# Linear Algebra

#### Chapter 1. Vectors, Matrices, and Linear Systems

Section 1.6. Homogeneous Systems, Subspaces, and Bases—Proofs of Theorems



Linear Algebra

May 19, 2020 1 / 22

Linear Algebra

May 19, 2020 3

Page 99 Number 8

# Page 99 Number 8 (continued)

**Page 99 Number 8.** Determine whether the set  $W = \{[2x, x + y, y] \mid x, y \in \mathbb{R}\}$  is a subspace of  $\mathbb{R}^3$ .

**Solution (continued).** For scalar multiplication, let  $r \in \mathbb{R}$  and consider

$$r\vec{v}_1 = r[2x_1, x_1 + y_1, y_1] = [r(2x_1), r(x_1 + y_1), r(y_1)]$$
  
=  $[2(rx_1), (rx_1) + (ry_1), (ry_1)]$   
=  $[2x, x + y, y]$  where  $x = rx_1$  and  $y = ry_1$ .

So  $r\vec{v}_1 \in W$  and W is closed under scalar multiplication. Therefore, W is a subspace of  $\mathbb{R}^3$ .  $\square$ 

#### Page 99 Number 8

# Page 99 Number 8

**Page 99 Number 8.** Determine whether the set  $W = \{[2x, x+y, y] \mid x, y \in \mathbb{R}\}$  is a subspace of  $\mathbb{R}^3$ .

**Solution.** By Definition 1.16, we need to see if W is closed under vector addition and scalar multiplication. Let  $\vec{v}_1, \vec{v}_2 \in W$ . Then  $\vec{v}_1 = [2x_1, x_1 + y_1, y_1]$  and  $\vec{v}_2 = [2x_2, x_2 + y_2, y_2]$  for some  $x_1, x_2, y_1, y_2 \in \mathbb{R}$ . For vector addition,

$$\vec{v}_1 + \vec{v}_2 = [2x_1, x_1 + y_1, y_1] + [2x_2, x_2 + y_2, y_2]$$

$$= [2x_1 + 2x_2, (x_1 + y_1) + (x_2 + y_2), y_1 + y_2]$$

$$= [2(x_1 + x_2), (x_1 + x_2) + (y_1 + y_2), (y_1 + y_2)]$$

$$= [2x, x + y, y] \text{ where } x = x_1 + x_2 \text{ and } y = y_1 + y_2.$$

So  $\vec{v}_1 + \vec{v}_2 \in W$  and W is closed under vector addition.

Theorem 1.14. Subspace Property of a Span

# Theorem 1.14

### Theorem 1.14. Subspace Property of a Span

Let  $W = \operatorname{sp}(\vec{w_1}, \vec{w_2}, \dots, \vec{w_k})$  be the span of k > 0 vectors in  $\mathbb{R}^n$  Then W is a subspace of  $\mathbb{R}^n$ . (The vectors  $\vec{w_1}, \vec{w_2}, \dots, \vec{w_n}$  are said to *span* or *generate* the subspace.)

**Proof.** We use Definition 1.16, "Closure and Subspace." Let  $\vec{u}, \vec{v} \in \text{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$  and let c be a scalar. Then  $\vec{u} = r_1 \vec{w}_1 + r_2 \vec{w}_2 + \dots + r_k \vec{w}_k$  and  $\vec{v} = s_1 \vec{w}_1 + s_2 \vec{w}_2 + \dots + s_k \vec{w}_k$  for some scalars  $r_i$  and  $s_i$ . Then

$$\vec{u} + \vec{v} = (r_1 \vec{w}_1 + r_2 \vec{w}_2 + \dots + r_k \vec{w}_k) + (s_1 \vec{w}_1 + s_2 \vec{w}_2 + \dots + s_k \vec{w}_k)$$

$$= (r_1 + s_1) \vec{w}_1 + (r_2 + s_2) \vec{w}_2 + \dots + (r_k + s_k) \vec{w}_k \text{ by S1 and S2}$$

$$\in \operatorname{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$$

and so  $sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$  is closed under vector addition.

Linear Algebra May 19, 2020 4 / 22

lgebra May 19, 2020

# Theorem 1.14 (continued)

#### Theorem 1.14. Subspace Property of a Span

Let  $W = \operatorname{sp}(\vec{w_1}, \vec{w_2}, \dots, \vec{w_k})$  be the span of k > 0 vectors in  $\mathbb{R}^n$  Then Wis a subspace of  $\mathbb{R}^n$ . (The vectors  $\vec{w_1}, \vec{w_2}, \dots, \vec{w_n}$  are said to span or generate the subspace.)

#### **Proof (continued).** Next,

$$c\vec{u} = c(r_1\vec{w}_1 + r_2\vec{w}_2 + \dots + r_k\vec{w}_k)$$

$$= (cr_1)\vec{w}_1 + (cr_2)\vec{w}_2 + \dots + (cr_k)\vec{w}_k \text{ by S1 and S3}$$

$$\in \operatorname{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$$

and so sp $(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$  is closed under scalar multiplication. So by Definition 1.16 sp( $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ ) is a subspace of  $\mathbb{R}^n$ .

May 19, 2020

# Page 100 Number 18 (continued 1)

#### Solution (continued). . . .

$$\begin{bmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -4/5 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 - 2R_3} \begin{bmatrix} 1 & 0 & 0 & 3/5 & 0 \\ 0 & 1 & 0 & 4/5 & 0 \\ 0 & 0 & 1 & -4/5 & 0 \end{bmatrix}.$$

Returning to a system of equations,

$$x_1 + (3/5)x_4 = 0$$
 or  $x_1 = -(3/5)x_4$   
 $x_2 + (4/5)x_4 = 0$   $x_2 = -(4/5)x_4$   
 $x_3 - (4/5)x_4 = 0$   $x_3 = (4/5)x_4$   
 $x_4 = x_4$ .

So let  $r = x_4$  be a free variable and we have that the general solution is of

the form 
$$\vec{x} \in \left\{ r \left[ \begin{array}{c} -3/5 \\ -4/5 \\ 4/5 \\ 1 \end{array} \right] \middle| r \in \mathbb{R} \right\}.$$

# Page 100 Number 18

Page 100 Number 18. Find a generating set for the solution set of the homogeneous linear system:

$$x_1 - x_2 + x_3 - x_4 = 0$$
  
 $x_2 + x_3 = 0$   
 $x_1 + 2x_2 - x_3 + 3x_4 = 0$ .

**Solution.** We apply Gauss-Jordan elimination to the augmented matrix:

$$\begin{bmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 2 & -1 & 3 & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 3 & -2 & 4 & 0 \end{bmatrix}$$

May 19, 2020 7 / 22

# Page 100 Number 18 (continued 2)

**Solution (continued).** So a generating set for the system is

$$\left\{ \left[ \begin{array}{c} -3/5 \\ -4/5 \\ 4/5 \\ 1 \end{array} \right] \right\}.$$

Note: We could have let  $s = x_4/5$  be a free variable in which case a

generating set is given by the simpler 
$$\left\{ \begin{bmatrix} -3 \\ -4 \\ 4 \\ 5 \end{bmatrix} \right\}$$
.  $\square$ 

#### Theorem 1.15

#### Theorem 1.15. Unique Linear Combinations.

The set  $\{\vec{w_1}, \vec{w_2}, \dots, \vec{w_k}\}$  is a basis for  $W = sp(\vec{w_1}, \vec{w_2}, \dots, \vec{w_k})$  if and only if

$$r_1 \vec{w_1} + r_2 \vec{w_2} + \cdots + r_k \vec{w_k} = \vec{0}$$

implies

$$r_1=r_2=\cdots=r_k=0.$$

**Proof.** Suppose  $\{\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_k\}$  is a basis for  $W=\operatorname{sp}(\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_k)$ . Then by Definition 1.17, "Basis for a Subspace," every vector in W can be expressed uniquely as a linear combination of the  $\vec{w}_i$ . In particular,  $r_1\vec{w}_1+r_2\vec{w}_2+\cdots+r_k\vec{w}_k=\vec{0}$  is satisfied for  $r_1=r_2=\cdots=r_k=0$  and the uniqueness condition implies that we must have  $r_1=r_2=\cdots=r_k=0$ .

Linear Algebra

# Page 100 Number 22(a)

**Page 100 Number 22(a).** Use Theorem 1.15 to determine whether the set  $\{[-1,1],[1,2]\}$  is a basis for the subspace of  $\mathbb{R}^2$  that it spans.

**Solution.** Based on Theorem 1.15, we consider scalars  $r_1, r_2 \in \mathbb{R}$  such that  $r_1[-1,1] + r_2[1,2] = [0,0]$ . This implies  $[-r_1,r_1] + [r_2,2r_2] = [0,0]$  or  $[-r_1 + r_2, r_1 + 2r_2] = [0,0]$ . So we need

$$-r_1 + r_2 = 0 (1)$$

$$r_1 + 2r_2 = 0. (2)$$

From (1) we see that  $r_1 = r_2$  and so from (2) we need  $r_1 + 2(r_1) = 0$  or  $3r_1 = 0$  or  $r_1 = 0$ . Since  $r_1 = r_2$  we also need  $r_2 = 0$ . Hence we must have  $r_1 = r_2 = 0$  and so  $\{[-1,1],[1,2]\}$  is a basis for its span by Theorem 1.15.  $\square$ 

#### Theorem 1.15 Unique Linear Combinations

# Theorem 1.15 (continued)

#### Theorem 1.15. Unique Linear Combinations.

The set  $\{\vec{w_1}, \vec{w_2}, \dots, \vec{w_k}\}$  is a basis for  $W = sp(\vec{w_1}, \vec{w_2}, \dots, \vec{w_k})$  if and only if

$$r_1 \vec{w_1} + r_2 \vec{w_2} + \cdots + r_k \vec{w_k} = \vec{0}$$

implies

$$r_1=r_2=\cdots=r_k=0.$$

**Proof (continued).** Now suppose that  $r_1\vec{w}_1+r_2\vec{w}_2+\cdots+r_k\vec{w}_k=\vec{0}$  implies that  $r_1=r_2=\cdots=r_k=0$ . Let  $\vec{w}\in W$  and suppose  $\vec{w}=c_1\vec{w}_1+c_2\vec{w}_2+\cdots+c_k\vec{w}_k=d_1\vec{w}_1+d_2\vec{w}_2+\cdots+d_k\vec{w}_k$ . Then  $\vec{0}=\vec{w}-\vec{w}=(c_1-d_1)\vec{w}_1+(c_2-d_2)\vec{w}_2+\cdots+(c_k-d_k)\vec{w}_k$  (by S1 and S2). By hypothesis for this case, we must have  $c_1-d_1=c_2-d_2=\cdots=c_k-d_k=0$ . That is, we must have  $c_1=d_1$ ,  $c_2=d_2,\ldots,c_k=d_k$ . Hence every vector of W is a unique linear combination of the  $\vec{w}_i$ , as claimed.

Linear Algebra

#### Page 100 Number 22(b

# Page 100 Number 22(b)

**Page 100 Number 22(b).** Use Theorem 1.16 to determine whether the set  $\{[-1,1],[1,2]\}$  is a basis for the subspace of  $\mathbb{R}^2$  that it spans.

**Solution.** We define matrix A which has as its *columns* the vectors in the set:  $A = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$ . By Theorem 1.16, we see that the columns of A form a basis for  $\mathbb{R}^2$  if and only if A is row equivalent to  $\mathcal{I}$ . So we row reduce A:

$$A = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \to R_2/3 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 - 2R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathcal{I}.$$

So  $A \sim \mathcal{I}$  and hence the columns of A form a basis for  $\mathbb{R}^2$ ; that is, the set  $\{[-1,1],[1,2]\}$  is a basis for the subspace of  $\mathbb{R}^2$  that it spans. (Since there are two vectors, their span is all of  $\mathbb{R}^2$ .)  $\square$ 

May 19, 2020

May 19, 2020

11 / 22

## Theorem 1.18

of A).

**Example.** Page 97 Example 6. A basis of  $\mathbb{R}^n$  cannot contain more than n vectors.

**Proof.** Suppose  $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\}$  is a basis for  $\mathbb{R}^n$  and ASSUME k>n. Consider the system  $A\vec{x}=\vec{0}$  where the column vectors of A are  $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k$ . Then A has n rows and k columns (corresponding to n equations in k unknowns). With n< k, Corollary 2 implies there is a nontrivial solution to  $A\vec{x}=\vec{0}$ . But this corresponds to a linear combination of the columns of A which equals  $\vec{0}$  while not all the coefficients are 0. This CONTRADICTS Theorem 1.15 (since we then have two different linear combinations of  $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k$  which equal  $\vec{0}$ ). So the assumption that k>n is false. Therefore, k< n.

Linear Algebra

**Proof.** Let  $\vec{p}$  be a particular solution of  $A\vec{x} = \vec{b}$  (so that  $A\vec{p} = \vec{b}$ ). Let  $\vec{h}$  be a solution of the homogeneous system  $A\vec{x} = \vec{0}$  (so that  $A\vec{h} = \vec{0}$ ). Then

Let  $A\vec{x} = \vec{b}$  be a linear system. If  $\vec{p}$  is any particular solution of  $A\vec{x} = \vec{b}$ 

every solution of  $A\vec{x} = \vec{b}$  has the form  $\vec{p} + \vec{h}$  and the general solution is

and  $\vec{h}$  is a solution to  $A\vec{x} = \vec{0}$ , then  $\vec{p} + \vec{h}$  is a solution of  $A\vec{x} = \vec{b}$ . In fact,

 $\vec{x} = \vec{p} + \vec{h}$  where  $A\vec{h} = \vec{0}$  (that is,  $\vec{h}$  is an arbitrary element of the nullspace

Theorem 1.18. Structure of the Solution Set of  $A\vec{x} = \vec{b}$ .

$$A(\vec{p} + \vec{h}) = A\vec{p} + A\vec{h}$$
 by Theorem 1.2.A(10),  
Distribution of Matrix Multiplication  
 $= \vec{b} + \vec{0} = \vec{b}$ .

So  $\vec{p} + \vec{h}$  is a solution of  $A\vec{x} = \vec{b}$ .

# Theorem 1.18 (continued)

Theorem 1.18. Structure of the Solution Set of  $A\vec{x} = \vec{b}$ . Let  $A\vec{x} = \vec{b}$  be a linear system. If  $\vec{p}$  is any particular solution of  $A\vec{x} = \vec{b}$  and  $\vec{h}$  is a solution to  $A\vec{x} = \vec{0}$ , then  $\vec{p} + \vec{h}$  is a solution of  $A\vec{x} = \vec{b}$ . In fact, every solution of  $A\vec{x} = \vec{b}$  has the form  $\vec{p} + \vec{h}$  and the general solution is  $\vec{x} = \vec{p} + \vec{h}$  where  $A\vec{h} = \vec{0}$  (that is,  $\vec{h}$  is an arbitrary element of the nullspace of A).

**Proof (continued).** Now suppose  $\vec{q}$  is any solution to  $A\vec{x} = \vec{b}$ . With  $\vec{p}$  as a particular solution to  $A\vec{x} = \vec{b}$  we have

$$A(\vec{q} - \vec{p}) = A\vec{q} - A\vec{p}$$
 by Theorem 1.2.A(10),  
Distribution of Matrix Multiplication  
 $= \vec{b} - \vec{b} = \vec{0}$ .

So  $\vec{q} - \vec{p}$  is a solution of  $A\vec{x} = \vec{0}$ , say  $\vec{q} - \vec{p} = \vec{h}$ . So  $\vec{q} = \vec{p} + \vec{h}$  and every solution  $\vec{x}$  of  $A\vec{x} = \vec{b}$  is of the form  $\vec{p} + \vec{h}$  where  $\vec{p}$  is a particular solution of  $A\vec{x} + \vec{b}$  and  $\vec{h}$  is any solution of  $A\vec{x} = \vec{h}$ .

## Page 100 Number 36

Page 100 Number 36. Solve the linear system

and express the solution set in a form that illustrates Theorem 1.18.

**Solution.** We apply Gauss-Jordan elimination to the augmented matrix:

$$\begin{bmatrix} 1 & -2 & 1 & 1 & | & 4 \\ 2 & 1 & -3 & -1 & | & 6 \\ 1 & -7 & -6 & 2 & | & 6 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & -2 & 1 & 1 & | & 4 \\ R_3 \to R_3 - R_1 & 0 & 5 & -5 & -3 & | & -2 \\ 0 & -5 & -7 & 1 & | & 2 \end{bmatrix} \xrightarrow{R_3 \to R_3 + R_2}$$

$$\begin{bmatrix} 1 & -2 & 1 & 1 & | & 4 \\ 0 & 5 & -5 & -3 & | & -2 \\ 0 & 0 & -12 & -2 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2/5} \begin{bmatrix} 1 & -2 & 1 & 1 & | & 4 \\ 0 & 1 & -1 & -3/5 & | & -2/5 \\ 0 & 0 & 1 & 1/6 & | & 0 \end{bmatrix}$$

16 / 22

Linear Algebra

May 19, 2020 17

# 

This corresponds to the system of equations:

$$x_1$$
  $(1/30)x_4 = 16/5$   
 $x_2$   $(13/30)x_4 = -2/5$   
 $x_3$   $+$   $(1/6)x_4$   $=$  0

For a particular solution  $\vec{p}$  to the original system of equations we choose to set  $x_4 = 0$  so that... Linear Algebra

# Page 100 Number 36 (continued 3)

**Solution (continued).** This gives the solution to the homogeneous

homogeneous system of equations 
$$A\vec{x}=\vec{b}$$
 is  $\left\{r\begin{bmatrix}1\\13\\-5\\30\end{bmatrix}\middle|r\in\mathbb{R}\right\}$  (this is

the nullspace of A). Therefore, in the notation of Theorem 1.18, the general solutions to the original (nonhomogeneous) system of equations is

$$ec{x} = ec{p} + ec{h} ext{ where } ec{p} = \left[egin{array}{c} 16/5 \ -2/5 \ 0 \ 0 \end{array}
ight] ext{ and } ec{h} \in \left\{r \left[egin{array}{c} 1 \ 13 \ -5 \ 30 \end{array}
ight] \middle| r \in \mathbb{R}
ight\}.$$

# Page 100 Number 36 (continued 2)

**Solution (continued).** 
$$\dots \vec{p} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16/5 \\ -2/5 \\ 0 \\ 0 \end{bmatrix}$$
. With  $A$  as the

coefficient matrix, the homogeneous system  $A\vec{x} = \vec{0}$  reduces to a similar system of equations but with only 0's on the right hand side:

$$x_1$$
  $(1/30)x_4 = 0$  or  $x_1 = (1/30)x_4$   
 $x_2$   $(13/30)x_4 = 0$   $x_2 = (13/30)x_4$   
 $x_3$   $+$   $(1/6)x_4$   $=$  0  $x_3 = -(1/6)x_4$   
 $x_4 = x_4$ 

So  $x_4$  acts as a free variable in the associated homogeneous system of equations. To simplify the numbers, we set  $x_4 = 30r$  where  $r \in \mathbb{R}$  (since r is any element of  $\mathbb{R}$  then 30r is any element of  $\mathbb{R}$ , and conversely).

# Page 101 Number 43

Page 101 Number 43. Use Theorem 1.18 to prove why no system of linear equations can have exactly two solutions.

**Proof.** ASSUME to the contrary that linear system  $A\vec{x} = \vec{b}$  does have exactly two solutions, say  $\vec{p}_1$  and  $\vec{p}_2$  (where  $\vec{p}_1 \neq \vec{p}_2$ ). Then  $A(\vec{p}_1 - \vec{p}_2) = A\vec{p}_1 - A\vec{p}_2 = \vec{b} - \vec{b} = \vec{0}$  and so  $\vec{h} = \vec{p}_1 - \vec{p}_2 \neq 0$  is a solution to the homogeneous system  $A\vec{x} = \vec{0}$ . Now  $\vec{p}_1 + \vec{h} = \vec{p}_1 + (\vec{p}_1 - \vec{p}_2) = 2\vec{p}_1 - \vec{p}_2 \neq \vec{p}_1$  (since  $2\vec{p}_1 - \vec{p}_2 = \vec{p}_1$  implies  $\vec{p}_1 = \vec{p}_2$ , a contradiction) and  $\vec{p}_1 + \vec{h} = \vec{p}_1 + (\vec{p}_1 - \vec{p}_2) = 2\vec{p}_1 - \vec{p}_2 \neq \vec{p}_2$ (since  $2\vec{p}_1 - \vec{p}_2 = \vec{p}_2$  implies  $\vec{p}_1 = \vec{p}_2$ , a contradiction). So by Theorem 1.18,  $\vec{p}_1 + \vec{h}$  is a third solution to  $A\vec{x} = \vec{b}$ . This is a CONTRADICTION to the hypotheses. So the assumption that  $A\vec{x} = \vec{b}$  has exactly two solutions is false and the claim follows.

# Page 101 Number 47

**Page 101 Number 47.** Let  $W_1$  and  $W_2$  be two subspaces of  $\mathbb{R}^n$ . Prove that their intersection  $W_1 \cap W_2$  is also a subspace of  $\mathbb{R}^n$ .

**Proof.** We use Definition 1.16, "Closure and Subspace." Let  $\vec{u}, \vec{v} \in W_1 \cap W_2$ . Since  $W_1$  is a subspace then it is closed under vector addition (Definition 1.16) and so  $\vec{u} + \vec{v} \in W_1$ . Since  $W_2$  is a subspace then it is closed under vector addition (Definition 1.16) and so  $\vec{u} + \vec{v} \in W_2$ . Hence  $\vec{u} + \vec{v}$  is in both  $W_1$  and  $W_2$ ; that is,  $\vec{u} + \vec{v} \in W_1 \cap W_2$ . So  $W_1 \cap W_2$  is closed under vector addition.

Now let r be a scalar. Since  $W_1$  is a subspace then it is closed under scalar multiplication (Definition 1.16) and so  $r\vec{u} \in W_1$ . Since  $W_2$  is a subspace then it is closed under scalar multiplication (Definition 1.16) and so  $r\vec{u} \in W_2$ . Hence  $r\vec{u}$  is in both  $W_1$  and  $W_2$ ; that is,  $r\vec{u} \in W_1 \cap W_2$ . So  $W_1 \cap W_2$  is closed under scalar multiplication. By Definition 1.16,  $W_1 \cap W_2$  is a subspace of  $\mathbb{R}^n$ 

() Linear Algebra May 19, 2020 22 / 22