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Chapter 1. Vectors, Matrices, and Linear Systems
Section 1.7. Application to Population Distribution—Proofs of Theorems
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Page 113 Number 34

Page 113 Number 34

Page 113 Number 34. Explain why the transition matrix for the genetic
model described in the notes above is

T =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

 .

Solution. An individual in state 1 (GG ) will always contribute a G gene
and the hybrid state (Gg) will contribute a G gene 1/2 of the time and a
g gene 1/2 of the time. So a GG individual produces a GG offspring with
probability (1)(1/2) = 1/2 = t11; a GG individual produces a Gg offspring
with probability (1)(1/2) = 1/2 = t21, and a GG individual cannot
produce a gg offspring offspring and so t31 = 0.

Similarly, a gg individual cannot produce a GG offspring (t13 = 0),
produces a Gg offspring with probability (1/2)(1) = 1/2 = t23 and
produces a gg offspring with probability (1)(1/2) = 1/2 = t33.

() Linear Algebra March 24, 2018 3 / 13



Page 113 Number 34

Page 113 Number 34

Page 113 Number 34. Explain why the transition matrix for the genetic
model described in the notes above is

T =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

 .

Solution. An individual in state 1 (GG ) will always contribute a G gene
and the hybrid state (Gg) will contribute a G gene 1/2 of the time and a
g gene 1/2 of the time. So a GG individual produces a GG offspring with
probability (1)(1/2) = 1/2 = t11; a GG individual produces a Gg offspring
with probability (1)(1/2) = 1/2 = t21, and a GG individual cannot
produce a gg offspring offspring and so t31 = 0.

Similarly, a gg individual cannot produce a GG offspring (t13 = 0),
produces a Gg offspring with probability (1/2)(1) = 1/2 = t23 and
produces a gg offspring with probability (1)(1/2) = 1/2 = t33.

() Linear Algebra March 24, 2018 3 / 13



Page 113 Number 34

Page 113 Number 34

Page 113 Number 34. Explain why the transition matrix for the genetic
model described in the notes above is

T =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

 .

Solution. An individual in state 1 (GG ) will always contribute a G gene
and the hybrid state (Gg) will contribute a G gene 1/2 of the time and a
g gene 1/2 of the time. So a GG individual produces a GG offspring with
probability (1)(1/2) = 1/2 = t11; a GG individual produces a Gg offspring
with probability (1)(1/2) = 1/2 = t21, and a GG individual cannot
produce a gg offspring offspring and so t31 = 0.

Similarly, a gg individual cannot produce a GG offspring (t13 = 0),
produces a Gg offspring with probability (1/2)(1) = 1/2 = t23 and
produces a gg offspring with probability (1)(1/2) = 1/2 = t33.

() Linear Algebra March 24, 2018 3 / 13



Page 113 Number 34

Page 113 Number 34 (continued)

Page 113 Number 34. Explain why the transition matrix for the genetic
model described in the notes above is

T =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

 .

Solution (continued). Two Gg individuals produce a GG offspring when
both contribute a G gene which happens with probability
(1/2)(1/2) = 1/4 = t12 and two Gg individuals produce a gg offspring
when both contribute a g gene which happens with probability
(1/2)(1/2) = 1/4 = t32. A Gg individual can produce a Gg offspring in
two ways: by contributing a G gene while the other parent contributes a g
gene and vise versa. So t22 = (1/2)(1/2) + (1/2)(1/2) = 1/2. Hence, the
transition matrix is as claimed. �
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Page 113 Number 35

Page 113 Number 35

Page 113 Number 35. What proportion of the third-generation offspring
(after two time periods) of the homozygous recessive gg population has
produced homozygous dominant GG “grandchildren”?

Solution. We square the transition matrix to reflect two generations and
consider the (1, 3) entry:

T 2 =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

2

=

 3/8 1/4 1/8
1/2 1/2 1/2
1/8 1/4 3/8

 ,

so the answer is 1/8. �
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Page 113 Number 36

Page 113 Number 36

Page 113 Number 36. What population of the third generation offspring
(after two time periods) of the heterozygote population Gg has produced
nonheterozygous “grandchildren”?

Solution. We consider T 2 given in Number 35 again,

T =

 3/8 1/4 1/8
1/2 1/2 1/2
1/8 1/4 3/8

 .

We have the (1, 2) entry of T 2 as the proportion of the heterozygote’s
grandchildren which are GG , and the (3, 2) entry of T 2 as the proportion
of the heterozygote’s grandchildren which are gg . So the proportion of

nonheterozygous grandchildren is 1/4 + 1/4 = 1/2. �
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Page 114 Number 37

Page 114 Number 37

Page 114 Number 37. If initially the entire population is hybrid, find the
population distribution vector in the next generation.

Solution. We have initially ~p = [0, 1, 0]T and in the next generation the
population distribution vector is

T~p =

 1/2 1/4 0
1/2 1/2 1/2
0 1/4 1/2

 0
1
0

 =

 1/4
1/2
1/4

.

�
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Page 114 Number 38

Page 114 Number 38

Page 114 Number 38. If initially the population is evenly divided among
the three states, find the population distribution vector in the third
generation (after two time periods)?

Solution. We have initially ~p = [1/3, 1/3, 1/3]T and after two time
periods the population distribution vector is

T 2~p =

 3/8 1/4 1/8
1/2 1/2 1/2
1/8 1/4 3/8

 1/3
1/3
1/3

 =

 1/4
1/2
1/4

.

�
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Page 112 Number 24

Page 112 Number 24

Page 112 Number 24. Find the steady-state distribution vector ~s of the

regular transition matrix T =

 1/5 1/5 1/3
2/5 1/5 1/3
2/5 3/5 1/3

 for the resulting regular

Markov chain.

Solution. Since no entry of T is 0 then T is a regular transition matrix.

So, by Note 1.7.A, we consider the system of equations (T − I)~s = ~0,
which has the augmented matrix −4/5 1/5 1/3 0

2/5 −4/5 1/3 0
2/5 3/5 −2/3 0

 R1 → 15R1
R2 → 15R2

˜R3 → 15R3

 −12 3 5 0
6 −12 5 0
6 9 −10 0


R1↔R3

˜

 6 9 −10 0
6 −12 5 0

−12 3 5 0

 R2→R2−R1

˜R3 → R3 + 2R1

 6 9 −10 0
0 −21 15 0
0 21 −15 0



() Linear Algebra March 24, 2018 9 / 13



Page 112 Number 24

Page 112 Number 24

Page 112 Number 24. Find the steady-state distribution vector ~s of the

regular transition matrix T =

 1/5 1/5 1/3
2/5 1/5 1/3
2/5 3/5 1/3

 for the resulting regular

Markov chain.

Solution. Since no entry of T is 0 then T is a regular transition matrix.
So, by Note 1.7.A, we consider the system of equations (T − I)~s = ~0,
which has the augmented matrix

 −4/5 1/5 1/3 0
2/5 −4/5 1/3 0
2/5 3/5 −2/3 0

 R1 → 15R1
R2 → 15R2

˜R3 → 15R3

 −12 3 5 0
6 −12 5 0
6 9 −10 0


R1↔R3

˜

 6 9 −10 0
6 −12 5 0

−12 3 5 0

 R2→R2−R1

˜R3 → R3 + 2R1

 6 9 −10 0
0 −21 15 0
0 21 −15 0



() Linear Algebra March 24, 2018 9 / 13



Page 112 Number 24

Page 112 Number 24

Page 112 Number 24. Find the steady-state distribution vector ~s of the

regular transition matrix T =

 1/5 1/5 1/3
2/5 1/5 1/3
2/5 3/5 1/3

 for the resulting regular

Markov chain.

Solution. Since no entry of T is 0 then T is a regular transition matrix.
So, by Note 1.7.A, we consider the system of equations (T − I)~s = ~0,
which has the augmented matrix −4/5 1/5 1/3 0

2/5 −4/5 1/3 0
2/5 3/5 −2/3 0

 R1 → 15R1
R2 → 15R2

˜R3 → 15R3

 −12 3 5 0
6 −12 5 0
6 9 −10 0


R1↔R3

˜

 6 9 −10 0
6 −12 5 0

−12 3 5 0

 R2→R2−R1

˜R3 → R3 + 2R1

 6 9 −10 0
0 −21 15 0
0 21 −15 0


() Linear Algebra March 24, 2018 9 / 13



Page 112 Number 24

Page 112 Number 24

Page 112 Number 24. Find the steady-state distribution vector ~s of the

regular transition matrix T =

 1/5 1/5 1/3
2/5 1/5 1/3
2/5 3/5 1/3

 for the resulting regular

Markov chain.

Solution. Since no entry of T is 0 then T is a regular transition matrix.
So, by Note 1.7.A, we consider the system of equations (T − I)~s = ~0,
which has the augmented matrix −4/5 1/5 1/3 0

2/5 −4/5 1/3 0
2/5 3/5 −2/3 0

 R1 → 15R1
R2 → 15R2

˜R3 → 15R3

 −12 3 5 0
6 −12 5 0
6 9 −10 0


R1↔R3

˜

 6 9 −10 0
6 −12 5 0

−12 3 5 0

 R2→R2−R1

˜R3 → R3 + 2R1

 6 9 −10 0
0 −21 15 0
0 21 −15 0


() Linear Algebra March 24, 2018 9 / 13



Page 112 Number 24

Page 112 Number 24 (continued 1)

Solution (continued).

R3→R3+R2

˜

 6 9 −10 0
0 −21 15 0
0 0 0 0

 R2→R2/(−21)

˜

 6 9 −10 0
0 1 −5/7 0
0 0 0 0


R1→R1−9R2

˜

 6 0 −25/7 0
0 1 −5/7 0
0 0 0 0

 R1→R1/6

˜

 1 0 −25/42 0
0 1 −5/7 0
0 0 0 0

 .

So we need

x1 − (25/42)x3 = 0
x2 − (5/7)x3 = 0

0 = 0
or

x1 = (25/42)x3

x2 = (5/7)x3

x3 = x3

or, with t = (1/42)x3 as a free variable (so that x3 = 42t),
x1 = 25t
x2 = 30t
x3 = 42t

.
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Page 112 Number 24

Page 112 Number 24 (continued 2)

Page 112 Number 24. Find the steady-state distribution vector ~s of the

regular transition matrix T =

 1/5 1/5 1/3
2/5 1/5 1/3
2/5 3/5 1/3

 for the resulting regular

Markov chain.

Solution (continued). . . .
x1 = 25t
x2 = 30t
x3 = 42t

. Since t is any element of R but

we need for a population distribution vector that x1 + x2 + x3 = 1, we
must choose t = 1/(25 + 30 + 42) = 1/97. Then the steady state

distribution vector is ~s = [25/97, 30/97, 42/97]. �
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Page 114 Number 39

Page 114 Number 39

Page 114 Number 39. Find the steady-state distribution vector ~s for the
genetic model of Exercises 35–38.

Solution. By Example 1.7.A, we see that this model is a regular chain.
So, by Note 1.7.A, we consider the system of equations (T − I)~s = ~0
which has the augmented matrix

 −1/2 1/4 0 0
1/2 −1/2 1/2 0

0 1/4 −1/2 0

 R1 → −4R1
R2 → 2R2

˜R3 → 4R3

 2 −1 0 0
1 −1 1 0
0 1 −2 0


R1→R1−R2

˜

 1 0 −1 0
1 −1 1 0
0 1 −2 0

 R2→R2−R1

˜

 1 0 −1 0
0 −1 2 0
0 1 −2 0


R3→R3+R2

˜

 1 0 −1 0
0 −1 2 0
0 0 0 0

 R2→−R2

˜

 1 0 −1 0
0 1 −2 0
0 0 0 0

 .
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Page 114 Number 39

Page 114 Number 39 (continued)

Solution (continued). So we need
x1 − x3 = 0

x2 − 2x3 = 0
0 = 0

or

x1 = x3

x2 = 2x3

x3 = x3

or, with t = x3 as a free variable,
x1 = t
x2 = 2t
x3 = t

. Since t is

any element of R, but we need for a population distribution vector
x1 + x2 + x3 = 1, we must choose t = 1/4. Then the steady state

distribution vector is ~s = [1/4, 1/2, 1/4]. �

Note. If you are familiar with population genetics then you might
recognize this as an illustration of Hardy-Weinberg equilibrium. We set
gene frequencies at 1/2 for both G and g . So at equilibrium the proportion
of GG individuals in the population is (1/2)2 = 1/4, the proportion of Gg
individuals in the population is (1/2)(1/2) + (1/2)(1/2) = 1/2, and the
proportion of gg individuals in the population is (1/2)2 = 1/4.
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Page 114 Number 39 (continued)

Solution (continued). So we need
x1 − x3 = 0

x2 − 2x3 = 0
0 = 0

or

x1 = x3

x2 = 2x3

x3 = x3

or, with t = x3 as a free variable,
x1 = t
x2 = 2t
x3 = t

. Since t is

any element of R, but we need for a population distribution vector
x1 + x2 + x3 = 1, we must choose t = 1/4. Then the steady state

distribution vector is ~s = [1/4, 1/2, 1/4]. �

Note. If you are familiar with population genetics then you might
recognize this as an illustration of Hardy-Weinberg equilibrium. We set
gene frequencies at 1/2 for both G and g . So at equilibrium the proportion
of GG individuals in the population is (1/2)2 = 1/4, the proportion of Gg
individuals in the population is (1/2)(1/2) + (1/2)(1/2) = 1/2, and the
proportion of gg individuals in the population is (1/2)2 = 1/4.

() Linear Algebra March 24, 2018 13 / 13



Page 114 Number 39

Page 114 Number 39 (continued)
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