Linear Algebra

Chapter 1. Vectors, Matrices, and Linear Systems Section 1.2. The Norm and Dot Product—Proofs of Theorems

- [Page 31 Number 8](#page-2-0)
- [Page 31 Number 12](#page-6-0)
- [Page 33 Number 42\(b\)](#page-11-0)
- [Page 31 Number 14](#page-20-0)
- [Page 31 Number 16](#page-23-0)
- [Page 26 Example 7, Parallelogram Law](#page-31-0)
- [Theorem 1.4, Schwarz's Inequality](#page-37-0)
- [Page 31 Number 36](#page-44-0)

Page 31 Number 8. Find the unit vector parallel to $\vec{w} = [-2, -1, 3]$ which has the opposite direction.

Solution. If we divide \vec{w} by the scalar $\|\vec{w}\| > 0$, we get a vector of length 1 (i.e., a unit vector; this process is called normalizing a vector). Such a vector is in the same direction as \vec{w} (by Definition 1.2 of "parallel and same direction").

Page 31 Number 8. Find the unit vector parallel to $\vec{w} = [-2, -1, 3]$ which has the opposite direction.

Solution. If we divide \vec{w} by the scalar $\|\vec{w}\| > 0$, we get a vector of length 1 (i.e., a unit vector; this process is called normalizing a vector). Such a vector is in the same direction as \vec{w} (by Definition 1.2 of "parallel and **same direction").** By Definition 1.5, "Vector Norm," we have **Same direction**). By Definition 1.5, Vector Norm, We reflect
 $\|\vec{w}\| = \sqrt{(-2)^2 + (-1)^2 + (3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$, so \vec{w} $\frac{\vec{w}}{\|\vec{w}\|} = \frac{1}{\sqrt{1}}$ 14 $[-2, -1, 3] = \frac{-2}{\sqrt{2}}$ 14 $\frac{-1}{\sqrt{2}}$ 14 $\left[1, \frac{3}{\sqrt{14}}\right]$ is a unit vector in the same direction as \vec{w} .

Page 31 Number 8. Find the unit vector parallel to $\vec{w} = [-2, -1, 3]$ which has the opposite direction.

Solution. If we divide \vec{w} by the scalar $\|\vec{w}\| > 0$, we get a vector of length 1 (i.e., a unit vector; this process is called normalizing a vector). Such a vector is in the same direction as \vec{w} (by Definition 1.2 of "parallel and same direction"). By Definition 1.5, "Vector Norm," we have same direction). By Definition 1.5, Vector Norm, we respect
 $\|\vec{w}\| = \sqrt{(-2)^2 + (-1)^2 + (3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$, so \vec{w} $\frac{\vec{w}}{\|\vec{w}\|} = \frac{1}{\sqrt{1}}$ 14 $[-2, -1, 3] = \frac{-2}{\sqrt{2}}$ 14 $\frac{-1}{\sqrt{2}}$ 14 $\left[\frac{3}{\sqrt{14}}\right]$ is a unit vector in the same direction as \vec{w} . To get a unit vector in the opposite direction, by Definition 1.2, we simply multiply by -1 and take $-\vec{w}/\|\vec{w}\|$ as the desired vector: $-\frac{\vec{w}}{\sqrt{w}}$ $\frac{\vec{w}}{\|\vec{w}\|} = -\left[\frac{-2}{\sqrt{14}}\right]$ 14 $\frac{-1}{\sqrt{2}}$ 14 $\left[\frac{3}{\sqrt{14}}\right] = \left[\frac{2}{\sqrt{1}}\right]$ 14 $\frac{1}{\sqrt{2}}$ 14 $\left\lfloor \frac{-3}{\sqrt{14}}\right\rfloor$.

Page 31 Number 8. Find the unit vector parallel to $\vec{w} = [-2, -1, 3]$ which has the opposite direction.

Solution. If we divide \vec{w} by the scalar $\|\vec{w}\| > 0$, we get a vector of length 1 (i.e., a unit vector; this process is called normalizing a vector). Such a vector is in the same direction as \vec{w} (by Definition 1.2 of "parallel and same direction"). By Definition 1.5, "Vector Norm," we have same direction). By Definition 1.5, Vector Norm, we respect
 $\|\vec{w}\| = \sqrt{(-2)^2 + (-1)^2 + (3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$, so \vec{w} $\frac{\vec{w}}{\|\vec{w}\|} = \frac{1}{\sqrt{1}}$ 14 $[-2, -1, 3] = \frac{-2}{\sqrt{2}}$ 14 $\frac{-1}{\sqrt{2}}$ 14 $\left[\frac{3}{\sqrt{14}}\right]$ is a unit vector in the same direction as \vec{w} . To get a unit vector in the opposite direction, by Definition 1.2, we simply multiply by -1 and take $-\vec{w}/\|\vec{w}\|$ as the desired vector: $-\frac{\vec{w}}{\|\vec{x}\|}$ $\displaystyle{\frac{\vec{w}}{\|\vec{w}\|}=-\left[\frac{-2}{\sqrt{14}}\right]}$ 14 $\frac{-1}{\sqrt{2}}$ 14 $,\frac{3}{\sqrt{14}}$ = $\left[\frac{2}{\sqrt{1}}\right]$ 14 $\frac{1}{\sqrt{2}}$ 14 $\left|,\frac{-3}{\sqrt{14}}\right|.\left|\Box\right|$

Page 31 Number 12. Find the angle between $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1].$

Page 31 Number 12. Find the angle between $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1].$

Solution. We have by definition that the desired angle is $\cos^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{u} \| \|\vec{v}\|}$ $\frac{v}{\|\vec{u}\|\|\vec{v}\|}.$ Now by Definition 1.5, "Vector Norm," Now by Definition 1.5, Vector Norm,
 $\|\vec{u}\| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1+9+16} = \sqrt{26}$ and $||u|| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1+9+10} = \sqrt{20}$ and
 $||\vec{v}|| = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{4+1+1} = \sqrt{6}$. Also, by Definition 1.6, "Dot Product," $\vec{u}\cdot\vec{v} = [-1, 3, 4]\cdot[2, 1, -1] = (-1)(2)+(3)(1)+(4)(-1) = -2+3-4 = -3.$

Page 31 Number 12. Find the angle between $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1].$

Solution. We have by definition that the desired angle is $\cos^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{u} \| \|\vec{v}\|}$ $\frac{v}{\|\vec{u}\|\|\vec{v}\|}.$ Now by Definition 1.5, "Vector Norm," Now by Definition 1.5, Vector Norm,
 $\|\vec{u}\| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1 + 9 + 16} = \sqrt{26}$ and $||u|| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1+9+10} = \sqrt{20}$ and
 $||\vec{v}|| = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{4+1+1} = \sqrt{6}$. Also, by Definition 1.6, "Dot Product," $\vec{u}\cdot\vec{v} = [-1, 3, 4]\cdot[2, 1, -1] = (-1)(2)+(3)(1)+(4)(-1) = -2+3-4 = -3.$ So the angle between \vec{u} and \vec{v} is cos $^{-1} \frac{\vec{u} \cdot \vec{v}}{u \rightarrow u \bar{u}}$ $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \cos^{-1} \frac{-3}{\sqrt{26}\sqrt{6}}$ = $\cos^{-1} \frac{-3}{\sqrt{1-\frac{1}{2}}}$.

156

Page 31 Number 12. Find the angle between $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1].$

Solution. We have by definition that the desired angle is $\cos^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{u} \| \|\vec{v}\|}$ $\frac{v}{\|\vec{u}\|\|\vec{v}\|}.$ Now by Definition 1.5, "Vector Norm," Now by Definition 1.5, Vector Norm,
 $\|\vec{u}\| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1 + 9 + 16} = \sqrt{26}$ and $||u|| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1+9+10} = \sqrt{20}$ and
 $||\vec{v}|| = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{4+1+1} = \sqrt{6}$. Also, by Definition 1.6, "Dot Product," $\vec{u}\cdot\vec{v} = [-1, 3, 4]\cdot[2, 1, -1] = (-1)(2)+(3)(1)+(4)(-1) = -2+3-4 = -3.$ So the angle between \vec{u} and \vec{v} is cos $^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{v} \| \|\vec{v}\|}$ $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \cos^{-1} \frac{-3}{\sqrt{26}\sqrt{6}}$ =

$$
\left|\cos^{-1}\frac{-3}{\sqrt{156}}.\right|
$$

We can use a calculator to approximate the true answer to

find that the angle is roughly 103.90°.

Page 31 Number 12. Find the angle between $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1].$

Solution. We have by definition that the desired angle is $\cos^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{u} \| \|\vec{v}\|}$ $\frac{v}{\|\vec{u}\|\|\vec{v}\|}.$ Now by Definition 1.5, "Vector Norm," Now by Definition 1.5, Vector Norm,
 $\|\vec{u}\| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1 + 9 + 16} = \sqrt{26}$ and $||u|| = \sqrt{(-1)^2 + (3)^2 + (4)^2} = \sqrt{1+9+10} = \sqrt{20}$ and
 $||\vec{v}|| = \sqrt{(2)^2 + (1)^2 + (-1)^2} = \sqrt{4+1+1} = \sqrt{6}$. Also, by Definition 1.6, "Dot Product," $\vec{u}\cdot\vec{v} = [-1, 3, 4]\cdot[2, 1, -1] = (-1)(2) + (3)(1) + (4)(-1) = -2 + 3 - 4 = -3.$ So the angle between \vec{u} and \vec{v} is cos $^{-1} \frac{\vec{u} \cdot \vec{v}}{\| \vec{v} \| \|\vec{v}\|}$ $\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \cos^{-1} \frac{-3}{\sqrt{26}\sqrt{6}}$ = $\cos^{-1} \frac{-3}{\sqrt{15}}$ 156 . We can use a calculator to approximate the true answer to

find that the angle is roughly 103.90◦ .

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, then by our first definition in Section 1.1, we have that $\vec{u} = [u_1, u_2, \dots, u_n], \vec{v} = [v_1, v_2, \dots, v_n],$ and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i, v_i, w_i are real numbers.

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, then by our first definition in Section 1.1, we have that $\vec{u} = [u_1, u_2, \dots, u_n]$, $\vec{v} = [v_1, v_2, \dots, v_n]$, and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i, v_i, w_i are real numbers. Then

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = [u_1, u_2, \dots, u_n] \cdot ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

=
$$
[u_1, u_2, \dots, u_n] \cdot [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

by Definition 1.1.(1), "Vector Addition"

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, then by our first definition in Section 1.1, we have that $\vec{u} = [u_1, u_2, \dots, u_n]$, $\vec{v} = [v_1, v_2, \dots, v_n]$, and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i, v_i, w_i are real numbers. Then

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = [u_1, u_2, \dots, u_n] \cdot ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

=
$$
[u_1, u_2, \dots, u_n] \cdot [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

by Definition 1.1.(1), "Vector Addition"

=
$$
u_1(v_1 + w_1) + u_2(v_2 + w_2) + \cdots + u_n(v_n + w_n)
$$

by Definition 1.6, "Dot Product"

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, then by our first definition in Section 1.1, we have that $\vec{u} = [u_1, u_2, \dots, u_n]$, $\vec{v} = [v_1, v_2, \dots, v_n]$, and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i, v_i, w_i are real numbers. Then

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = [u_1, u_2, \dots, u_n] \cdot ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

=
$$
[u_1, u_2, \dots, u_n] \cdot [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

by Definition 1.1.(1), "Vector Addition"

=
$$
u_1(v_1 + w_1) + u_2(v_2 + w_2) + \cdots + u_n(v_n + w_n)
$$

by Definition 1.6, "Dot Product"

 $=$ $u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n$ since multiplication distributes over addition in R

. . .

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, then by our first definition in Section 1.1, we have that $\vec{u} = [u_1, u_2, \dots, u_n]$, $\vec{v} = [v_1, v_2, \dots, v_n]$, and $\vec{w} = [w_1, w_2, \dots, w_n]$ where all u_i, v_i, w_i are real numbers. Then

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = [u_1, u_2, \dots, u_n] \cdot ([v_1, v_2, \dots, v_n] + [w_1, w_2, \dots, w_n])
$$

=
$$
[u_1, u_2, \dots, u_n] \cdot [v_1 + w_1, v_2 + w_2, \dots, v_n + w_n]
$$

by Definition 1.1.(1), "Vector Addition"

=
$$
u_1(v_1 + w_1) + u_2(v_2 + w_2) + \cdots + u_n(v_n + w_n)
$$

by Definition 1.6, "Dot Product"

$$
= u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n
$$

since multiplication distributes over addition in R

. . .

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof (continued). ...

 $\vec{u} \cdot (\vec{v} + \vec{w}) = u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n$

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof (continued). ...

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n
$$

=
$$
(u_1v_1 + u_2v_2 + \cdots + u_nv_n) + (u_1w_1 + u_2w_2 + \cdots + u_nw_n)
$$

since addition is commutative and associative in \mathbb{R}

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof (continued). ...

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n
$$
\n
$$
= (u_1v_1 + u_2v_2 + \cdots + u_nv_n) + (u_1w_1 + u_2w_2 + \cdots + u_nw_n)
$$
\nsince addition is commutative and associative in \mathbb{R} \n
$$
= [u_1, u_2, \dots, u_n] \cdot [v_1, v_2, \dots, v_n]
$$
\n
$$
+ [u_1, u_2, \dots, u_n] \cdot [w_1, w_2, \dots, w_n]
$$
\nby Definition 1.6, "Dot Product"
\n
$$
= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}.
$$

Page 33 Number 42(b). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$. Prove the Distributive Law: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.

Proof (continued). ...

$$
\vec{u} \cdot (\vec{v} + \vec{w}) = u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + \cdots + u_nv_n + u_nw_n
$$
\n
$$
= (u_1v_1 + u_2v_2 + \cdots + u_nv_n) + (u_1w_1 + u_2w_2 + \cdots + u_nw_n)
$$
\nsince addition is commutative and associative in \mathbb{R} \n
$$
= [u_1, u_2, \dots, u_n] \cdot [v_1, v_2, \dots, v_n]
$$
\n
$$
+ [u_1, u_2, \dots, u_n] \cdot [w_1, w_2, \dots, w_n]
$$
\nby Definition 1.6, "Dot Product"
\n
$$
= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}.
$$

Page 31 Number 14. Find the value of x such that $[x, -3, 5]$ is perpendicular to $\vec{u} = [-1, 3, 4]$.

Solution. By the definition of perpendicular (see page 4 of the class notes) we want x such that $[x, -3, 5] \cdot [-1, 3, 4] = 0$.

Page 31 Number 14. Find the value of x such that $[x, -3, 5]$ is perpendicular to $\vec{u} = [-1, 3, 4]$.

Solution. By the definition of perpendicular (see page 4 of the class notes) we want x such that $[x, -3, 5] \cdot [-1, 3, 4] = 0$. Now

 $[x, -3, 5] \cdot [-1, 3, 4] = (x)(-1) + (-3)(3) + (5)(4) = -x - 9 + 20 = -x + 11.$

So to get a dot product of 0 we must have $x = 11$.

Page 31 Number 14. Find the value of x such that $[x, -3, 5]$ is perpendicular to $\vec{u} = [-1, 3, 4]$.

Solution. By the definition of perpendicular (see page 4 of the class notes) we want x such that $[x, -3, 5] \cdot [-1, 3, 4] = 0$. Now

$$
[x, -3, 5] \cdot [-1, 3, 4] = (x)(-1) + (-3)(3) + (5)(4) = -x - 9 + 20 = -x + 11.
$$

So to get a dot product of 0 we must have $x = 11$.

Page 31 Number 16. Find a nonzero vector in \mathbb{R}^3 which is perpendicular to both $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1]$.

Solution. Let the desired vector be $\vec{w} = [w_1, w_2, w_3]$. By the definition of perpendicular (see page 4 of the class notes) we need $\vec{w} \cdot \vec{u} = 0$ and $\vec{w} \cdot \vec{v} = 0.$

Page 31 Number 16. Find a nonzero vector in \mathbb{R}^3 which is perpendicular to both $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1]$.

Solution. Let the desired vector be $\vec{w} = [w_1, w_2, w_3]$. By the definition of perpendicular (see page 4 of the class notes) we need $\vec{w} \cdot \vec{u} = 0$ and $\vec{w} \cdot \vec{v} = 0$. This gives

$$
\vec{w} \cdot \vec{u} = [w_1, w_2, w_3] \cdot [-1, 3, 4]
$$

$$
= (w_1)(-1) + (w_2)(3) + (w_3)(4) = -w_1 + 3w_2 + 4w_3 = 0
$$
and

$$
\vec{w} \cdot \vec{v} = [w_1, w_2, w_3] \cdot [2, 1, -1]
$$

= $(w_1)(2) + (w_2)(1) + (w_3)(-1) = 2w_1 + w_2 - w_3 = 0.$

Page 31 Number 16. Find a nonzero vector in \mathbb{R}^3 which is perpendicular to both $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1]$.

Solution. Let the desired vector be $\vec{w} = [w_1, w_2, w_3]$. By the definition of perpendicular (see page 4 of the class notes) we need $\vec{w} \cdot \vec{u} = 0$ and $\vec{w} \cdot \vec{v} = 0$. This gives

$$
\vec{w} \cdot \vec{u} = [w_1, w_2, w_3] \cdot [-1, 3, 4]
$$

= $(w_1)(-1) + (w_2)(3) + (w_3)(4) = -w_1 + 3w_2 + 4w_3 = 0$

$$
\vec{w} \cdot \vec{v} = [w_1, w_2, w_3] \cdot [2, 1, -1]
$$

= $(w_1)(2) + (w_2)(1) + (w_3)(-1) = 2w_1 + w_2 - w_3 = 0.$

So we need $w_1, w_2, w_3 \in \mathbb{R}$ that satisfy both:

$$
-w_1 + 3w_2 + 4w_3 = 0 \t (1)
$$

2w₁ + w₂ - w₃ = 0. (2)

and

. . .

Page 31 Number 16. Find a nonzero vector in \mathbb{R}^3 which is perpendicular to both $\vec{u} = [-1, 3, 4]$ and $\vec{v} = [2, 1, -1]$.

Solution. Let the desired vector be $\vec{w} = [w_1, w_2, w_3]$. By the definition of perpendicular (see page 4 of the class notes) we need $\vec{w} \cdot \vec{u} = 0$ and $\vec{w} \cdot \vec{v} = 0$. This gives

$$
\vec{w} \cdot \vec{u} = [w_1, w_2, w_3] \cdot [-1, 3, 4]
$$

= $(w_1)(-1) + (w_2)(3) + (w_3)(4) = -w_1 + 3w_2 + 4w_3 = 0$

$$
\vec{w} \cdot \vec{v} = [w_1, w_2, w_3] \cdot [2, 1, -1]
$$

= $(w_1)(2) + (w_2)(1) + (w_3)(-1) = 2w_1 + w_2 - w_3 = 0.$

So we need $w_1, w_2, w_3 \in \mathbb{R}$ that satisfy both:

$$
-w_1 + 3w_2 + 4w_3 = 0
$$
 (1)
\n
$$
2w_1 + w_2 - w_3 = 0.
$$
 (2)

and

. . .

Solution (continued). ...

$$
-w_1 + 3w_2 + 4w_3 = 0
$$
 (1)
\n
$$
2w_1 + w_2 - w_3 = 0.
$$
 (2)

Adding 2 times equation (1) to equation (2) gives $0w_1 + 7w_2 + 7w_3 = 0$. So we can take $w_2 = 1$ and $w_3 = -1$. Plugging these values into equation (1) gives $-w_1 + 3(1) + 4(-1) = 0$ and so $-w_1 - 1 = 0$ or $w_1 = -1$.

 ${\sf Solution~(continued)}.\ \dots\ \begin{array}{ccc} -w_1 + 3w_2 + 4w_3 &=& 0 \ (1) \end{array}$ $2w_1 + w_2 - w_3 = 0.$ (2) Adding 2 times equation (1) to equation (2) gives $0w_1 + 7w_2 + 7w_3 = 0$. So we can take $w_2 = 1$ and $w_3 = -1$. Plugging these values into equation (1) gives $-w_1 + 3(1) + 4(-1) = 0$ and so $-w_1 - 1 = 0$ or $w_1 = -1$. So a choice for w_1, w_2, w_3 is $w_1 = -1$, $w_2 = 1$, and $w_3 = -1$. That is, we can choose $\vec{w} = [w_1, w_2, w_3] = [-1, 1, -1]$. (In fact, any nonzero multiple of this choice of \vec{w} is also correct.)

 ${\sf Solution~(continued)}.\ \dots\ \begin{array}{ccc} -w_1 + 3w_2 + 4w_3 &=& 0 \ (1) \end{array}$ $2w_1 + w_2 - w_3 = 0.$ (2) Adding 2 times equation (1) to equation (2) gives $0w_1 + 7w_2 + 7w_3 = 0$. So we can take $w_2 = 1$ and $w_3 = -1$. Plugging these values into equation (1) gives $-w_1 + 3(1) + 4(-1) = 0$ and so $-w_1 - 1 = 0$ or $w_1 = -1$. So a choice for w_1, w_2, w_3 is $w_1 = -1$, $w_2 = 1$, and $w_3 = -1$. That is, we can choose $\vec{w} = [w_1, w_2, w_3] = [-1, 1, -1]$. (In fact, any nonzero multiple of this choice of \vec{w} is also correct.)

Let's check the orthogonality:

 $\vec{w}\cdot \vec{u} = [-1, 1, -1]\cdot [-1, 3, 4] = (-1)(-1)+(1)(3)+(-1)(4) = 1+3-4=0$

and

 $\vec{w}\cdot \vec{v} = [-1, 1, -1]\cdot [2, 1, -1] = (-1)(2)+(1)(1)+(-1)(-1) = -2+1+1 = 0.$

So, by the definition of perpendicular, \vec{w} is perpendicular to both \vec{u} and \vec{v} , as required. \square

Solution (continued).
$$
\cdots
$$
 $\frac{-w_1 + 3w_2 + 4w_3}{2w_1 + w_2 - w_3} = 0$ (1)
\nAdding 2 times equation (1) to equation (2) gives $0w_1 + 7w_2 + 7w_3 = 0$.
\nSo we *can* take $w_2 = 1$ and $w_3 = -1$. Plugging these values into equation (1) gives $-w_1 + 3(1) + 4(-1) = 0$ and so $-w_1 - 1 = 0$ or $w_1 = -1$. So a choice for w_1, w_2, w_3 is $w_1 = -1$, $w_2 = 1$, and $w_3 = -1$. That is, we can choose $\overline{w} = [w_1, w_2, w_3] = [-1, 1, -1]$. (In fact, any nonzero multiple of this choice of \overline{w} is also correct.)

Let's check the orthogonality:

$$
\vec{w} \cdot \vec{u} = [-1, 1, -1] \cdot [-1, 3, 4] = (-1)(-1) + (1)(3) + (-1)(4) = 1 + 3 - 4 = 0
$$

and

$$
\vec{w}\cdot\vec{v}=[-1,1,-1]\cdot[2,1,-1]=(-1)(2)+(1)(1)+(-1)(-1)=-2+1+1=0.
$$

So, by the definition of perpendicular, \vec{w} is perpendicular to both \vec{u} and \vec{v} , as required. \square

Page 26 Example 7

Page 26 Example 7. Prove that the sum of the squares of the lengths of the diagonals of a parallelogram in \mathbb{R}^n is equal to the sum of the squares of the lengths of the sides. This is the parallelogram relation or the parallelogram law.

Proof. Let two of the sides of the parallelogram be determined by vectors \vec{v} and \vec{w} in standard position:

Page 26 Example 7

Page 26 Example 7. Prove that the sum of the squares of the lengths of the diagonals of a parallelogram in \mathbb{R}^n is equal to the sum of the squares of the lengths of the sides. This is the parallelogram relation or the parallelogram law.

Proof. Let two of the sides of the parallelogram be determined by vectors \vec{v} and \vec{w} in standard position:

Then the lengths of the sides of the parallelogram are $\|\vec{v}\|$, $\|\vec{v}\|$, $\|\vec{w}\|$, and $\|\vec{w}\|$; the lengths of the diagonals are $\|\vec{v} + \vec{w}\|$ and $\|\vec{v} - \vec{w}\|$.

Page 26 Example 7

Page 26 Example 7. Prove that the sum of the squares of the lengths of the diagonals of a parallelogram in \mathbb{R}^n is equal to the sum of the squares of the lengths of the sides. This is the parallelogram relation or the parallelogram law.

Proof. Let two of the sides of the parallelogram be determined by vectors \vec{v} and \vec{w} in standard position:

Then the lengths of the sides of the parallelogram are $\|\vec{v}\|$, $\|\vec{v}\|$, $\|\vec{w}\|$, and $\|\vec{w}\|$; the lengths of the diagonals are $\|\vec{v} + \vec{w}\|$ and $\|\vec{v} - \vec{w}\|$.

Page 26 Example 7 (continued)

Proof (continued). Expressing the squares of norms using dot products as in Note 1.2.A:

$$
\begin{aligned}\n\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 &= (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) + (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \\
&= (\vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
&\quad + (\vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
&\quad \text{by Theorem 1.3(D1) and (D2)}, \\
&\quad \text{``Commutivity and Distribution of Dot Product''} \\
&= 2\vec{v} \cdot \vec{v} + 2\vec{w} \cdot \vec{w} = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2.\n\end{aligned}
$$

Page 26 Example 7 (continued)

Proof (continued). Expressing the squares of norms using dot products as in Note 1.2.A:

$$
\begin{array}{rcl}\n\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 & = & (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) + (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \\
& = & (\vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
& + (\vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
& \text{by Theorem 1.3(D1) and (D2)}, \\
& \text{``Commutivity and Distribution of Dot Product''} \\
& = & 2\vec{v} \cdot \vec{v} + 2\vec{w} \cdot \vec{w} = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2.\n\end{array}
$$

So the sum of the squares of the lengths of the diagonals, $\|\vec{v}+\vec{w}\|^2 + \|\vec{v}-\vec{w}\|^2$, equals the sum of the squares of the lengths of the sides, $\|\vec{v}\|^2 + \|\vec{v}\|^2 + \|\vec{w}\|^2 + \|\vec{w}\|^2 = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2.$

Page 26 Example 7 (continued)

Proof (continued). Expressing the squares of norms using dot products as in Note 1.2.A:

$$
\begin{array}{rcl}\n\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 & = & (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) + (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \\
& = & (\vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
& + (\vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}) \\
& \text{by Theorem 1.3(D1) and (D2)}, \\
& \text{``Commutivity and Distribution of Dot Product''} \\
& = & 2\vec{v} \cdot \vec{v} + 2\vec{w} \cdot \vec{w} = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2.\n\end{array}
$$

So the sum of the squares of the lengths of the diagonals, $\|\vec{\mathsf{v}}+\vec{\mathsf{w}}\|^2 + \|\vec{\mathsf{v}}-\vec{\mathsf{w}}\|^2$, equals the sum of the squares of the lengths of the sides, $\|\vec{v}\|^2 + \|\vec{v}\|^2 + \|\vec{w}\|^2 + \|\vec{w}\|^2 = 2\|\vec{v}\|^2 + 2\|\vec{w}\|^2.$ \mathbf{I}

Theorem 1.4. Schwarz's Inequality.

Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then

 $|\vec{v} \cdot \vec{w}| < ||\vec{v}|| \, ||\vec{w}||.$

Proof. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r and s be any scalars in \mathbb{R} . Then $||r\vec{v} + s\vec{w}|| \ge 0$ by Theorem 1.2(1), "Positivity of the Norm," and so

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then

 $|\vec{v} \cdot \vec{w}| < ||\vec{v}|| \, ||\vec{w}||.$

Proof. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r and s be any scalars in \mathbb{R} . Then $||r\vec{v} + s\vec{w}|| \ge 0$ by Theorem 1.2(1), "Positivity of the Norm," and so

$$
0 \leq ||r\vec{v} + s\vec{w}||^2 = (r\vec{v} + s\vec{w}) \cdot (r\vec{v} + s\vec{w}) \text{ by Note 1.2.A}
$$

= $(r\vec{v}) \cdot (r\vec{v}) + 2(r\vec{v}) \cdot (s\vec{w}) + (s\vec{w}) \cdot (s\vec{w})$
by Theorem 1.3(D1) and (D2), "Commutivity and
Distribution of Dot Products"

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then $|\vec{v} \cdot \vec{w}| < ||\vec{v}|| \, ||\vec{w}||.$

Proof. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r and s be any scalars in \mathbb{R} . Then $||r\vec{v} + s\vec{w}|| \ge 0$ by Theorem 1.2(1), "Positivity of the Norm," and so

$$
0 \leq ||r\vec{v} + s\vec{w}||^2 = (r\vec{v} + s\vec{w}) \cdot (r\vec{v} + s\vec{w})
$$
 by Note 1.2.A

$$
= (r\vec{v}) \cdot (r\vec{v}) + 2(r\vec{v}) \cdot (s\vec{w}) + (s\vec{w}) \cdot (s\vec{w})
$$
\nby Theorem 1.3(D1) and (D2), "Commutivity and
\nDistribution of Dot Products"

$$
= r^2 \vec{v} \cdot \vec{v} + 2rs \vec{v} \cdot \vec{w} + s^2 \vec{w} \cdot \vec{w}
$$

by Theorem 1.3(D3), "Homogeneity of Dot Products" $= r^2 \|\vec{v}\|^2 + 2rs\vec{v} \cdot \vec{w} + s^2 \|\vec{w}\|^2$ by Note 1.2.A.

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then $|\vec{v} \cdot \vec{w}| < ||\vec{v}|| \, ||\vec{w}||.$

Proof. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r and s be any scalars in \mathbb{R} . Then $||r\vec{v} + s\vec{w}|| \ge 0$ by Theorem 1.2(1), "Positivity of the Norm," and so

$$
0 \leq ||r\vec{v} + s\vec{w}||^2 = (r\vec{v} + s\vec{w}) \cdot (r\vec{v} + s\vec{w})
$$
 by Note 1.2.A

$$
= (r\vec{v}) \cdot (r\vec{v}) + 2(r\vec{v}) \cdot (s\vec{w}) + (s\vec{w}) \cdot (s\vec{w})
$$

by Theorem 1.3(D1) and (D2), "Commutivity and

Distribution of Dot Products"

$$
= r^2 \vec{v} \cdot \vec{v} + 2 r s \vec{v} \cdot \vec{w} + s^2 \vec{w} \cdot \vec{w}
$$

by Theorem 1.3(D3), "Homogeneity of Dot Products" $= r^2 \|\vec{v}\|^2 + 2rs\vec{v} \cdot \vec{w} + s^2 \|\vec{w}\|^2$ by Note 1.2.A.

Theorem 1.4 (continued)

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then $|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||$.

Proof (continued). Since this holds for all scalars $r, s \in \mathbb{R}$, we can let $r = \|\vec{w}\|^2$ and $s = -\vec{v} \cdot \vec{w}$ and hence

$$
0 \leq r^2 \|\vec{v}\|^2 + 2r s \vec{v} \cdot \vec{w} + s^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - 2 \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2 + (\vec{v} \cdot \vec{w})^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2
$$

\n
$$
= \|\vec{w}\|^2 (\|\vec{w}\|^2 \|\vec{v}\|^2 - (\vec{v} \cdot \vec{w})^2).
$$
 (*)

If $\|\vec{w}\| = 0$ then $\vec{w} = \vec{0}$ by Theorem 1.3(D4), "Positivity of the Dot Product," and then $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{0} = 0$ so that $0 = |\vec{v} \cdot \vec{w}| \le ||\vec{v}|| ||\vec{w}|| = ||\vec{v}|| 0 = 0$ and Schwarz's Inequality holds.

Theorem 1.4 (continued)

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then $|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||$.

Proof (continued). Since this holds for all scalars $r, s \in \mathbb{R}$, we can let $r = \|\vec{w}\|^2$ and $s = -\vec{v} \cdot \vec{w}$ and hence

$$
0 \leq r^2 \|\vec{v}\|^2 + 2r s \vec{v} \cdot \vec{w} + s^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - 2\|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2 + (\vec{v} \cdot \vec{w})^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2
$$

\n
$$
= \|\vec{w}\|^2 (\|\vec{w}\|^2 \|\vec{v}\|^2 - (\vec{v} \cdot \vec{w})^2).
$$
 (*)

If $\|\vec{w}\| = 0$ then $\vec{w} = \vec{0}$ by Theorem 1.3(D4), "Positivity of the Dot Product," and then $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{0} = 0$ so that $0 = |\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}|| = ||\vec{v}|| 0 = 0$ and Schwarz's Inequality holds. If $\|\vec{w}\| \neq 0$ then from $(*)$, dividing both sides by $\|\vec{w}\|^2$, we have that $\|\vec{v}\|^2 \|\vec{w}\|^2 - (\vec{v}\cdot\vec{w})^2 \geq 0$. That is, $(\vec{v}\cdot\vec{w})^2 \leq \|\vec{v}\|^2 \|\vec{w}\|^2$ and so $\sqrt{(\vec{v}\cdot\vec{w})^2}\leq\sqrt{\|\vec{v}\|^2\|\vec{w}\|^2}$ or $|\vec{v}\cdot\vec{w}|\leq \|\vec{v}\|\|\vec{w}\|$, as claimed.

Theorem 1.4 (continued)

Theorem 1.4. Schwarz's Inequality. Let $\vec{v}, \vec{w} \in \mathbb{R}^n$. Then $|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| ||\vec{w}||$.

Proof (continued). Since this holds for all scalars $r, s \in \mathbb{R}$, we can let $r = \|\vec{w}\|^2$ and $s = -\vec{v} \cdot \vec{w}$ and hence

$$
0 \leq r^2 \|\vec{v}\|^2 + 2r s \vec{v} \cdot \vec{w} + s^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - 2 \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2 + (\vec{v} \cdot \vec{w})^2 \|\vec{w}\|^2
$$

\n
$$
= \|\vec{w}\|^4 \|\vec{v}\|^2 - \|\vec{w}\|^2 (\vec{v} \cdot \vec{w})^2
$$

\n
$$
= \|\vec{w}\|^2 (\|\vec{w}\|^2 \|\vec{v}\|^2 - (\vec{v} \cdot \vec{w})^2).
$$
 (*)

If $\|\vec{w}\| = 0$ then $\vec{w} = \vec{0}$ by Theorem 1.3(D4), "Positivity of the Dot Product," and then $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{0} = 0$ so that $0 = |\vec{v} \cdot \vec{w}| \le ||\vec{v}|| ||\vec{w}|| = ||\vec{v}|| 0 = 0$ and Schwarz's Inequality holds. If $\|\vec{w}\| \neq 0$ then from $(*)$, dividing both sides by $\|\vec{w}\|^2$, we have that $\|\vec v\|^2\|\vec w\|^2-(\vec v\cdot\vec w)^2\geq 0.$ That is, $(\vec v\cdot\vec w)^2\leq \|\vec v\|^2\|\vec w\|^2$ and so $\sqrt{(\vec{v}\cdot\vec{w})^2}\leq\sqrt{\|\vec{v}\|^2\|\vec{w}\|^2}$ or $|\vec{v}\cdot\vec{w}|\leq \|\vec{v}\|\|\vec{w}\|,$ as claimed.

Page 31 Number 36. The captain of a barge wishes to get to a point directly across a straight river that runs north to south. If the current flows directly downstream at 5 knots and the barge steams at 13 knots, in what direction should the captain steer the barge?

Solution. Consider the diagram:

Page 31 Number 36. The captain of a barge wishes to get to a point directly across a straight river that runs north to south. If the current flows directly downstream at 5 knots and the barge steams at 13 knots, in what direction should the captain steer the barge?

Solution. Consider the diagram:

We need the barge to have a velocity \vec{v} such that $\vec{v} + \vec{w}$ results in a vector \vec{u} that runs east-west.

Page 31 Number 36. The captain of a barge wishes to get to a point directly across a straight river that runs north to south. If the current flows directly downstream at 5 knots and the barge steams at 13 knots, in what direction should the captain steer the barge?

Solution. Consider the diagram:

We need the barge to have a velocity \vec{v} such that $\vec{v} + \vec{w}$ results in a vector \vec{u} that runs east-west.

Solution (continued). By the parallelogram property of the addition of vectors (see Figure 1.1.5, page 5) we have:

where $\vec{w} = [0, -5]$ knots and $\vec{u} = [u_1, u_2] = [u_1, 0]$ knots. So with $\vec{v} = [v_1, v_2]$, we have $\vec{v} + \vec{w} = \vec{u}$ or $[v_1, v_2] + [0, -5] = [u_1, 0]$ or $[v_1, v_2 - 5] = [u_1, 0]$. Hence $v_2 = 5$ knots.

Solution (continued). By the parallelogram property of the addition of vectors (see Figure 1.1.5, page 5) we have:

where $\vec{w} = [0, -5]$ knots and $\vec{u} = [u_1, u_2] = [u_1, 0]$ knots. So with $\vec{v} = [v_1, v_2]$, we have $\vec{v} + \vec{w} = \vec{u}$ or $[v_1, v_2] + [0, -5] = [u_1, 0]$ or $[v_1, v_2 - 5] = [u_1, 0]$. Hence $v_2 = 5$ knots. Since $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2} = \sqrt{v_1^2 + (5)^2} = 13$ knots then $\sqrt{v_1^2 + 25} = 13$ and $v_1^2 + 25 = 169$ or $v_1^2 = 144$ (knots²) or $v_1 = 12$ knots. Then $u_1 = v_1 = 12$ knots and so $\vec{u} = [12, 0]$ knots.

Solution (continued). By the parallelogram property of the addition of vectors (see Figure 1.1.5, page 5) we have:

the captain should steer the barge $\theta=\cos^{-1}(12/13)$ upstream. $\boxed{\Box}$

Solution (continued). By the parallelogram property of the addition of vectors (see Figure 1.1.5, page 5) we have:

the captain should steer the barge $\theta=\cos^{-1}(12/13)$ upstream. $\boxed{\Box}$