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Page 140 Number 6

Page 140 Number 6

Page 140 Number 6. Let A =


0 2 3 1

−4 4 1 4
3 3 2 0

−4 0 1 2

 . Find (a) rank(A), (b)

a basis for the row space of A, (c) a basis for the column space of A, (d) a
basis for the nullspace of A.

Solution. We apply the process of Note 2.2.A and row reduce A:

A =


0 2 3 1

−4 4 1 4
3 3 2 0

−4 0 1 2

 R1↔R2

˜


−4 4 1 4

0 2 3 1
3 3 2 0

−4 0 1 2



R1→R1/(−4)

˜


1 −1 −1/4 −1
0 2 3 1
3 3 2 0

−4 0 1 2

 R3→R3−3R1

˜R4 → R4 + 4R1


1 −1 −1/4 −1
0 2 3 1
0 6 11/4 3
0 −4 0 −2
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Page 140 Number 6

Page 140 Number 6 (continued 1)

Solution (continued).
1 −1 −1/4 −1
0 2 3 1
0 6 11/4 3
0 −4 0 −2

 R3→R3−3R2

˜R4 → R4 + 2R2


1 −1 −1/4 −1
0 2 3 1
0 0 −25/4 0
0 0 6 0


R4→R4+(24/25)R3

˜


1 −1 −1/4 −1
0 2 3 1
0 0 −25/4 0
0 0 0 0

 = H.

Since H is in row echelon form and has pivots in the first three columns we
can apply Note 2.2.A to see that:

(a) rank(A) = 3 (the number of pivots in H),
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Page 140 Number 6

Page 140 Number 6 (continued 2)

Solution (continued).
(b) a basis for the row space of A is the nonzero rows of

H =


1 −1 −1/4 −1
0 2 3 1
0 0 −25/4 0
0 0 0 0

 ,

{[1,−1,−1/4,−1], [0, 2, 3, 1], [0, 0,−25/4, 0]} (of course we could clean

this up by multiplying the first and third vectors by 4 and getting the basis
{[4,−4,−1,−4], [0, 2, 3, 1], [0, 0,−25, 0]}),
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Page 140 Number 6

Page 140 Number 6 (continued 3)

Solution (continued).

(c) a basis for the column space of A =


0 2 3 1

−4 4 1 4
3 3 2 0

−4 0 1 2

 is given by the

columns of A corresponding to columns of H =


1 −1 −1/4 −1
0 2 3 1
0 0 −25/4 0
0 0 0 0



which contain pivots,




0
−4

3
4

 ,


2
4
3
0

 ,


3
1
2
1


 .
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Page 140 Number 6

Page 140 Number 6 (continued 4)

Solution (continued). (d) For a basis for the nullspace of A, we consider
the homogeneous system A~x = ~0, which has (by Theorem 1.6) the same
solution as H~x = ~0. To simplify computations, we further row reduce the
augmented matrix [H | ~0]:

[H | ~0] =


1 −1 −1/4 −1 0
0 2 3 1 0
0 0 −25/4 0 0
0 0 0 0 0


R2→R2/2

˜R3 → (−4/25)R3


1 −1 −1/4 −1 0
0 1 3/2 1/2 0
0 0 1 0 0
0 0 0 0 0

 R1→R1+R2

˜ . . .
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Page 140 Number 6

Page 140 Number 6 (continued 5)

Solution (continued).

. . .
R1→R1+R2

˜


1 0 5/4 −1/2 0
0 1 3/2 1/2 0
0 0 1 0 0
0 0 0 0 0


R1→R1−(5/4)R3

˜R2 → R2 − (3/2)R3


1 0 0 −1/2 0
0 1 0 1/2 0
0 0 1 0 0
0 0 0 0 0

 .

Returning to a system of equations, . . .

() Linear Algebra February 27, 2019 8 / 11



Page 140 Number 6

Page 140 Number 6 (continued 5)

Solution (continued).
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Page 140 Number 6

Page 140 Number 6 (continued 6)

Solution (continued). . . .

x1 −(1/2)x4 = 0 or x1 = (1/2)x4

x2 +(1/2)x4 = 0 x2 = −(1/2)x4

x3 = 0 x3 = 0
0 = 0 x4 = x4.

With r = x4/2 as a free variable we have

x1 = (1/2)(2r) = r
x2 = (−1/2)(2r) = −r
x3 = 0
x4 = 2r

. So

the general solution set for the system A~x = ~0 is

 r


1

−1
0
2


∣∣∣∣∣∣∣∣ r ∈ R

 and

so a basis for the nullspace of A is {[1,−1, 0, 2]T}. �
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Page 141 Number 14

Page 141 Number 14

Page 141 Number 14. Let A and C be matrices such that the product
AC is defined. Prove that the column space of AC is contained in the
column space of A.

Solution. Let A be a `×m matrix, C a m×n matrix, and let ~v ∈ R` be in
the column space of AC . Then ~v is a linear combination of the columns of
AC by the definition of column space (see Section 1.6).

So there is some
vector ~x ∈ Rm such that (AC )~x = ~v , since (AC )~x is a linear combination
of the columns AC with coefficients as the components of ~x (see Note
1.3.A). Now C~x ∈ Rm, say ~y = C~x . But ~v = (AC )~x = A(C~x) = A~y and
A~y is a linear combination of the columns of A with coefficients as the
components of ~y . That is, ~v is in the column space of A. So any vector ~v
in the column space of AC is in the column space of A, and the column
space of A contains the column space of AC .
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Page 141 Number 18

Page 141 Number 18

Page 141 Number 18. Let A and C be matrices such that the product
AC is defined. Prove that rank(AC ) ≤ rank(A).

Solution. By the definition of rank, rank(AC ) is the dimension of the
column space of AC and rank(A) is the dimension of the column space of
A. From Exercise 2.2.14 we see that the column space of AC is contained
in the column space of A. That is, the column space of AC is a subspace
of the column space of A.

A basis of the column space of A consists of
rank(A) vectors and by Theorem 2.1(1), “Alternative Characterization of a
Basis,” these rank(A) vectors span the column space of A. Now a basis of
the column space of AC consists of rank(AC ) vectors and these rank(AC )
vectors are linearly independent by Theorem 2.1(2). So the basis of this
column space of AC is a set of rank(AC ) linearly independent vectors in
the column space of A and so by Theorem 2.2, “Relative Size of Spanning
and Independent Sets,” the size of a linearly independent set is less than
or equal to the size of a spanning set; hence rank(AC ) ≤ rank(A).
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