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Theorem 2.1. Alternative Characterization of Basis

Theorem 2.1

Theorem 2.1. Alternative Characterization of Basis
Let W be a subspace of Rn. A subset {~w1, ~w2, . . . , ~wk} of W is a basis for
W if and only if
(1) W = sp(~w1, ~w2, . . . , ~wk) and
(2) the vectors ~w1, ~w2, . . . , ~wk are linearly independent.

Proof. Recall that we defined {~w1, ~w2, . . . , ~wk} as a basis for W if every
vector in W can be expressed as a unique linear combination of
~w1, ~w2, . . . , ~wk (see Definition 1.17).

Let {~w1, ~w2, . . . , ~wk} be a basis for W . Then every vector in W is a
(unique) linear combination of ~w1, ~w2, . . . , ~wk and so these vectors span
W and (1) holds. To show linear independence, we consider the equation
r1~w1 + r2~w2rk ~wk = ~0. We know that r1 = r2 = · · · = rk = 0 is one possible
choice for the ri , but since {~w1, ~w2, . . . , ~wk} is a basis for W then this is
the only choice for the ri since ~0 is a unique linear combination of the ~wi .
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Theorem 2.1. Alternative Characterization of Basis

Theorem 2.1 (continued)

Proof (continued). That is, r1~w1 + r2~w2rk ~wk = ~0 implies
r1 = r2 = · · · = rk = 0. So, by Definition 2.1, “Linear Dependence and
Independence,” the ~wi are not linearly dependent. That is, ~w1, ~w2, . . . , ~wk

are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed
as some linear combination of the ~wi since the ~wi span W by (1).

To
show uniqueness of the linear combinations, suppose ~v ∈ W and
~v = r1~w1 + r2~w2 + · · ·+ rk ~wk = s1~w1 + s2~w2 + · · ·+ sk ~wk . Then
(r1~w1 + r2~w2 + · · ·+ rk ~wk)− (s1~w1 + s2~w2 + · · ·+ sk ~wk) = ~0 and
(r1 − s1)~w1 + (r2 − s2)~w2 + · · ·+ (rk − sk)~wk = ~0. Since the ~wi are linearly
independent by (2), then r1 − s1 = r2 − s2 = · · · = rk − sk = 0 by Note
2.1.A and so r1 = s1, r2 = s2, . . . , rk = sk . That is, there is a unique
linear combination of the ~wi which equals ~v . Since ~v is an arbitrary vector
in W , then {~w1, ~w2, . . . , ~wk} is a basis for W .
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Page 134 Number 8

Page 134 Number 8

Page 134 Number 8. Use Theorem 2.1.A, “Finding a Basis for
W = sp(~w1, ~w2, . . . , ~wk),” to find a basis for W = sp([−3, 1], [9,−3]).

Solution. We create matrix A with vectors [−3, 1] and [9,−3] as columns:

A =

[
−3 9

1 −3

]
.

Now we row reduce A:

A =

[
−3 9

1 −3

] R1→R1/(−3)

˜
[

1 −3
1 −3

] R2→R2−R1

˜
[

1 −3
0 0

]
= H.

Since H is in row echelon form and has a pivot only in the first column,

then by Theorem 2.1.A, {[−3, 1]} is a basis of W . �
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Page 134 Number 10

Page 134 Number 10

Page 134 Number 10. Use Theorem 2.1.A, “Finding a Basis for
W = sp(~w1, ~w2, . . . , ~wk),” to find a basis for
W = sp([−2, 3, 1], [3,−1, 2], [1, 2, 3], [−1, 5, 4]) in R3.

Solution. We create matrix A with the vectors in the spanning set as

columns: A =

 −2 3 1 −1
3 −1 2 5
1 2 3 4

 .

Now we row reduce A:

A =

 −2 3 1 −1
3 −1 2 5
1 2 3 4

 R1↔R3

˜

 1 2 3 4
3 −1 2 5

−2 3 1 −1


R2→R2−3R1

˜R3 → R3 + 2R1

 1 2 3 4
0 −7 −7 −7
0 7 7 7

 R3→R3+R2

˜

 1 2 3 4
0 −7 −7 −7
0 0 0 0

 = H.
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Page 134 Number 10

Page 134 Number 10 (continued)

Page 134 Number 10. Use Theorem 2.1.A, “Finding a Basis for
W = sp(~w1, ~w2, . . . , ~wk),” to find a basis for
W = sp([−2, 3, 1], [3,−1, 2], [1, 2, 3], [−1, 5, 4]) in R3.

Solution (continued).

A ∼

 1 2 3 4
0 −7 −7 −7
0 0 0 0

 = H.

Since H is in row echelon form and has a pivot in each of the first two
columns then, by Theorem 2.1.A, a set consisting of the first two vectors,

~w1, ~w2 is a basis for W ; that is, {[−2, 3, 1], [3,−1, 2]} is a basis for W .

Notice that the third vector is a linear combination of these two,
1[−2, 3, 1] + 1[3,−1, 2] = [1, 2, 3], and the fourth vector is a linear
combination of these two, 2[−2, 3, 1] + 1[3,−1, 2] = [−1, 5, 4]. �
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Page 135 Number 22

Page 135 Number 22

Page 135 Number 22. Determine whether the set
{[1,−3, 2], [2,−5, 3], [4, 0, 1]} is linearly dependent or independent.

Solution. We use Theorem 2.1.A, “Finding a Basis for
W = sp(~w1, ~w2, . . . , ~wk),” and test to see if the set of vectors is a basis for
its span. Let W = sp([1,−3, 2], [2,−5, 3], [4, 0, 1]).

By Theorem 2.1, a
basis for a vector space W is a linearly independent spanning set. Of
course the set of vectors spans its span(!), so it is a basis of its span if and
only if the set is a linearly independent set of vectors. We create matrix A
with the vectors in the set as its columns and row reduce:

A =

 1 2 4
−3 −5 0

2 3 1

 R2→R2+3R1

˜R3 → R3 − 2R1

 1 2 4
0 1 12
0 −1 −7


. . .
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course the set of vectors spans its span(!), so it is a basis of its span if and
only if the set is a linearly independent set of vectors. We create matrix A
with the vectors in the set as its columns and row reduce:

A =

 1 2 4
−3 −5 0

2 3 1

 R2→R2+3R1

˜R3 → R3 − 2R1

 1 2 4
0 1 12
0 −1 −7


. . .
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Page 135 Number 22. Determine whether the set
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0 0 5

 = H.

Since H is in row echelon form and has a pivot in each column then by
Theorem 2.1.A the set of all three vectors in {[1,−3, 2], [2,−5, 3], [4, 0, 1]}
form a basis for W . Therefore the set of vectors is linearly independent.
�
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Theorem 2.2. Relative Sizes of Spanning and Independent Sets

Theorem 2.2

Theorem 2.2. Relative Sizes of Spanning and Independent Sets.
Let W be a subspace of Rn. Let ~w1, ~w2, . . . , ~wk be vectors in W that span
W and let ~v1, ~v2, . . . , ~vm be vectors in W that are independent. Then
k ≥ m.

Proof. We give a proof by contradiction. ASSUME k < m.

Since the
vectors ~w1, ~w2, . . . , ~wk span W and ~v1, ~v2, . . . , ~vm are in W then there are
scalars aij such that:

~v1 = a11~w1 + a21~w2+ · · · +ak1~wk

~v2 = a12~w1 + a22~w2+ · · · +ak2~wk
...

...
~vm = a1m~w1 + a2m~w2+ · · · +akm~wk

.
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Theorem 2.2. Relative Sizes of Spanning and Independent Sets

Theorem 2.2 (continued 1)

Proof (continued). We introduce coefficients x1, x2, . . . , xm of
~v1, ~v2, . . . , ~vm as follows:

x1~v1 = a11x1~w1 + a21x1~w2+ · · · +ak1x1~wk

x2~v2 = a12x2~w1 + a22x2~w2+ · · · +ak2x2~wk
...

...
xm~vm = a1mxm~w1 + a2mxm~w2+ · · · +akmxm~wk

.

Now summing these equation we get

x1~v1 + x2~v2 + · · ·+ xm~vm = (a11x1 + a12x2 + · · ·+ a1mxm)~w1

+(a21x1 + a22x2 + · · ·+ a2mxm)~w2 + · · ·+(ak1x1 + ak2x2 + · · ·+ akmxm)~wk .

Consider the system of equations (which results by requiring each
coefficient of the ~wi ’s to be 0): . . .
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Theorem 2.2. Relative Sizes of Spanning and Independent Sets

Theorem 2.2 (continued 2)

Proof (continued). . . .

a11x1 + a12x2 + · · ·+ a1mxm = 0
a21x1 + a22x2 + · · ·+ a2mxm = 0

...
ak1x1 + ak2x2 + · · ·+ akmxm = 0

.

But this is then a system of k equations in m unknowns where k < m. By
Corollary 2, “Fewer Equations than Unknowns, The Homogeneous Case,”
to Theorem 1.17, this system of equations has a nontrivial solution (that
is, there are scalars x1, x2, . . . , xm where some xi is nonzero satisfying all m
equations).

But then we have x1~v1 + x2~v2 + · · ·+ xm~vm = ~0 where some xi

is nonzero. This implies by Definition 2.1, “Linear Dependence and
Independence,” that the vectors ~v1, ~v2, . . . , ~vm are linearly dependent,
CONTRADICTING the hypothesis that the ~vi are independent. So the
assumption that k < m is false and hence k ≥ m, as claimed.
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Corollary 2.1.A. Invariance of Dimension

Corollary 2.1.A

Corollary 2.1.A. Invariance of Dimension.
Any two bases of a subspace of Rn contains the same number of vectors.

Proof. Suppose that both B, a set of k vectors, and B ′, a set of m
vectors, are bases for W . Then both B and B ′ are linearly independent
spanning sets of W by Theorem 2.1, “Alternative Characterization of a
Basis.”

This means that B is a set of k vectors spanning W and B ′ is a
set of m linearly independent vectors in W . So by Theorem 2.2, “Relative
Sizes of Spanning and Independent Sets,” k ≥ m. But also B ′ is a set of
m vectors spanning W and B is a set of k linearly independent vectors in
W . So by Theorem 2.2, m ≥ k. Therefore k = m and the bases B and B ′

have the same number of vectors. Since B and B ′ are arbitrary bases of
W , the result follows.
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Theorem 2.3(1). Existence and Determination of Bases

Theorem 2.3(1)

Theorem 2.3. Existence and Determination of Bases.
(1) Every subspace W 6= {~0} of Rn has a basis and dim(W ) ≤ n.

Proof. Let W be a subspace of Rn where W 6= {~0}. Then there is some
~w1 ∈ W such that ~w1 6= ~0. Set B1 = {~w1}.

If W = sp(~w1) then stop,
otherwise there is ~w2 ∈ W such that ~w2 6∈ sp(~w1). Set B2 = {~w1, ~w2}.
Notice that ~w1 and ~w2 are linearly independent since r1~w1 + r2~w2 = ~0 for
r1 6= 0 implies ~w1 = (−r2/r1)~w2, contradicting the choice of ~w2 6∈ sp(~w1)
(and similarly if r2 6= 0). If W = sp(~w1, ~w2) then stop. Otherwise,
continue inductively so that if W 6= sp(~w1, ~w2, . . . , ~wi ) where
~w1, ~w2, . . . , ~wi are linearly independent, then there is ~wi+1 ∈ W such that
~wi+1 6∈ sp(~w1, ~w2, . . . , ~wi ). Set Bi+1 = {~w1, ~w2, . . . , ~wi , ~wi+1}. Then for

r1~w1 + r2~w2 + · · ·+ ri ~wi + ri+1~wi+1 = ~0,

if ri+1 6= 0 then ~wi+1 = (−r1/ri+1)~w1 +(−r2/ri+1)~w2 + · · ·+(−ri/ri+1)~wi ,
contradicting the choice of ~wi+1 6∈ sp(~w1, ~w2, . . . , ~wi ). So ri+1 = 0.
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Theorem 2.3(1). Existence and Determination of Bases

Theorem 2.3(1) (continued)

Theorem 2.3. Existence and Determination of Bases.
(1) Every subspace W 6= {~0} of Rn has a basis and dim(W ) ≤ n.

Proof (continued). But then r1~w1 + r2~w2 + · · ·+ ri ~wi = ~0 and so
r1 = r2 = · · · = ri = 0 since ~w1, ~w2, . . . , ~wi are linearly independent. So
r1 = r2 = · · · = ri+1 and by Definition 2.1, “Linear Dependence and
Independence,” ~w1, ~w2, . . . , ~wi , ~wi+1 are linearly independent.

Now this process of creating linearly independent sets Bi consisting of i
vectors must stop at some step k ≤ n by Theorem 2.2, “Relative Sizes of
Spanning and Independent Sets.” Then Bk is a linearly independent
spanning set for W and so Bk is a basis for W by Theorem 2.1,
“Alternative Characterization of Basis.”
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Page 136 Number 34

Page 136 Number 34

Page 136 Number 34. Let ~v and ~w be independent column vectors in
Rn and let A be an invertible n × n matrix where n > 1. Prove that the
vectors A~v and A~w are independent.

Solution. We use Definition 2.1, “Linear Dependence and Independence,”
to test the set {A~v ,A~w} for linear independence. Suppose
r1A~v + r2A~w = ~0 for some r1, r2 ∈ R.

By Theorem 1.3.A, “Properties of
Matrix Algebra,” we have

~0 = r1A~v + r2A~w

= A(r1~v) + A(r2~w) by Theorem 1.3.A(7)

= A(r1~v + r2~w) by Theorem 1.3.A(10).
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Page 136 Number 34. Let ~v and ~w be independent column vectors in
Rn and let A be an invertible n × n matrix where n > 1. Prove that the
vectors A~v and A~w are independent.

Solution (continued). Since A is invertible, then we can multiply both
sides of this equation by A−1 to get

A−1(~0) = A−1(A(r1~v + r2~w))

= (A−1A)(r1~v + r2~w)) by Theorem 1.3.A(8)

= I(r1~v + r2~w) = r1~v + r2~w .

Therefore ~0 = r1~v + r2~w .

Since ~v and ~w are independent then by
Definition 2.1 we must have r1 = r2 = 0. That is, r1A~v + r2A~w = ~0
implies r1 = r2 = 0. So, again by Definition 2.1,
A~v and A~w are independent.
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Page 136 Number 38. Prove that if W is a subspace of Rn and
dim(W ) = n then W = Rn.

Solution. Of course dim(Rn) = n since the standard basis for Rn (see
Section 1.1) has n vectors. If W is a subspace of Rn of dimension n then
by Definition 2.2, “Dimension of a Subspace,” the number of elements in
a basis B of W is n.

By Theorem 2.1(2), “Alternative Characterization of
a Basis,” B is a linearly independent set. So B is a linearly independent
set of n vectors and by Theorem 2.3(2), “Existence and Determination of
Bases,” B can be enlarged to become a basis for Rn. However, a basis of
Rn contains n vectors and so no additional vectors can be added to B in
the creation of such a basis. So B must already be a basis of Rn and
hence W = Rn.
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