w‖ ≥ 0 by Theorem 1.2(1), “Positivity of the Norm,” and so

0 ≤ ‖r~v + s~w‖2 = (r~v + s~w) · (r~v + s~w) by Note 1.2.A

= (r~v) · (r~v) + 2(r~v) · (s~w) + (s~w) · (s~w)

by Theorem 1.3(D1) and (D2), “Commutivity and

Distribution of Dot Products”

= r2~v · ~v + 2rs~v · ~w + s2~w · ~w

by Theorem 1.3(D3), “Homogeneity of Dot Products”

= r2‖~v‖2 + 2rs~v · ~w + s2‖~w‖2 by Note 1.2.A.
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Theorem 1.4, Schwarz’s Inequality

Theorem 1.4 (continued)

Theorem 1.4. Schwarz’s Inequality.
Let ~v , ~w ∈ Rn. Then |~v · ~w | ≤ ‖~v‖‖~w‖.

Proof (continued). Since this holds for all scalars r , s ∈ R, we can let
r = ‖~w‖2 and s = −~v · ~w and hence

0 ≤ r2‖~v‖2 + 2rs~v · ~w + s2‖~w‖2

= ‖~w‖4‖~v‖2 − 2‖~w‖2(~v · ~w)2 + (~v · ~w)2‖~w‖2

= ‖~w‖4‖~v‖2 − ‖~w‖2(~v · ~w)2

= ‖~w‖2(‖~w‖2‖~v‖2 − (~v · ~w)2). (∗)

If ‖~w‖ = 0 then ~w = ~0 by Theorem 1.3(D4), “Positivity of the Dot
Product,” and then ~v · ~w = ~v ·~0 = 0 so that
0 = |~v · ~w | ≤ ‖~v‖‖~w‖ = ‖~v‖0 = 0 and Schwarz’s Inequality holds.

If
‖~w‖ 6= 0 then from (∗), dividing both sides by ‖~w‖2, we have that
‖~v‖2‖~w‖2 − (~v · ~w)2 ≥ 0. That is, (~v · ~w)2 ≤ ‖~v‖2‖~w‖2 and so√

(~v · ~w)2 ≤
√
‖~v‖2‖~w‖2 or |~v · ~w | ≤ ‖~v‖‖~w‖, as claimed.
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Theorem 1.4 (continued)

Theorem 1.4. Schwarz’s Inequality.
Let ~v , ~w ∈ Rn. Then |~v · ~w | ≤ ‖~v‖‖~w‖.

Proof (continued). Since this holds for all scalars r , s ∈ R, we can let
r = ‖~w‖2 and s = −~v · ~w and hence

0 ≤ r2‖~v‖2 + 2rs~v · ~w + s2‖~w‖2

= ‖~w‖4‖~v‖2 − 2‖~w‖2(~v · ~w)2 + (~v · ~w)2‖~w‖2

= ‖~w‖4‖~v‖2 − ‖~w‖2(~v · ~w)2

= ‖~w‖2(‖~w‖2‖~v‖2 − (~v · ~w)2). (∗)

If ‖~w‖ = 0 then ~w = ~0 by Theorem 1.3(D4), “Positivity of the Dot
Product,” and then ~v · ~w = ~v ·~0 = 0 so that
0 = |~v · ~w | ≤ ‖~v‖‖~w‖ = ‖~v‖0 = 0 and Schwarz’s Inequality holds. If
‖~w‖ 6= 0 then from (∗), dividing both sides by ‖~w‖2, we have that
‖~v‖2‖~w‖2 − (~v · ~w)2 ≥ 0. That is, (~v · ~w)2 ≤ ‖~v‖2‖~w‖2 and so√

(~v · ~w)2 ≤
√
‖~v‖2‖~w‖2 or |~v · ~w | ≤ ‖~v‖‖~w‖, as claimed.

() Linear Algebra July 19, 2018 13 / 15



Page 31 Number 36

Page 31 Number 36

Page 31 Number 36. The captain of a barge wishes to get to a point
directly across a straight river that runs north to south. If the current
flows directly downstream at 5 knots and the barge steams at 13 knots, in
what direction should the captain steer the barge?

Solution. Consider the diagram:

We need the barge to have a velocity ~v such that ~v + ~w results in a vector
~u that runs east-west.
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Page 31 Number 36

Page 31 Number 36 (continued)

Solution (continued). By the parallelogram property of the addition of
vectors (see Figure 1.1.5, page 5) we have:

where ~w = [0,−5] knots and ~u = [u1, u2] = [u1, 0] knots. So with
~v = [v1, v2], we have ~v + ~w = ~u or [v1, v2] + [0,−5] = [u1, 0] or
[v1, v2 − 5] = [u1, 0]. Hence v2 = 5 knots.

Since

‖~v‖ =
√

v2
1 + v2

2 =
√

v2
1 + (5)2 = 13 knots then

√
v2
1 + 25 = 13 and

v2
1 + 25 = 169 or v2

1 = 144 (knots2) or v1 = 12 knots. Then u1 = v1 = 12
knots and so ~u = [12, 0] knots. Notice from the right triangle determined
by ~u, ~w , and ~v we have cos θ = ‖~u‖/‖~v‖ = 12/13 and so
θ = cos−1(12/13). So

the captain should steer the barge θ = cos−1(12/13) upstream. �
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by ~u, ~w , and ~v we have cos θ = ‖~u‖/‖~v‖ = 12/13 and so
θ = cos−1(12/13). So

the captain should steer the barge θ = cos−1(12/13) upstream. �
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