
Linear Algebra

May 15, 2020

Chapter 1. Vectors, Matrices, and Linear Systems
Section 1.5. Inverses of Square Matrices—Proofs of Theorems

() Linear Algebra May 15, 2020 1 / 13



Table of contents

1 Example 1.5.A

2 Lemma 1.1. Condition for A~x = ~b to be Solvable for ~b

3 Page 84 Number 12

4 Theorem 1.11. A Commutivity Property

5 Page 84 Number 4

6 Page 85 Number 24

7 Page 86 Number 30

() Linear Algebra May 15, 2020 2 / 13



Example 1.5.A

Example 1.5.A

Example 1.5.A. It is easy to invert an elementary matrix. For example,
suppose E1 interchanges Row 1 and Row 2 of a 3× 3 matrix. Suppose E2

multiplies Row 2 by 7 in a 3× 3 matrix. Find the inverses of E1 and E2.

Solution. We have E1 =

 0 1 0
1 0 0
0 0 1

 and E2 =

 1 0 0
0 7 0
0 0 1

 .

To invert

the operation of interchanging Row 1 and Row 3 we simply interchange
them again. To invert the operation of multiplying Row 2 by 7 we divide

Row 2 by 7. So we expect E−1
1 = E1 =

 0 1 0
1 0 0
0 0 1

 and

E−1
2 =

 1 0 0
0 1/7 0
0 0 1

 . We can easily verify that E1E
−1
1 = I and

E2E
−1
2 = I. �
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Lemma 1.1. Condition for A~x = ~b to be Solvable for ~b

Lemma 1.1

Lemma 1.1. Condition for A~x = ~b to be Solvable for ~b.
Let A be an n × n matrix. The linear system A~x = ~b has a solution for
every choice of column vector ~b ∈ Rn if and only if A is row equivalent to
the n × n identity matrix I.

Proof. Suppose A is row equivalent to I. Let ~b by any column vector in
Rn. Then [A | ~b] ∼ [I | ~c] for some column vector ~c ∈ Rn. Then, by
Theorem 1.6, ~x = ~c is a solution to A~x = ~b.

Suppose A is not row equivalent to I. Row reduce A to a reduced row
echelon form H (so H 6= I). So the last row (i.e., the nth row) of H must
be all zeros. Now the row reduction of A to H can be accomplished by
multiplication on the left by a sequence of elementary matrices by
repeated application of Theorem 1.8, “Use of Elementary Matrices.” Say
Et · · ·E2E1A = H. Now elementary matrices are invertible (see Example
1.5.A). Let ~en be the nth basis element of Rn written as a column vector.
Define ~b = (Et · · ·E2E1)

−1~en.
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Lemma 1.1. Condition for A~x = ~b to be Solvable for ~b

Lemma 1.1 (continued)

Lemma 1.1. Condition for A~x = ~b to be Solvable for ~b.
Let A be an n × n matrix. The linear system A~x = ~b has a solution for
every choice of column vector ~b ∈ Rn if and only if A is row equivalent to
the n × n identity matrix I.
Proof (continued). Consider the system of equations A~x = ~b with
associated augmented matrix [A | ~b]. Applying the sequence of elementary
row operations associated with Et · · ·E2E1 reduces [A | ~b] to

[Et · · ·E2E1A | Et · · ·E2E1
~b] = [Et · · ·E2E1A | (Et · · ·E2E1)(Et · · ·E2E1)

−1~en]

= [H | ~en].

But then the last row of H consists of all zeros to the left of the partition
and 1 to the right of the partition. So by Theorem 1.7(1), “Solutions of
A~x = ~b,” A~x = ~b has no solution. So if A is not row equivalent to I then
the system A~x = ~b does not have a solution for all ~b ∈ Rn.
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Page 84 Number 12

Page 84 Number 12

Page 84 Number 12. Determine whether the span of the column vectors

of A =


1 −2 1 0

−3 5 0 2
0 1 2 −4

−1 2 4 −2

 span R4.

Solution. Recall that for any ~x ∈ Rn, A~x is a linear combination of the
columns of A by Note 1.3.A. So to see if the column vectors of A span R4,
we need to choose an arbitrary ~b ∈ R4 and see if there is ~x ∈ R4 such that
A~x = ~b. That is, we need to see if A~x = ~b has a solution for every ~b ∈ R4.

So by Lemma 1.1 we only need to see if A is row equivalent to I. Consider

A =


1 −2 1 0

−3 5 0 2
0 1 2 −4

−1 2 4 −2

 R2→R2+3R1

˜R4 → R4 + R1


1 −2 1 0
0 −1 3 2
0 1 2 −4
0 0 5 −2


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Page 84 Number 12

Page 84 Number 12 (continued)

Solution (continued).
1 −2 1 0
0 −1 3 2
0 1 2 −4
0 0 5 −2

 R1→R1−2R2

˜R3 → R3 + R2


1 0 −5 −4
0 −1 3 2
0 0 5 −2
0 0 5 −2


R1 → R1 + R3

R2 → R2 − (3/5)R3

˜R4 → R4 − R3


1 0 0 −6
0 −1 0 16/5
0 0 5 −2
0 0 0 0

 R2→−R2

˜R3 → R3/5


1 0 0 −6
0 1 0 −16/5
0 0 1 −2/5
0 0 0 0

 = H.

Now H is in reduced row echelon form and H 6= I. So Lemma 1.1 implies

that NO, the columns do not span R4. �
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Theorem 1.11. A Commutivity Property

Theorem 1.11

Theorem 1.11. A Commutivity Property.
Let A and C be n × n matrices. Then CA = I if and only if AC = I.

Proof. Suppose that AC = I. Then the equation A~x = ~b has a solution
for every column vector ~b ∈ Rn. Notice that ~x = C~b is a solution because

A(C~b) = (AC )~b = I~b = ~b.

By Lemma 1.1, we know that A is row equivalent to the n × n identity
matrix I, and so there exists a sequence of elementary matrices
E1,E2, . . . ,Et such that (Et · · ·E2E1)A = I. By Theorem 1.9, the two
equations

(Et · · ·E2E1)A = I and AC = I

imply that Et · · ·E2E1 = C , and so we have CA = I. The other half of the
proof follows by interchanging the roles of A and C .
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Page 84 Number 4

Page 84 Number 4

Page 84 Number 4. Consider A =

[
6 7
8 9

]
. Find A−1. Use A−1 to

solve the system
6x1 + 7x2 = 4
8x1 + 9x2 = 6.

Solution. We form [A|I] and apply Gauss-Jordan elimination to produce
the row equivalent [I|A−1] (if possible).

So[
6 7 1 0
8 9 0 1

] R1→R1/6

˜
[

1 7/6 1/6 0
8 9 0 1

]
R2→R2−8R1

˜
[

1 7/6 1/6 0
8− 8(1) 9− 8(7/6) 0− 8(1/6) 1− 8(0)

]

=

[
1 7/6 1/6 0
0 −1/3 −4/3 1

] R2→−3R2

˜
[

1 7/6 1/6 0
0 1 4 −3

]
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Solution. We form [A|I] and apply Gauss-Jordan elimination to produce
the row equivalent [I|A−1] (if possible). So[

6 7 1 0
8 9 0 1

] R1→R1/6

˜
[

1 7/6 1/6 0
8 9 0 1

]
R2→R2−8R1

˜
[

1 7/6 1/6 0
8− 8(1) 9− 8(7/6) 0− 8(1/6) 1− 8(0)

]

=

[
1 7/6 1/6 0
0 −1/3 −4/3 1

] R2→−3R2

˜
[

1 7/6 1/6 0
0 1 4 −3

]
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Page 84 Number 4

Page 84 Number 4 (continued 1)

Solution (continued).[
1 7/6 1/6 0
0 1 4 −3

] R1→R1−(7/6)R2

˜

[
1− (7/6)(0) 7/6− (7/6)(1) 1/6− (7/6)(4) 0− (7/6)(−3)

0 1 4 −3

]

=

[
1 0 −9/2 7/2
0 1 4 −3

]
.

So A−1 =

[
−9/2 7/2

4 −3

]
.
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Page 84 Number 4

Page 84 Number 4 (continued 2)

Solution (continued). For the system of equations, we express it as a

matrix product A~x = ~b:

[
6 7
8 9

] [
x1

x2

]
=

[
4
6

]
. Then A−1A~x = A−1~b

or I~x = A−1~b or ~x = A−1~b. So

~x =

[
x1

x2

]
= A−1~b =

[
−9/2 7/2

4 −3

] [
4
6

]

=

[
(−9/2)(4) + (7/2)(6)

4(4)− 3(6)

]
=

[
3

−2

]
and the solution is x1 = 3, x2 = −2. �
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Page 84 Number 4 (continued 2)
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Page 85 Number 24

Page 85 Number 24

Page 85 number 24. Prove that if A is an invertible n × n matrix then
AT is invertible. Describe (AT )−1 in terms of A−1.

Solution. We know that (AB)T = BTAT (see “Properties of the
Transpose Operator” in Section 1.3; page 4 of the notes).

Since A is
invertible then AA−1 = A−1A = I. So (AA−1)T = (A−1A)T = IT = I
(since the identity matrix I is symmetric; see Definition 1.11). Hence
(A−1)TAT = AT (A−1)T = I and so the inverse of AT is (A−1)T .
Therefore AT is invertible and (AT )−1 = (A−1)T .
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Page 86 Number 30

Page 86 Number 30

Page 86 number 30. A square matrix A is said to be idempotent if
A2 = A.
(a) Give an example of an idempotent matrix other than 0 and I.

Solution. An easy example can be found by slightly modifying I.

Consider, say, A =

 1 0 0
0 0 0
0 0 1

. Then

A2 =

 1 0 0
0 0 0
0 0 1

 1 0 0
0 0 0
0 0 1

 =

 1 0 0
0 0 0
0 0 1

 = A.

(b) Prove that if matrix A is both idempotent and invertible, then A = I.

Proof. Suppose A2 = A and A−1 exists. Then A−1(A2) = A−1A and by
associativity (Theorem 1.3.A(8)), “Properties of Matrix Algebra”)
(A−1A)A = A−1A or IA = I or A = I.
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