Linear Algebra

Chapter 1. Vectors, Matrices, and Linear Systems Section 1.5. Inverses of Square Matrices—Proofs of Theorems

Table of contents

- 1 Example 1.5.A
- 2 Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}
- 3 Page 84 Number 12
- 4 Theorem 1.11. A Commutivity Property
- 5 Page 84 Number 4
- 6 Page 85 Number 24
- Page 86 Number 30

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2 .

Solution. We have
$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2 .

Solution. We have
$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert

the operation of interchanging Row 1 and Row 3 we simply interchange them again. To invert the operation of multiplying Row 2 by 7 we divide

Row 2 by 7.

 $E_2 E_2^{-1} = \mathcal{I}$.

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2 .

Solution. We have
$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert the operation of interchanging Row 1 and Row 3 we simply interchange

them again. To invert the operation of multiplying Row 2 by 7 we divide

Row 2 by 7. So we expect
$$E_1^{-1} = E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and

 $E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/7 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$ We can easily verify that $E_1 E_1^{-1} = \mathcal{I}$ and

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2 .

Solution. We have
$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert

the operation of interchanging Row 1 and Row 3 we simply interchange them again. To invert the operation of multiplying Row 2 by 7 we divide

Row 2 by 7. So we expect
$$E_1^{-1} = E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/7 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 We can easily verify that $E_1 E_1^{-1} = \mathcal{I}$ and $E_2 E_2^{-1} = \mathcal{I}.$

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b} .

Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof. Suppose A is row equivalent to \mathcal{I} . Let \vec{b} by any column vector in \mathbb{R}^n . Then $[A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ **to be Solvable for** \vec{b} . Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof. Suppose A is row equivalent to \mathcal{I} . Let \vec{b} by any column vector in \mathbb{R}^n . Then $[A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to \mathcal{I} . Row reduce A to a reduced row echelon form H (so $H \neq \mathcal{I}$). So the last row (i.e., the *n*th row) of H must be all zeros.

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ **to be Solvable for** \vec{b} . Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof. Suppose A is row equivalent to \mathcal{I} . Let \vec{b} by any column vector in \mathbb{R}^n . Then $[A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to \mathcal{I} . Row reduce A to a reduced row echelon form H (so $H \neq \mathcal{I}$). So the last row (i.e., the *n*th row) of H must be all zeros. Now the row reduction of A to H can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, "Use of Elementary Matrices." Say $E_t \cdots E_2 E_1 A = H$. Now elementary matrices are invertible (see Example 1.5.A).

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ **to be Solvable for** \vec{b} . Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof. Suppose A is row equivalent to \mathcal{I} . Let \vec{b} by any column vector in \mathbb{R}^n . Then $[A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to \mathcal{I} . Row reduce A to a reduced row echelon form H (so $H \neq \mathcal{I}$). So the last row (i.e., the *n*th row) of H must be all zeros. Now the row reduction of A to H can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, "Use of Elementary Matrices." Say $E_t \cdots E_2 E_1 A = H$. Now elementary matrices are invertible (see Example 1.5.A). Let \vec{e}_n be the *n*th basis element of \mathbb{R}^n written as a column vector. Define $\vec{b} = (E_t \cdots E_2 E_1)^{-1} \vec{e}_n$.

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ **to be Solvable for** \vec{b} . Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof. Suppose A is row equivalent to \mathcal{I} . Let \vec{b} by any column vector in \mathbb{R}^n . Then $[A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to \mathcal{I} . Row reduce A to a reduced row echelon form H (so $H \neq \mathcal{I}$). So the last row (i.e., the *n*th row) of H must be all zeros. Now the row reduction of A to H can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, "Use of Elementary Matrices." Say $E_t \cdots E_2 E_1 A = H$. Now elementary matrices are invertible (see Example 1.5.A). Let \vec{e}_n be the *n*th basis element of \mathbb{R}^n written as a column vector. Define $\vec{b} = (E_t \cdots E_2 E_1)^{-1} \vec{e}_n$.

Lemma 1.1 (continued)

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b} .

Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof (continued). Consider the system of equations $A\vec{x} = \vec{b}$ with associated augmented matrix $[A \mid \vec{b}]$. Applying the sequence of elementary row operations associated with $E_t \cdots E_2 E_1$ reduces $[A \mid \vec{b}]$ to

$$[E_t \cdots E_2 E_1 A \mid E_t \cdots E_2 E_1 \vec{b}] = [E_t \cdots E_2 E_1 A \mid (E_t \cdots E_2 E_1) (E_t \cdots E_2 E_1)^{-1} \vec{e}_n]$$
$$= [H \mid \vec{e}_n].$$

But then the last row of H consists of all zeros to the left of the partition and 1 to the right of the partition. So by Theorem 1.7(1), "Solutions of $A\vec{x} = \vec{b}$," $A\vec{x} = \vec{b}$ has no solution. So if A is not row equivalent to \mathcal{I} then the system $A\vec{x} = \vec{b}$ does not have a solution for all $\vec{b} \in \mathbb{R}^n$.

Lemma 1.1 (continued)

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b} .

Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I} .

Proof (continued). Consider the system of equations $A\vec{x} = \vec{b}$ with associated augmented matrix $[A \mid \vec{b}]$. Applying the sequence of elementary row operations associated with $E_t \cdots E_2 E_1$ reduces $[A \mid \vec{b}]$ to

$$[E_t \cdots E_2 E_1 A \mid E_t \cdots E_2 E_1 \vec{b}] = [E_t \cdots E_2 E_1 A \mid (E_t \cdots E_2 E_1) (E_t \cdots E_2 E_1)^{-1} \vec{e}_n]$$
$$= [H \mid \vec{e}_n].$$

But then the last row of H consists of all zeros to the left of the partition and 1 to the right of the partition. So by Theorem 1.7(1), "Solutions of $A\vec{x} = \vec{b}$," $A\vec{x} = \vec{b}$ has no solution. So if A is not row equivalent to \mathcal{I} then the system $A\vec{x} = \vec{b}$ does not have a solution for all $\vec{b} \in \mathbb{R}^n$.

Page 84 Number 12. Determine whether the span of the column vectors of $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix}$ span \mathbb{R}^4 .

Solution. Recall that for any $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of A by Note 1.3.A. So to see if the column vectors of A span \mathbb{R}^4 , we need to choose an arbitrary $\vec{b} \in \mathbb{R}^4$ and see if there is $\vec{x} \in \mathbb{R}^4$ such that $A\vec{x} = \vec{b}$. That is, we need to see if $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^4$.

Page 84 Number 12. Determine whether the span of the column vectors of $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix}$ span \mathbb{R}^4 .

Solution. Recall that for any $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of A by Note 1.3.A. So to see if the column vectors of A span \mathbb{R}^4 , we need to choose an arbitrary $\vec{b} \in \mathbb{R}^4$ and see if there is $\vec{x} \in \mathbb{R}^4$ such that $A\vec{x} = \vec{b}$. That is, we need to see if $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^4$. So by Lemma 1.1 we only need to see if A is row equivalent to \mathcal{I} . Consider

$$A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix} \xrightarrow{R_2 \to R_2 + 3R_1} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 5 & -2 \end{bmatrix}$$

Page 84 Number 12. Determine whether the span of the column vectors of $A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix}$ span \mathbb{R}^4 .

Solution. Recall that for any $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of A by Note 1.3.A. So to see if the column vectors of A span \mathbb{R}^4 , we need to choose an arbitrary $\vec{b} \in \mathbb{R}^4$ and see if there is $\vec{x} \in \mathbb{R}^4$ such that $A\vec{x} = \vec{b}$. That is, we need to see if $A\vec{x} = \vec{b}$ has a solution for every $\vec{b} \in \mathbb{R}^4$. So by Lemma 1.1 we only need to see if A is row equivalent to \mathcal{I} . Consider

$$A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix} \stackrel{R_2 \to R_2 + 3R_1}{\overbrace{R_4 \to R_4 + R_1}} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 5 & -2 \end{bmatrix}$$

Page 84 Number 12 (continued)

Solution (continued).

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 5 & -2 \end{bmatrix} \stackrel{R_1 \to R_1 - 2R_2}{\underset{R_3 \to R_3 + R_2}{\longrightarrow}} \begin{bmatrix} 1 & 0 & -5 & -4 \\ 0 & -1 & 3 & 2 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 5 & -2 \end{bmatrix}$$
$$R_2 \stackrel{R_1 \to R_1 + R_3}{\underset{R_4 \to R_4 - R_3}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & -1 & 0 & 16/5 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{R_2 \to -R_2}{\underset{R_3 \to R_3/5}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & -16/5 \\ 0 & 0 & 1 & -2/5 \\ 0 & 0 & 0 & 0 \end{bmatrix} = H.$$

Page 84 Number 12 (continued)

Solution (continued).

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 5 & -2 \end{bmatrix} \stackrel{R_1 \to R_1 - 2R_2}{\underset{R_3 \to R_3 + R_2}{\longrightarrow}} \begin{bmatrix} 1 & 0 & -5 & -4 \\ 0 & -1 & 3 & 2 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 5 & -2 \end{bmatrix}$$
$$\stackrel{R_2 \to R_2 - (3/5)R_3}{\underset{R_4 \to R_4 - R_3}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & -1 & 0 & 16/5 \\ 0 & 0 & 5 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{R_2 \to -R_2}{\underset{R_3 \to R_3/5}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & -16/5 \\ 0 & 0 & 1 & -2/5 \\ 0 & 0 & 0 & 0 \end{bmatrix} = H.$$

Now *H* is in reduced row echelon form and $H \neq \mathcal{I}$. So Lemma 1.1 implies that NO, the columns do not span \mathbb{R}^4 .

Page 84 Number 12 (continued)

Solution (continued).

$$\begin{bmatrix} 1 & -2 & 1 & 0\\ 0 & -1 & 3 & 2\\ 0 & 1 & 2 & -4\\ 0 & 0 & 5 & -2 \end{bmatrix} \stackrel{R_1 \to R_1 - 2R_2}{\underset{R_3 \to R_3 + R_2}{\longrightarrow}} \begin{bmatrix} 1 & 0 & -5 & -4\\ 0 & -1 & 3 & 2\\ 0 & 0 & 5 & -2\\ 0 & 0 & 5 & -2\\ 0 & 0 & 5 & -2 \end{bmatrix}$$
$$\stackrel{R_2 \to R_2 - (3/5)R_3}{\underset{R_4 \to R_4 - R_3}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6\\ 0 & -1 & 0 & 16/5\\ 0 & 0 & 5 & -2\\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{R_2 \to -R_2}{\underset{R_3 \to R_3/5}{\longrightarrow}} \begin{bmatrix} 1 & 0 & 0 & -6\\ 0 & 1 & 0 & -16/5\\ 0 & 0 & 1 & -2/5\\ 0 & 0 & 0 & 0 \end{bmatrix} = H.$$

Now *H* is in reduced row echelon form and $H \neq I$. So Lemma 1.1 implies that NO, the columns do not span \mathbb{R}^4 . \square

F

Theorem 1.11. A Commutivity Property. Let *A* and *C* be $n \times n$ matrices. Then $CA = \mathcal{I}$ if and only if $AC = \mathcal{I}$.

Proof. Suppose that $AC = \mathcal{I}$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = \mathcal{I}\vec{b} = \vec{b}.$$

Theorem 1.11. A Commutivity Property.

Let A and C be $n \times n$ matrices. Then $CA = \mathcal{I}$ if and only if $AC = \mathcal{I}$.

Proof. Suppose that $AC = \mathcal{I}$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = \mathcal{I}\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix \mathcal{I} , and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = \mathcal{I}$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = \mathcal{I}$$
 and $AC = \mathcal{I}$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = \mathcal{I}$.

Theorem 1.11. A Commutivity Property.

Let A and C be $n \times n$ matrices. Then $CA = \mathcal{I}$ if and only if $AC = \mathcal{I}$.

Proof. Suppose that $AC = \mathcal{I}$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = \mathcal{I}\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix \mathcal{I} , and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = \mathcal{I}$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = \mathcal{I}$$
 and $AC = \mathcal{I}$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = \mathcal{I}$. The other half of the proof follows by interchanging the roles of A and C.

Theorem 1.11. A Commutivity Property.

Let A and C be $n \times n$ matrices. Then $CA = \mathcal{I}$ if and only if $AC = \mathcal{I}$.

Proof. Suppose that $AC = \mathcal{I}$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = \mathcal{I}\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix \mathcal{I} , and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = \mathcal{I}$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = \mathcal{I}$$
 and $AC = \mathcal{I}$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = \mathcal{I}$. The other half of the proof follows by interchanging the roles of A and C.

Page 84 Number 4. Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1} . Use A^{-1} to solve the system $\begin{cases} 6x_1 + 7x_2 &= 4 \\ 8x_1 + 9x_2 &= 6. \end{cases}$

Solution. We form $[A|\mathcal{I}]$ and apply Gauss-Jordan elimination to produce the row equivalent $[\mathcal{I}|A^{-1}]$ (if possible).

Page 84 Number 4. Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1} . Use A^{-1} to solve the system $\begin{array}{rcl} 6x_1 + 7x_2 & = & 4 \\ 8x_1 + 9x_2 & = & 6. \end{array}$

Solution. We form $[A|\mathcal{I}]$ and apply Gauss-Jordan elimination to produce the row equivalent $[\mathcal{I}|A^{-1}]$ (if possible). So

$$\begin{bmatrix} 6 & 7 & | & 1 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1/6} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix}$$

Page 84 Number 4. Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1} . Use A^{-1} to solve the system $\begin{array}{ccc} 6x_1 + 7x_2 & = & 4 \\ 8x_1 + 9x_2 & = & 6. \end{array}$

Solution. We form $[A|\mathcal{I}]$ and apply Gauss-Jordan elimination to produce the row equivalent $[\mathcal{I}|A^{-1}]$ (if possible). So

$$\begin{bmatrix} 6 & 7 & | & 1 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1/6} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix}$$

$$R_2 \to R_2 \to R_1 \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 - 8(1) & 9 - 8(7/6) & | & 0 - 8(1/6) & 1 - 8(0) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 0 & -1/3 & | & -4/3 & 1 \end{bmatrix}$$

Page 84 Number 4. Consider
$$A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$$
. Find A^{-1} . Use A^{-1} to solve the system
$$\begin{array}{rcr} 6x_1 + 7x_2 &= 4 \\ 8x_1 + 9x_2 &= 6. \end{array}$$

Solution. We form $[A|\mathcal{I}]$ and apply Gauss-Jordan elimination to produce the row equivalent $[\mathcal{I}|A^{-1}]$ (if possible). So

10

$$\begin{bmatrix} 6 & 7 & | & 1 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1/6} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix}$$

$$\stackrel{R_2 \to R_2 - 8R_1}{\begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 - 8(1) & 9 - 8(7/6) & | & 0 - 8(1/6) & 1 - 8(0) \end{bmatrix}}$$

$$= \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 0 & -1/3 & | & -4/3 & 1 \end{bmatrix} \xrightarrow{R_2 \to -3R_2} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 0 & 1 & | & 4 & -3 \end{bmatrix}$$

Page 84 Number 4. Consider
$$A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$$
. Find A^{-1} . Use A^{-1} to solve the system
$$\begin{array}{rcr} 6x_1 + 7x_2 &= 4 \\ 8x_1 + 9x_2 &= 6. \end{array}$$

Solution. We form $[A|\mathcal{I}]$ and apply Gauss-Jordan elimination to produce the row equivalent $[\mathcal{I}|A^{-1}]$ (if possible). So

$$\begin{bmatrix} 6 & 7 & | & 1 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1/6} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 & 9 & | & 0 & 1 \end{bmatrix}$$

$$\stackrel{R_2 \to R_2 - 8R_1}{\begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 8 - 8(1) & 9 - 8(7/6) & | & 0 - 8(1/6) & 1 - 8(0) \end{bmatrix}}$$

$$= \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 0 & -1/3 & | & -4/3 & 1 \end{bmatrix} \xrightarrow{R_2 \to -3R_2} \begin{bmatrix} 1 & 7/6 & | & 1/6 & 0 \\ 0 & 1 & | & 4 & -3 \end{bmatrix}$$

Page 84 Number 4 (continued 1)

Solution (continued).

$$\begin{bmatrix} 1 & 7/6 & 1/6 & 0 \\ 0 & 1 & 4 & -3 \end{bmatrix}^{R_1 \to R_1 - (7/6)R_2} \\ \begin{bmatrix} 1 - (7/6)(0) & 7/6 - (7/6)(1) & 1/6 - (7/6)(4) & 0 - (7/6)(-3) \\ 0 & 1 & 4 & -3 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & -9/2 & 7/2 \\ 0 & 1 & 4 & -3 \end{bmatrix} .$$

So $A^{-1} = \begin{bmatrix} -9/2 & 7/2 \\ 4 & -3 \end{bmatrix} .$

Page 84 Number 4 (continued 1)

Solution (continued).

$$\begin{bmatrix} 1 & 7/6 & 1/6 & 0 \\ 0 & 1 & 4 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_1 - (7/6)R_2} \\ \begin{bmatrix} 1 - (7/6)(0) & 7/6 - (7/6)(1) & 1/6 - (7/6)(4) & 0 - (7/6)(-3) \\ 0 & 1 & 4 & -3 \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & -9/2 & 7/2 \\ 0 & 1 & 4 & -3 \end{bmatrix} .$$

So $A^{-1} = \begin{bmatrix} -9/2 & 7/2 \\ 4 & -3 \end{bmatrix} .$

Page 84 Number 4 (continued 2)

Solution (continued). For the system of equations, we express it as a matrix product $A\vec{x} = \vec{b}$: $\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$. Then $A^{-1}A\vec{x} = A^{-1}\vec{b}$ or $\vec{x} = A^{-1}\vec{b}$. So

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A^{-1}\vec{b} = \begin{bmatrix} -9/2 & 7/2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} (-9/2)(4) + (7/2)(6) \\ 4(4) - 3(6) \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
tion is $\boxed{x = 2}, x = -2$

and the solution is $x_1 = 3, x_2 = -2.$

Page 84 Number 4 (continued 2)

Solution (continued). For the system of equations, we express it as a matrix product $A\vec{x} = \vec{b}$: $\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$. Then $A^{-1}A\vec{x} = A^{-1}\vec{b}$ or $\vec{x} = A^{-1}\vec{b}$. So

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A^{-1}\vec{b} = \begin{bmatrix} -9/2 & 7/2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} (-9/2)(4) + (7/2)(6) \\ 4(4) - 3(6) \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
and the solution is $\boxed{x_1 = 3, x_2 = -2}$

Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^{T} is invertible. Describe $(A^{T})^{-1}$ in terms of A^{-1} .

Solution. We know that $(AB)^T = B^T A^T$ (see "Properties of the Transpose Operator" in Section 1.3; page 4 of the notes).

Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^{T} is invertible. Describe $(A^{T})^{-1}$ in terms of A^{-1} .

Solution. We know that $(AB)^T = B^T A^T$ (see "Properties of the Transpose Operator" in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1}A = \mathcal{I}$. So $(AA^{-1})^T = (A^{-1}A)^T = \mathcal{I}^T = \mathcal{I}$ (since the identity matrix \mathcal{I} is symmetric; see Definition 1.11).

Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^{T} is invertible. Describe $(A^{T})^{-1}$ in terms of A^{-1} .

Solution. We know that $(AB)^T = B^T A^T$ (see "Properties of the Transpose Operator" in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1}A = \mathcal{I}$. So $(AA^{-1})^T = (A^{-1}A)^T = \mathcal{I}^T = \mathcal{I}$ (since the identity matrix \mathcal{I} is symmetric; see Definition 1.11). Hence $(A^{-1})^T A^T = A^T (A^{-1})^T = \mathcal{I}$ and so the inverse of A^T is $(A^{-1})^T$. Therefore A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

()

Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^{T} is invertible. Describe $(A^{T})^{-1}$ in terms of A^{-1} .

Solution. We know that $(AB)^T = B^T A^T$ (see "Properties of the Transpose Operator" in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1}A = \mathcal{I}$. So $(AA^{-1})^T = (A^{-1}A)^T = \mathcal{I}^T = \mathcal{I}$ (since the identity matrix \mathcal{I} is symmetric; see Definition 1.11). Hence $(A^{-1})^T A^T = A^T (A^{-1})^T = \mathcal{I}$ and so the inverse of A^T is $(A^{-1})^T$. Therefore A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Page 86 number 30. A square matrix A is said to be *idempotent* if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and \mathcal{I} .

Solution. An easy example can be found by slightly modifying \mathcal{I} . Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$

Page 86 number 30. A square matrix A is said to be *idempotent* if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and \mathcal{I} .

Solution. An easy example can be found by slightly modifying \mathcal{I} . Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$

(b) Prove that if matrix A is both idempotent and invertible, then $A = \mathcal{I}$.

Page 86 number 30. A square matrix A is said to be *idempotent* if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and \mathcal{I} .

Solution. An easy example can be found by slightly modifying \mathcal{I} . Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$

(b) Prove that if matrix A is both idempotent and invertible, then $A = \mathcal{I}$.

Proof. Suppose $A^2 = A$ and A^{-1} exists. Then $A^{-1}(A^2) = A^{-1}A$ and by associativity (Theorem 1.3.A(8)), "Properties of Matrix Algebra") $(A^{-1}A)A = A^{-1}A$ or $\mathcal{I}A = \mathcal{I}$ or $A = \mathcal{I}$.

Page 86 number 30. A square matrix A is said to be *idempotent* if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and \mathcal{I} .

Solution. An easy example can be found by slightly modifying \mathcal{I} . Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$

(b) Prove that if matrix A is both idempotent and invertible, then $A = \mathcal{I}$. **Proof.** Suppose $A^2 = A$ and A^{-1} exists. Then $A^{-1}(A^2) = A^{-1}A$ and by associativity (Theorem 1.3.A(8)), "Properties of Matrix Algebra") $(A^{-1}A)A = A^{-1}A$ or $\mathcal{I}A = \mathcal{I}$ or $A = \mathcal{I}$.