Linear Algebra

Chapter 2. Dimension, Rank, and Linear Transformations Section 2.1. Independence and Dimension—Proofs of Theorems

Table of contents

- Theorem 2.1. Alternative Characterization of Basis
- 2 Page 134 Number 8
- 3 Page 134 Number 10
- Page 135 Number 22
- 5 Theorem 2.2. Relative Sizes of Spanning and Independent Sets
- 6 Corollary 2.1.A. Invariance of Dimension
- **7** Theorem 2.3(1). Existence and Determination of Bases
- Page 136 Number 34
- Page 136 Number 38

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n . A subset $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ of W is a basis for W if and only if

- (1) $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$ and
- (2) the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent.

Proof. Recall that we defined $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ as a basis for W if every vector in W can be expressed as a unique linear combination of $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ (see Definition 1.17).

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n . A subset $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ of W is a basis for W if and only if

- (1) $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$ and
- (2) the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent.

Proof. Recall that we defined $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ as a basis for W if every vector in W can be expressed as a unique linear combination of $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ (see Definition 1.17).

Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ be a basis for W. Then every vector in W is a (unique) linear combination of $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ and so these vectors span W and (1) holds.

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n . A subset $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ of W is a basis for W if and only if

- (1) $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$ and
- (2) the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent.

Proof. Recall that we defined $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ as a basis for W if every vector in W can be expressed as a unique linear combination of $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ (see Definition 1.17).

Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ be a basis for W. Then every vector in W is a (unique) linear combination of $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ and so these vectors span W and (1) holds. To show linear independence, we consider the equation $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$. We know that $r_1 = r_2 = \cdots = r_k = 0$ is one possible choice for the r_i , but since $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ is a basis for W then this is the only choice for the r_i since $\vec{0}$ is a unique linear combination of the \vec{w}_i .

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n . A subset $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ of W is a basis for W if and only if

- (1) $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$ and
- (2) the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent.

Proof. Recall that we defined $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ as a basis for W if every vector in W can be expressed as a unique linear combination of $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ (see Definition 1.17).

Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ be a basis for W. Then every vector in W is a (unique) linear combination of $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ and so these vectors span W and (1) holds. To show linear independence, we consider the equation $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$. We know that $r_1 = r_2 = \cdots = r_k = 0$ is one possible choice for the r_i , but since $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ is a basis for W then this is the only choice for the r_i since $\vec{0}$ is a unique linear combination of the \vec{w}_i .

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, "Linear Dependence and Independence," the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1).

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, "Linear Dependence and Independence," the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1). To show uniqueness of the linear combinations, suppose $\vec{v} \in W$ and $\vec{v} = r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k$. Then $(r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k) - (s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k) = \vec{0}$ and $(r_1 - s_1)\vec{w}_1 + (r_2 - s_2)\vec{w}_2 + \cdots + (r_k - s_k)\vec{w}_k = \vec{0}$.

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, "Linear Dependence and Independence," the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1). To show uniqueness of the linear combinations, suppose $\vec{v} \in W$ and $\vec{v} = r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k$. Then $(r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k) - (s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k) = \vec{0}$ and $(r_1 - s_1)\vec{w}_1 + (r_2 - s_2)\vec{w}_2 + \cdots + (r_k - s_k)\vec{w}_k = \vec{0}$. Since the \vec{w}_i are linearly independent by (2), then $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ by Note 2.1.A and so $r_1 = s_1$, $r_2 = s_2$, ..., $r_k = s_k$. That is, there is a unique linear combination of the \vec{w}_i which equals \vec{v} .

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, "Linear Dependence and Independence," the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1). To show uniqueness of the linear combinations, suppose $\vec{v} \in W$ and $\vec{v} = r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k$. Then $(r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k) - (s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k) = \vec{0}$ and $(r_1 - s_1)\vec{w}_1 + (r_2 - s_2)\vec{w}_2 + \cdots + (r_k - s_k)\vec{w}_k = \vec{0}$. Since the \vec{w}_i are linearly independent by (2), then $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ by Note 2.1.A and so $r_1 = s_1$, $r_2 = s_2$, ..., $r_k = s_k$. That is, there is a unique linear combination of the \vec{w}_i which equals \vec{v} . Since \vec{v} is an arbitrary vector in W, then $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ is a basis for W.

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, "Linear Dependence and Independence," the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1). To show uniqueness of the linear combinations, suppose $\vec{v} \in W$ and $\vec{v} = r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k$. Then $(r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k) - (s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k) = \vec{0}$ and $(r_1 - s_1)\vec{w}_1 + (r_2 - s_2)\vec{w}_2 + \cdots + (r_k - s_k)\vec{w}_k = \vec{0}$. Since the \vec{w}_i are linearly independent by (2), then $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ by Note 2.1.A and so $r_1 = s_1$, $r_2 = s_2$, ..., $r_k = s_k$. That is, there is a unique linear combination of the \vec{w}_i which equals \vec{v} . Since \vec{v} is an arbitrary vector in W, then $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ is a basis for W.

Page 134 Number 8. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$," to find a basis for W = sp([-3, 1], [9, -3]).

Solution. We create matrix A with vectors [-3, 1] and [9, -3] as columns: $A = \begin{bmatrix} -3 & 9\\ 1 & -3 \end{bmatrix}.$

Page 134 Number 8. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$," to find a basis for W = sp([-3, 1], [9, -3]).

Solution. We create matrix *A* with vectors [-3, 1] and [9, -3] as columns: $A = \begin{bmatrix} -3 & 9\\ 1 & -3 \end{bmatrix}$. Now we row reduce *A*:

$$A = \begin{bmatrix} -3 & 9 \\ 1 & -3 \end{bmatrix} \overset{R_1 \to R_1/(-3)}{\longrightarrow} \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \overset{R_2 \to R_2 - R_1}{\longrightarrow} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} = H.$$

Page 134 Number 8. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$," to find a basis for W = sp([-3, 1], [9, -3]).

Solution. We create matrix A with vectors [-3, 1] and [9, -3] as columns: $A = \begin{bmatrix} -3 & 9\\ 1 & -3 \end{bmatrix}$. Now we row reduce A:

$$A = \begin{bmatrix} -3 & 9 \\ 1 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-3)} \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} = H.$$

Since *H* is in row echelon form and has a pivot only in the first column, then by Theorem 2.1.A, $\{[-3,1]\}$ is a basis of *W*.

Page 134 Number 8. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$," to find a basis for W = sp([-3, 1], [9, -3]).

Solution. We create matrix A with vectors [-3, 1] and [9, -3] as columns: $A = \begin{bmatrix} -3 & 9\\ 1 & -3 \end{bmatrix}$. Now we row reduce A:

$$A = \begin{bmatrix} -3 & 9 \\ 1 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-3)} \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} = H.$$

Since *H* is in row echelon form and has a pivot only in the first column, then by Theorem 2.1.A, [[-3,1]] is a basis of *W*.

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution. We create matrix A with the vectors in the spanning set as columns: $A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.

Linear Algebra

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution. We create matrix A with the vectors in the spanning set as columns: $A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix}$. Now we row reduce A: $A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & 2 & 5 \\ -2 & 3 & 1 & -1 \end{bmatrix}$

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution. We create matrix A with the vectors in the spanning set as columns: $A = \begin{vmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{vmatrix}$. Now we row reduce A: $A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & 2 & 5 \\ 2 & 2 & 1 & 1 \end{bmatrix}$ $\begin{array}{c|cccc} R_2 \to R_2 - 3R_1 \\ R_3 \to R_3 + 2R_1 \end{array} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -7 & -7 & -7 \\ 0 & 7 & 7 & 7 \end{array} \end{bmatrix} \begin{array}{c|cccccc} R_3 \to R_3 + R_2 \\ \hline 0 & -7 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{array} \end{bmatrix} = H.$

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution. We create matrix A with the vectors in the spanning set as columns: $A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix}$. Now we row reduce A: $A = \left| \begin{array}{cccc} -2 & 5 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{array} \right| \left| \begin{array}{cccc} R_1 \leftrightarrow R_3 \\ 3 & -1 & 2 & 5 \\ 2 & 3 & 1 & 1 \end{array} \right|$

Page 134 Number 10 (continued)

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution (continued).

$$A \sim \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 0 & -7 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{array} \right] = H.$$

Since *H* is in row echelon form and has a pivot in each of the first two columns then, by Theorem 2.1.A, a set consisting of the first two vectors, \vec{w}_1, \vec{w}_2 is a basis for *W*; that is, $\{[-2,3,1], [3,-1,2]\}$ is a basis for *W*.

Page 134 Number 10 (continued)

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution (continued).

$$A \sim \left[egin{array}{ccccc} 1 & 2 & 3 & 4 \\ 0 & -7 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{array}
ight] = H.$$

Since *H* is in row echelon form and has a pivot in each of the first two columns then, by Theorem 2.1.A, a set consisting of the first two vectors, \vec{w}_1, \vec{w}_2 is a basis for *W*; that is, $\{[-2,3,1], [3,-1,2]\}$ is a basis for *W*. Notice that the third vector is a linear combination of these two, 1[-2,3,1] + 1[3,-1,2] = [1,2,3], and the fourth vector is a linear combination of these two, 2[-2,3,1] + 1[3,-1,2] = [-1,5,4].

Page 134 Number 10 (continued)

Page 134 Number 10. Use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," to find a basis for W = sp([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) in \mathbb{R}^3 .

Solution (continued).

$$A \sim \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 0 & -7 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{array} \right] = H.$$

Since *H* is in row echelon form and has a pivot in each of the first two columns then, by Theorem 2.1.A, a set consisting of the first two vectors, \vec{w}_1, \vec{w}_2 is a basis for *W*; that is, $[\{-2, 3, 1], [3, -1, 2]\}$ is a basis for *W*. Notice that the third vector is a linear combination of these two, 1[-2, 3, 1] + 1[3, -1, 2] = [1, 2, 3], and the fourth vector is a linear combination of these two, 2[-2, 3, 1] + 1[3, -1, 2] = [-1, 5, 4].

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution. We use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," and test to see if the set of vectors is a basis for its span. Let W = sp([1, -3, 2], [2, -5, 3], [4, 0, 1]).

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution. We use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," and test to see if the set of vectors is a basis for its span. Let W = sp([1, -3, 2], [2, -5, 3], [4, 0, 1]). By Theorem 2.1, a basis for a vector space W is a linearly independent spanning set. Of course the set of vectors spans its span(!), so it is a basis of its span if and only if the set is a linearly independent set of vectors.

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution. We use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," and test to see if the set of vectors is a basis for its span. Let W = sp([1, -3, 2], [2, -5, 3], [4, 0, 1]). By Theorem 2.1, a basis for a vector space W is a linearly independent spanning set. Of course the set of vectors spans its span(!), so it is a basis of its span if and only if the set is a linearly independent set of vectors. We create matrix A with the vectors in the set as its columns and row reduce:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -3 & -5 & 0 \\ 2 & 3 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 + 3R_1}_{R_3 \to R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & -1 & -7 \end{bmatrix}$$

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution. We use Theorem 2.1.A, "Finding a Basis for $W = sp(\vec{w}_1, \vec{w}_2, ..., \vec{w}_k)$," and test to see if the set of vectors is a basis for its span. Let W = sp([1, -3, 2], [2, -5, 3], [4, 0, 1]). By Theorem 2.1, a basis for a vector space W is a linearly independent spanning set. Of course the set of vectors spans its span(!), so it is a basis of its span if and only if the set is a linearly independent set of vectors. We create matrix A with the vectors in the set as its columns and row reduce:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -3 & -5 & 0 \\ 2 & 3 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 + 3R_1}_{R_3 \to R_3 - 2R_1} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & -1 & -7 \end{bmatrix}$$

Page 135 Number 22 (continued)

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution (continued). ...

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & -1 & -7 \end{bmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & 0 & 5 \end{bmatrix} = H.$$

Since *H* is in row echelon form and has a pivot in each column then by Theorem 2.1.A the set of all three vectors in $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ form a basis for *W*. Therefore the set of vectors is linearly independent.

Page 135 Number 22 (continued)

Page 135 Number 22. Determine whether the set $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ is linearly dependent or independent.

Solution (continued). ...

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & -1 & -7 \end{bmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & 0 & 5 \end{bmatrix} = H.$$

Since *H* is in row echelon form and has a pivot in each column then by Theorem 2.1.A the set of all three vectors in $\{[1, -3, 2], [2, -5, 3], [4, 0, 1]\}$ form a basis for *W*. Therefore the set of vectors is linearly independent.

Theorem 2.2. Relative Sizes of Spanning and Independent Sets. Let W be a subspace of \mathbb{R}^n . Let $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k}$ be vectors in W that span W and let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$ be vectors in W that are independent. Then $k \ge m$.

Proof. We give a proof by contradiction. ASSUME k < m.

Theorem 2.2. Relative Sizes of Spanning and Independent Sets. Let W be a subspace of \mathbb{R}^n . Let $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k}$ be vectors in W that span W and let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$ be vectors in W that are independent. Then $k \ge m$.

Proof. We give a proof by contradiction. ASSUME k < m. Since the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ span W and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are in W then there are scalars a_{ij} such that:

$$\vec{v}_{1} = a_{11}\vec{w}_{1} + a_{21}\vec{w}_{2} + \cdots + a_{k1}\vec{w}_{k}$$

$$\vec{v}_{2} = a_{12}\vec{w}_{1} + a_{22}\vec{w}_{2} + \cdots + a_{k2}\vec{w}_{k}$$

$$\vdots \qquad \vdots$$

$$\vec{v}_{m} = a_{1m}\vec{w}_{1} + a_{2m}\vec{w}_{2} + \cdots + a_{km}\vec{w}_{k}$$

Theorem 2.2. Relative Sizes of Spanning and Independent Sets. Let W be a subspace of \mathbb{R}^n . Let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ be vectors in W that span W and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be vectors in W that are independent. Then $k \ge m$.

Proof. We give a proof by contradiction. ASSUME k < m. Since the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ span W and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are in W then there are scalars a_{ij} such that:

$$\vec{v}_{1} = a_{11}\vec{w}_{1} + a_{21}\vec{w}_{2} + \cdots + a_{k1}\vec{w}_{k}$$

$$\vec{v}_{2} = a_{12}\vec{w}_{1} + a_{22}\vec{w}_{2} + \cdots + a_{k2}\vec{w}_{k}$$

$$\vdots \qquad \vdots$$

$$\vec{v}_{m} = a_{1m}\vec{w}_{1} + a_{2m}\vec{w}_{2} + \cdots + a_{km}\vec{w}_{k}$$

٠

Proof (continued). We introduce coefficients x_1, x_2, \ldots, x_m of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ as follows:

$$\begin{array}{rcl} x_{1}\vec{v}_{1} &=& a_{11}x_{1}\vec{w}_{1} + a_{21}x_{1}\vec{w}_{2} + & \cdots & + a_{k1}x_{1}\vec{w}_{k} \\ x_{2}\vec{v}_{2} &=& a_{12}x_{2}\vec{w}_{1} + a_{22}x_{2}\vec{w}_{2} + & \cdots & + a_{k2}x_{2}\vec{w}_{k} \\ &\vdots & & \vdots & & \vdots \\ x_{m}\vec{v}_{m} &=& a_{1m}x_{m}\vec{w}_{1} + a_{2m}x_{m}\vec{w}_{2} + & \cdots & + a_{km}x_{m}\vec{w}_{k} \end{array}$$

Now summing these equation we get

 $x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_m\vec{v}_m = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m)\vec{w}_1$

 $+(a_{21}x_1+a_{22}x_2+\cdots+a_{2m}x_m)\vec{w}_2+\cdots+(a_{k1}x_1+a_{k2}x_2+\cdots+a_{km}x_m)\vec{w}_k.$

Consider the system of equations (which results by requiring each coefficient of the \vec{w}_i 's to be 0): ...

Proof (continued). We introduce coefficients x_1, x_2, \ldots, x_m of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ as follows:

$$\begin{array}{rcl} x_{1}\vec{v}_{1} &=& a_{11}x_{1}\vec{w}_{1} + a_{21}x_{1}\vec{w}_{2} + & \cdots & + a_{k1}x_{1}\vec{w}_{k} \\ x_{2}\vec{v}_{2} &=& a_{12}x_{2}\vec{w}_{1} + a_{22}x_{2}\vec{w}_{2} + & \cdots & + a_{k2}x_{2}\vec{w}_{k} \\ & \vdots & & \vdots \\ x_{m}\vec{v}_{m} &=& a_{1m}x_{m}\vec{w}_{1} + a_{2m}x_{m}\vec{w}_{2} + & \cdots & + a_{km}x_{m}\vec{w}_{k} \end{array}$$

Now summing these equation we get

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_m\vec{v}_m = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m)\vec{w}_1$$

$$+(a_{21}x_1+a_{22}x_2+\cdots+a_{2m}x_m)\vec{w}_2+\cdots+(a_{k1}x_1+a_{k2}x_2+\cdots+a_{km}x_m)\vec{w}_k.$$

Consider the system of equations (which results by requiring each coefficient of the \vec{w}_i 's to be 0): ...

()

Theorem 2.2. Relative Sizes of Spanning and Independent Sets

Theorem 2.2 (continued 2)

Proof (continued). ...

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0$ \vdots $a_{k1}x_1 + a_{k2}x_2 + \dots + a_{km}x_m = 0$

But this is then a system of k equations in m unknowns where k < m. By Corollary 2, "Fewer Equations than Unknowns, The Homogeneous Case," to Theorem 1.17, this system of equations has a nontrivial solution (that is, there are scalars x_1, x_2, \ldots, x_m where some x_i is nonzero satisfying all mequations).

Proof (continued). ...

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0$$

$$\vdots$$

$$a_{k1}x_1 + a_{k2}x_2 + \dots + a_{km}x_m = 0$$

But this is then a system of k equations in m unknowns where k < m. By Corollary 2, "Fewer Equations than Unknowns, The Homogeneous Case," to Theorem 1.17, this system of equations has a nontrivial solution (that is, there are scalars x_1, x_2, \ldots, x_m where some x_i is nonzero satisfying all m equations). But then we have $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_m\vec{v}_m = \vec{0}$ where some x_i is nonzero. This implies by Definition 2.1, "Linear Dependence and Independence," that the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are linearly dependent, CONTRADICTING the hypothesis that the \vec{v}_i are independent.

Proof (continued). ...

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0$$

$$\vdots$$

$$a_{k1}x_1 + a_{k2}x_2 + \dots + a_{km}x_m = 0$$

But this is then a system of k equations in m unknowns where k < m. By Corollary 2, "Fewer Equations than Unknowns, The Homogeneous Case," to Theorem 1.17, this system of equations has a nontrivial solution (that is, there are scalars x_1, x_2, \ldots, x_m where some x_i is nonzero satisfying all mequations). But then we have $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_m\vec{v}_m = \vec{0}$ where some x_i is nonzero. This implies by Definition 2.1, "Linear Dependence and Independence," that the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are linearly dependent, CONTRADICTING the hypothesis that the \vec{v}_i are independent. So the assumption that k < m is false and hence $k \ge m$, as claimed.

Proof (continued). ...

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = 0$$

$$\vdots$$

$$a_{k1}x_1 + a_{k2}x_2 + \dots + a_{km}x_m = 0$$

But this is then a system of k equations in m unknowns where k < m. By Corollary 2, "Fewer Equations than Unknowns, The Homogeneous Case," to Theorem 1.17, this system of equations has a nontrivial solution (that is, there are scalars x_1, x_2, \ldots, x_m where some x_i is nonzero satisfying all mequations). But then we have $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_m\vec{v}_m = \vec{0}$ where some x_i is nonzero. This implies by Definition 2.1, "Linear Dependence and Independence," that the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are linearly dependent, CONTRADICTING the hypothesis that the \vec{v}_i are independent. So the assumption that k < m is false and hence $k \ge m$, as claimed.

Corollary 2.1.A. Invariance of Dimension. Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Proof. Suppose that both *B*, a set of *k* vectors, and *B'*, a set of *m* vectors, are bases for *W*. Then both *B* and *B'* are linearly independent spanning sets of *W* by Theorem 2.1, "Alternative Characterization of a Basis."

Corollary 2.1.A. Invariance of Dimension.

Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Proof. Suppose that both *B*, a set of *k* vectors, and *B'*, a set of *m* vectors, are bases for *W*. Then both *B* and *B'* are linearly independent spanning sets of *W* by Theorem 2.1, "Alternative Characterization of a Basis." This means that *B* is a set of *k* vectors spanning *W* and *B'* is a set of *m* linearly independent vectors in *W*. So by Theorem 2.2, "Relative Sizes of Spanning and Independent Sets," $k \ge m$.

Corollary 2.1.A. Invariance of Dimension.

Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Proof. Suppose that both *B*, a set of *k* vectors, and *B'*, a set of *m* vectors, are bases for *W*. Then both *B* and *B'* are linearly independent spanning sets of *W* by Theorem 2.1, "Alternative Characterization of a Basis." This means that *B* is a set of *k* vectors spanning *W* and *B'* is a set of *m* linearly independent vectors in *W*. So by Theorem 2.2, "Relative Sizes of Spanning and Independent Sets," $k \ge m$. But also *B'* is a set of *m* vectors spanning *W* and *B* is a set of *k* linearly independent vectors in *W*. So by Theorem 2.2, *m* $\ge k$. Therefore k = m and the bases *B* and *B'* have the same number of vectors. Since *B* and *B'* are arbitrary bases of *W*, the result follows.

Corollary 2.1.A. Invariance of Dimension.

Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Proof. Suppose that both *B*, a set of *k* vectors, and *B'*, a set of *m* vectors, are bases for *W*. Then both *B* and *B'* are linearly independent spanning sets of *W* by Theorem 2.1, "Alternative Characterization of a Basis." This means that *B* is a set of *k* vectors spanning *W* and *B'* is a set of *m* linearly independent vectors in *W*. So by Theorem 2.2, "Relative Sizes of Spanning and Independent Sets," $k \ge m$. But also *B'* is a set of *m* vectors spanning *W* and *B* is a set of *k* linearly independent vectors in *W*. So by Theorem 2.2, *m* $\ge k$. Therefore k = m and the bases *B* and *B'* have the same number of vectors. Since *B* and *B'* are arbitrary bases of *W*, the result follows.

Theorem 2.3. Existence and Determination of Bases. (1) Every subspace $W \neq {\vec{0}}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof. Let W be a subspace of \mathbb{R}^n where $W \neq \{\vec{0}\}$. Then there is some $\vec{w}_1 \in W$ such that $\vec{w}_1 \neq \vec{0}$. Set $B_1 = \{\vec{w}_1\}$.

Theorem 2.3. Existence and Determination of Bases. (1) Every subspace $W \neq {\vec{0}}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof. Let W be a subspace of \mathbb{R}^n where $W \neq \{\vec{0}\}$. Then there is some $\vec{w_1} \in W$ such that $\vec{w_1} \neq \vec{0}$. Set $B_1 = \{\vec{w_1}\}$. If $W = \operatorname{sp}(\vec{w_1})$ then stop, otherwise there is $\vec{w_2} \in W$ such that $\vec{w_2} \notin \operatorname{sp}(\vec{w_1})$. Set $B_2 = \{\vec{w_1}, \vec{w_2}\}$. Notice that $\vec{w_1}$ and $\vec{w_2}$ are linearly independent since $r_1\vec{w_1} + r_2\vec{w_2} = \vec{0}$ for $r_1 \neq 0$ implies $\vec{w_1} = (-r_2/r_1)\vec{w_2}$, contradicting the choice of $\vec{w_2} \notin \operatorname{sp}(\vec{w_1})$ (and similarly if $r_2 \neq 0$). If $W = \operatorname{sp}(\vec{w_1}, \vec{w_2})$ then stop.

Linear Algebra

Theorem 2.3. Existence and Determination of Bases.

(1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof. Let W be a subspace of \mathbb{R}^n where $W \neq \{\vec{0}\}$. Then there is some $\vec{w}_1 \in W$ such that $\vec{w}_1 \neq \vec{0}$. Set $B_1 = \{\vec{w}_1\}$. If $W = \operatorname{sp}(\vec{w}_1)$ then stop, otherwise there is $\vec{w}_2 \in W$ such that $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$. Set $B_2 = \{\vec{w}_1, \vec{w}_2\}$. Notice that \vec{w}_1 and \vec{w}_2 are linearly independent since $r_1\vec{w}_1 + r_2\vec{w}_2 = \vec{0}$ for $r_1 \neq 0$ implies $\vec{w}_1 = (-r_2/r_1)\vec{w}_2$, contradicting the choice of $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$ (and similarly if $r_2 \neq 0$). If $W = \operatorname{sp}(\vec{w}_1, \vec{w}_2)$ then stop. Otherwise, continue inductively so that if $W \neq \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$ where $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i$ are linearly independent, then there is $\vec{w}_{i+1} \in W$ such that $\vec{w}_{i+1} \notin \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$. Set $B_{i+1} = \{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i, \vec{w}_{i+1}\}$.

Theorem 2.3. Existence and Determination of Bases.

(1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof. Let W be a subspace of \mathbb{R}^n where $W \neq \{\vec{0}\}$. Then there is some $\vec{w}_1 \in W$ such that $\vec{w}_1 \neq \vec{0}$. Set $B_1 = \{\vec{w}_1\}$. If $W = \operatorname{sp}(\vec{w}_1)$ then stop, otherwise there is $\vec{w}_2 \in W$ such that $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$. Set $B_2 = \{\vec{w}_1, \vec{w}_2\}$. Notice that \vec{w}_1 and \vec{w}_2 are linearly independent since $r_1\vec{w}_1 + r_2\vec{w}_2 = \vec{0}$ for $r_1 \neq 0$ implies $\vec{w}_1 = (-r_2/r_1)\vec{w}_2$, contradicting the choice of $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$ (and similarly if $r_2 \neq 0$). If $W = \operatorname{sp}(\vec{w}_1, \vec{w}_2)$ then stop. Otherwise, continue inductively so that if $W \neq \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$ where $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i$ are linearly independent, then there is $\vec{w}_{i+1} \in W$ such that $\vec{w}_{i+1} \notin \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$. Set $B_{i+1} = \{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i, \vec{w}_{i+1}\}$. Then for

$$r_1\vec{w}_1 + r_2\vec{w}_2 + \dots + r_i\vec{w}_i + r_{i+1}\vec{w}_{i+1} = \vec{0},$$

if $r_{i+1} \neq 0$ then $\vec{w}_{i+1} = (-r_1/r_{i+1})\vec{w}_1 + (-r_2/r_{i+1})\vec{w}_2 + \dots + (-r_i/r_{i+1})\vec{w}_i$, contradicting the choice of $\vec{w}_{i+1} \notin \operatorname{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_i)$. So $r_{i+1} = 0$.

Theorem 2.3. Existence and Determination of Bases.

(1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof. Let W be a subspace of \mathbb{R}^n where $W \neq \{\vec{0}\}$. Then there is some $\vec{w}_1 \in W$ such that $\vec{w}_1 \neq \vec{0}$. Set $B_1 = \{\vec{w}_1\}$. If $W = \operatorname{sp}(\vec{w}_1)$ then stop, otherwise there is $\vec{w}_2 \in W$ such that $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$. Set $B_2 = \{\vec{w}_1, \vec{w}_2\}$. Notice that \vec{w}_1 and \vec{w}_2 are linearly independent since $r_1\vec{w}_1 + r_2\vec{w}_2 = \vec{0}$ for $r_1 \neq 0$ implies $\vec{w}_1 = (-r_2/r_1)\vec{w}_2$, contradicting the choice of $\vec{w}_2 \notin \operatorname{sp}(\vec{w}_1)$ (and similarly if $r_2 \neq 0$). If $W = \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$ where $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i$ are linearly independent, then there is $\vec{w}_{i+1} \in W$ such that $\vec{w}_{i+1} \notin \operatorname{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i)$. Set $B_{i+1} = \{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i, \vec{w}_{i+1}\}$. Then for

$$r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_i\vec{w}_i + r_{i+1}\vec{w}_{i+1} = \vec{0},$$

if $r_{i+1} \neq 0$ then $\vec{w}_{i+1} = (-r_1/r_{i+1})\vec{w}_1 + (-r_2/r_{i+1})\vec{w}_2 + \dots + (-r_i/r_{i+1})\vec{w}_i$, contradicting the choice of $\vec{w}_{i+1} \notin \operatorname{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_i)$. So $r_{i+1} = 0$.

Theorem 2.3. Existence and Determination of Bases. (1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof (continued). But then $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_i\vec{w}_i = \vec{0}$ and so $r_1 = r_2 = \cdots = r_i = 0$ since $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i$ are linearly independent. So $r_1 = r_2 = \cdots = r_{i+1}$ and by Definition 2.1, "Linear Dependence and Independence," $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i, \vec{w}_{i+1}$ are linearly independent.

Now this process of creating linearly independent sets B_i consisting of i vectors must stop at some step $k \le n$ by Theorem 2.2, "Relative Sizes of Spanning and Independent Sets." Then B_k is a linearly independent spanning set for W and so B_k is a basis for W by Theorem 2.1, "Alternative Characterization of Basis."

Theorem 2.3. Existence and Determination of Bases. (1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and dim $(W) \leq n$.

Proof (continued). But then $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_i\vec{w}_i = \vec{0}$ and so $r_1 = r_2 = \cdots = r_i = 0$ since $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i$ are linearly independent. So $r_1 = r_2 = \cdots = r_{i+1}$ and by Definition 2.1, "Linear Dependence and Independence," $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_i, \vec{w}_{i+1}$ are linearly independent.

Now this process of creating linearly independent sets B_i consisting of i vectors must stop at some step $k \le n$ by Theorem 2.2, "Relative Sizes of Spanning and Independent Sets." Then B_k is a linearly independent spanning set for W and so B_k is a basis for W by Theorem 2.1, "Alternative Characterization of Basis."

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution. We use Definition 2.1, "Linear Dependence and Independence," to test the set $\{A\vec{v}, A\vec{w}\}$ for linear independence. Suppose $r_1A\vec{v} + r_2A\vec{w} = \vec{0}$ for some $r_1, r_2 \in \mathbb{R}$.

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution. We use Definition 2.1, "Linear Dependence and Independence," to test the set $\{A\vec{v}, A\vec{w}\}$ for linear independence. Suppose $r_1A\vec{v} + r_2A\vec{w} = \vec{0}$ for some $r_1, r_2 \in \mathbb{R}$. By Theorem 1.3.A, "Properties of Matrix Algebra," we have

$$\vec{v} = r_1 A \vec{v} + r_2 A \vec{w}$$

= $A(r_1 \vec{v}) + A(r_2 \vec{w})$ by Theorem 1.3.A(7)
= $A(r_1 \vec{v} + r_2 \vec{w})$ by Theorem 1.3.A(10).

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution. We use Definition 2.1, "Linear Dependence and Independence," to test the set $\{A\vec{v}, A\vec{w}\}$ for linear independence. Suppose $r_1A\vec{v} + r_2A\vec{w} = \vec{0}$ for some $r_1, r_2 \in \mathbb{R}$. By Theorem 1.3.A, "Properties of Matrix Algebra," we have

$$\vec{D} = r_1 A \vec{v} + r_2 A \vec{w}$$

= $A(r_1 \vec{v}) + A(r_2 \vec{w})$ by Theorem 1.3.A(7)
= $A(r_1 \vec{v} + r_2 \vec{w})$ by Theorem 1.3.A(10).

Page 136 Number 34 (continued)

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution (continued). Since A is invertible, then we can multiply both sides of this equation by A^{-1} to get

$$A^{-1}(\vec{0}) = A^{-1}(A(r_1\vec{v} + r_2\vec{w}))$$

= $(A^{-1}A)(r_1\vec{v} + r_2\vec{w})$ by Theorem 1.3.A(8)
= $\mathcal{I}(r_1\vec{v} + r_2\vec{w}) = r_1\vec{v} + r_2\vec{w}.$

Therefore $\vec{0} = r_1 \vec{v} + r_2 \vec{w}$.

Page 136 Number 34 (continued)

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution (continued). Since A is invertible, then we can multiply both sides of this equation by A^{-1} to get

$$\begin{aligned} A^{-1}(\vec{0}) &= A^{-1}(A(r_1\vec{v} + r_2\vec{w})) \\ &= (A^{-1}A)(r_1\vec{v} + r_2\vec{w})) \text{ by Theorem 1.3.A(8)} \\ &= \mathcal{I}(r_1\vec{v} + r_2\vec{w}) = r_1\vec{v} + r_2\vec{w}. \end{aligned}$$

Therefore $\vec{0} = r_1 \vec{v} + r_2 \vec{w}$. Since \vec{v} and \vec{w} are independent then by Definition 2.1 we must have $r_1 = r_2 = 0$. That is, $r_1 A \vec{v} + r_2 A \vec{w} = \vec{0}$ implies $r_1 = r_2 = 0$. So, again by Definition 2.1, $A \vec{v}$ and $A \vec{w}$ are independent.

Page 136 Number 34 (continued)

Page 136 Number 34. Let \vec{v} and \vec{w} be independent column vectors in \mathbb{R}^n and let A be an invertible $n \times n$ matrix where n > 1. Prove that the vectors $A\vec{v}$ and $A\vec{w}$ are independent.

Solution (continued). Since A is invertible, then we can multiply both sides of this equation by A^{-1} to get

$$\begin{aligned} A^{-1}(\vec{0}) &= A^{-1}(A(r_1\vec{v}+r_2\vec{w})) \\ &= (A^{-1}A)(r_1\vec{v}+r_2\vec{w})) \text{ by Theorem 1.3.A(8)} \\ &= \mathcal{I}(r_1\vec{v}+r_2\vec{w}) = r_1\vec{v}+r_2\vec{w}. \end{aligned}$$

Therefore $\vec{0} = r_1\vec{v} + r_2\vec{w}$. Since \vec{v} and \vec{w} are independent then by Definition 2.1 we must have $r_1 = r_2 = 0$. That is, $r_1A\vec{v} + r_2A\vec{w} = \vec{0}$ implies $r_1 = r_2 = 0$. So, again by Definition 2.1, $\vec{A}\vec{v}$ and $\vec{A}\vec{w}$ are independent.

Page 136 Number 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$ then $W = \mathbb{R}^n$.

Solution. Of course dim $(\mathbb{R}^n) = n$ since the standard basis for \mathbb{R}^n (see Section 1.1) has *n* vectors. If *W* is a subspace of \mathbb{R}^n of dimension *n* then by Definition 2.2, "Dimension of a Subspace," the number of elements in a basis *B* of *W* is *n*.

Linear Algebra

Page 136 Number 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$ then $W = \mathbb{R}^n$.

Solution. Of course dim $(\mathbb{R}^n) = n$ since the standard basis for \mathbb{R}^n (see Section 1.1) has *n* vectors. If *W* is a subspace of \mathbb{R}^n of dimension *n* then by Definition 2.2, "Dimension of a Subspace," the number of elements in a basis *B* of *W* is *n*. By Theorem 2.1(2), "Alternative Characterization of a Basis," *B* is a linearly independent set. So *B* is a linearly independent set of *n* vectors and by Theorem 2.3(2), "Existence and Determination of Bases," *B* can be enlarged to become a basis for \mathbb{R}^n .

Page 136 Number 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$ then $W = \mathbb{R}^n$.

Solution. Of course dim $(\mathbb{R}^n) = n$ since the standard basis for \mathbb{R}^n (see Section 1.1) has *n* vectors. If *W* is a subspace of \mathbb{R}^n of dimension *n* then by Definition 2.2, "Dimension of a Subspace," the number of elements in a basis *B* of *W* is *n*. By Theorem 2.1(2), "Alternative Characterization of a Basis," *B* is a linearly independent set. So *B* is a linearly independent set of *n* vectors and by Theorem 2.3(2), "Existence and Determination of Bases," *B* can be enlarged to become a basis for \mathbb{R}^n . However, a basis of \mathbb{R}^n contains *n* vectors and so no additional vectors can be added to *B* in the creation of such a basis. So *B* must already be a basis of \mathbb{R}^n and hence $W = \mathbb{R}^n$.

Page 136 Number 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$ then $W = \mathbb{R}^n$.

Solution. Of course dim $(\mathbb{R}^n) = n$ since the standard basis for \mathbb{R}^n (see Section 1.1) has *n* vectors. If *W* is a subspace of \mathbb{R}^n of dimension *n* then by Definition 2.2, "Dimension of a Subspace," the number of elements in a basis *B* of *W* is *n*. By Theorem 2.1(2), "Alternative Characterization of a Basis," *B* is a linearly independent set. So *B* is a linearly independent set of *n* vectors and by Theorem 2.3(2), "Existence and Determination of Bases," *B* can be enlarged to become a basis for \mathbb{R}^n . However, a basis of \mathbb{R}^n contains *n* vectors and so no additional vectors can be added to *B* in the creation of such a basis. So *B* must already be a basis of \mathbb{R}^n and hence $W = \mathbb{R}^n$.