Linear Algebra

Chapter 2. Dimension, Rank, and Linear Transformations Section 2.3. Linear Transformations of Euclidean Spaces—Proofs of Theorems

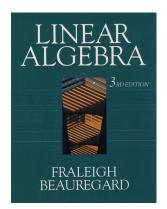


Table of contents

- Page 153 Number 32
- 2 Page 144 Example 3
- 3 Page 152 Number 4
- 4 Page 145 Example 4
- Theorem 2.7. Bases and Linear Transformations
 Corollary 2.3.A. Standard Matrix Representation of Linear Transformations
- 7 Page 152 Number 10
- 8 Theorem 2.3.A
- Theorem 2.3.B. Matrix Multiplication and Composite Transformations
- 10 Page 153 Number 20
- 1 Page 153 Number 23

Page 153 Number 32. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that

$$T(r\vec{u}+s\vec{v})=rT(\vec{u})+sT(\vec{v})$$

for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and r and s. (As the text says, "linear transformations preserve linear combinations.")

Solution. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

$$T(r\vec{u} + s\vec{v}) = T((r\vec{u}) + (s\vec{v})) = T(r\vec{u}) + T(s\vec{v}) \text{ by Definition 2.3(1),}$$

"Linear Transformation"
$$= rT(\vec{u}) + sT(\vec{v}) \text{ by Definition 2.3(2),}$$

as claimed.

Page 153 Number 32. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that

$$T(r\vec{u}+s\vec{v})=rT(\vec{u})+sT(\vec{v})$$

for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and r and s. (As the text says, "linear transformations preserve linear combinations.")

Solution. Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

$$T(r\vec{u} + s\vec{v}) = T((r\vec{u}) + (s\vec{v})) = T(r\vec{u}) + T(s\vec{v}) \text{ by Definition 2.3(1),}$$

"Linear Transformation"
$$= rT(\vec{u}) + sT(\vec{v}) \text{ by Definition 2.3(2),}$$

as claimed.

Page 144 Example 3. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\vec{x}) = A\vec{x}$ for each column vector $\vec{x} \in \mathbb{R}^n$. Prove that T_A is a linear transformation.

Solution. First, notice that for $m \times n$ matrix A and $n \times 1$ column vector in \mathbb{R}^n , we have that $A\vec{x}$ is in fact an $m \times 1$ column vector in \mathbb{R}^m . Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar.

Page 144 Example 3. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\vec{x}) = A\vec{x}$ for each column vector $\vec{x} \in \mathbb{R}^n$. Prove that T_A is a linear transformation.

Solution. First, notice that for $m \times n$ matrix A and $n \times 1$ column vector in \mathbb{R}^n , we have that $A\vec{x}$ is in fact an $m \times 1$ column vector in \mathbb{R}^m . Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

 $T_A(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v})$ by the definition of T_A

= $A\vec{u} + A\vec{v}$ by Theorem 1.3.A(10), "Distribution Laws"

 $= T_A(\vec{u}) + T_A(\vec{v})$ by the definition of T_A ,

Page 144 Example 3. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\vec{x}) = A\vec{x}$ for each column vector $\vec{x} \in \mathbb{R}^n$. Prove that T_A is a linear transformation.

Solution. First, notice that for $m \times n$ matrix A and $n \times 1$ column vector in \mathbb{R}^n , we have that $A\vec{x}$ is in fact an $m \times 1$ column vector in \mathbb{R}^m . Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

$$T_A(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v})$$
 by the definition of T_A

= $A\vec{u} + A\vec{v}$ by Theorem 1.3.A(10), "Distribution Laws"

$$= T_A(\vec{u}) + T_A(\vec{v})$$
 by the definition of T_A ,

and $T_A(r\vec{u}) = A(r\vec{u})$ by the definition of T_A

- = $rA\vec{u}$ by Theorem 1.3.A(7), "Scalars Pull Through"
- $= rT_A(\vec{u})$ by the definition of T_A .

Page 144 Example 3. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\vec{x}) = A\vec{x}$ for each column vector $\vec{x} \in \mathbb{R}^n$. Prove that T_A is a linear transformation.

Solution. First, notice that for $m \times n$ matrix A and $n \times 1$ column vector in \mathbb{R}^n , we have that $A\vec{x}$ is in fact an $m \times 1$ column vector in \mathbb{R}^m . Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

$$T_A(\vec{u}+\vec{v}) = A(\vec{u}+\vec{v})$$
 by the definition of T_A

= $A\vec{u} + A\vec{v}$ by Theorem 1.3.A(10), "Distribution Laws"

=
$$T_A(\vec{u}) + T_A(\vec{v})$$
 by the definition of T_A ,

and $T_A(r\vec{u}) = A(r\vec{u})$ by the definition of T_A

- = $rA\vec{u}$ by Theorem 1.3.A(7), "Scalars Pull Through"
- $= rT_A(\vec{u})$ by the definition of T_A .

So T_A satisfies (1) and (2) of Definition 2.3, "Linear Transformation," and so T_A is a linear transformation.

(

Page 144 Example 3. Let A be an $m \times n$ matrix and let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(\vec{x}) = A\vec{x}$ for each column vector $\vec{x} \in \mathbb{R}^n$. Prove that T_A is a linear transformation.

Solution. First, notice that for $m \times n$ matrix A and $n \times 1$ column vector in \mathbb{R}^n , we have that $A\vec{x}$ is in fact an $m \times 1$ column vector in \mathbb{R}^m . Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ and let $r \in \mathbb{R}$ be a scalar. Then we have

$$T_{A}(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) \text{ by the definition of } T_{A}$$

$$= A\vec{u} + A\vec{v} \text{ by Theorem 1.3.A(10), "Distribution Laws"}$$

$$= T_{A}(\vec{u}) + T_{A}(\vec{v}) \text{ by the definition of } T_{A},$$
and $T_{A}(r\vec{u}) = A(r\vec{u})$ by the definition of T_{A}

$$= rA\vec{u} \text{ by Theorem 1.3.A(7), "Scalars Pull Through"}$$

$$= rT_{A}(\vec{u}) \text{ by the definition of } T_{A}.$$

So T_A satisfies (1) and (2) of Definition 2.3, "Linear Transformation," and so T_A is a linear transformation. Linear Algebra

Page 152 Number 4. Is $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution. We need to test T to see if it satisfies the definition of "linear transformation." Let $\vec{u} = [u_1, u_2], \vec{v} = [v_1, v_2] \in \mathbb{R}^2$.

Page 152 Number 4. Is $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution. We need to test T to see if it satisfies the definition of "linear transformation." Let $\vec{u} = [u_1, u_2], \vec{v} = [v_1, v_2] \in \mathbb{R}^2$. Then

 $T(\vec{u}) + T(\vec{v}) = T([u_1, u_2]) + T([v_1, v_2])$ = $[u_1 - u_2, u_2 + 1, 3u_1 - 2u_2] + [v_1 - v_2, v_2 + 1, 3v_1 - 2v_2)]$ = $[(u_1 - u_2) + (v_1 - v_2), (u_2 + 1) + (v_2 + 1), (3u_2 - 2u_2) + (3v_1 - 2v_2)]$

Page 152 Number 4. Is $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution. We need to test T to see if it satisfies the definition of "linear transformation." Let $\vec{u} = [u_1, u_2], \vec{v} = [v_1, v_2] \in \mathbb{R}^2$. Then

$$T(\vec{u}) + T(\vec{v}) = T([u_1, u_2]) + T([v_1, v_2])$$
$$= [u_1 - u_2, u_2 + 1, 3u_1 - 2u_2] + [v_1 - v_2, v_2 + 1, 3v_1 - 2v_2)]$$
$$= [(u_1 - u_2) + (v_1 - v_2), (u_2 + 1) + (v_2 + 1), (3u_2 - 2u_2) + (3v_1 - 2v_2)]$$
and

$$T(\vec{u} + \vec{v}) = T([u_1, u_2] + [v_1, v_2]) = T([u_1 + v_1, u_2 + v_2])$$

= $[(u_1 + v_1) - (u_2 + v_2), (u_2 + v_2) + 1, 3(u_1 + v_1) - 2(u_2 + v_2)]$
= $[(u_1 - u_2) + (v_1 - v_2), u_2 + v_2 + 1, (3u_1 - 2u_2) + (3v_1 - 2v_2)].$
o $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ if and only if the components of these ectors are equal.

- C

V

Page 152 Number 4. Is $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution. We need to test T to see if it satisfies the definition of "linear transformation." Let $\vec{u} = [u_1, u_2], \vec{v} = [v_1, v_2] \in \mathbb{R}^2$. Then

$$T(\vec{u}) + T(\vec{v}) = T([u_1, u_2]) + T([v_1, v_2])$$
$$= [u_1 - u_2, u_2 + 1, 3u_1 - 2u_2] + [v_1 - v_2, v_2 + 1, 3v_1 - 2v_2)]$$
$$= [(u_1 - u_2) + (v_1 - v_2), (u_2 + 1) + (v_2 + 1), (3u_2 - 2u_2) + (3v_1 - 2v_2)]$$
and

$$T(\vec{u} + \vec{v}) = T([u_1, u_2] + [v_1, v_2]) = T([u_1 + v_1, u_2 + v_2])$$

= $[(u_1 + v_1) - (u_2 + v_2), (u_2 + v_2) + 1, 3(u_1 + v_1) - 2(u_2 + v_2)]$
= $[(u_1 - u_2) + (v_1 - v_2), u_2 + v_2 + 1, (3u_1 - 2u_2) + (3v_1 - 2v_2)].$
So $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ if and only if the components of these vectors are equal.

S

Page 152 Number 4 (continued)

Page 152 Number 4. If $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution (continued). But the second component of $T(\vec{u}) + T(\vec{v}) = [(u_1 - u_2) + (v_1 - v_2), (u_2 + 1) + (v_2 + 1), (3u_2 - 2u_2) + (3v_1 - 2v_2)]$ is $u_2 + v_2 + 2$ and the second component of $T(\vec{u} + \vec{v}) = [(u_1 - u_2) + (v_1 - v_2), u_2 + v_2 + 1, (3u_1 - 2u_2) + (3v_1 - 2v_2)]$ is $u_2 + v_2 + 1$. So the second components are different and $T(\vec{u} + \vec{v}) \neq T(\vec{u}) + T(\vec{v})$, so T fails the definition of linear transformation and T is not a linear transformation.

Page 152 Number 4 (continued)

Page 152 Number 4. If $T([x_1, x_2]) = [x_1 - x_2, x_2 + 1, 3x_1 - 2x_2]$ a linear transformation of \mathbb{R}^2 into \mathbb{R}^3 ? Why or why not?

Solution (continued). But the second component of $T(\vec{u}) + T(\vec{v}) = [(u_1 - u_2) + (v_1 - v_2), (u_2 + 1) + (v_2 + 1), (3u_2 - 2u_2) + (3v_1 - 2v_2)]$ is $u_2 + v_2 + 2$ and the second component of $T(\vec{u} + \vec{v}) = [(u_1 - u_2) + (v_1 - v_2), u_2 + v_2 + 1, (3u_1 - 2u_2) + (3v_1 - 2v_2)]$ is $u_2 + v_2 + 1$. So the second components are different and $T(\vec{u} + \vec{v}) \neq T(\vec{u}) + T(\vec{v})$, so T fails the definition of linear transformation and T is not a linear transformation. \Box

Page 145 Example 4. Determine all linear transformations of \mathbb{R} into \mathbb{R} .

Solution. Let $T : \mathbb{R} \to \mathbb{R}$ be a linear transformation. Denote T([1]) as [m], that is, T([1]) = [m].

Page 145 Example 4. Determine all linear transformations of \mathbb{R} into \mathbb{R} .

Solution. Let $T : \mathbb{R} \to \mathbb{R}$ be a linear transformation. Denote T([1]) as [m], that is, T([1]) = [m]. Then for any $[x] \in \mathbb{R}$ we have

$$T([x]) = T([x1]) = xT([1])$$
 by Definition 2.3(2)
= $x[m] = [mx].$

So if $T : \mathbb{R} \to \mathbb{R}$ is a linear transformation then T([x]) = [mx] for some $m \in \mathbb{R}$. \Box

Page 145 Example 4. Determine all linear transformations of \mathbb{R} into \mathbb{R} .

Solution. Let $T : \mathbb{R} \to \mathbb{R}$ be a linear transformation. Denote T([1]) as [m], that is, T([1]) = [m]. Then for any $[x] \in \mathbb{R}$ we have

$$T([x]) = T([x1]) = xT([1])$$
 by Definition 2.3(2)
= $x[m] = [mx].$

So if $T : \mathbb{R} \to \mathbb{R}$ is a linear transformation then T([x]) = [mx] for some $m \in \mathbb{R}$. \Box

Theorem 2.7

Theorem 2.7. Bases and Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $B = \{\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}\}$ be a basis for \mathbb{R}^n . For any vector $\vec{v} \in \mathbb{R}^n$, the vector $T(\vec{v})$ is uniquely determined by $T(\vec{b_1}), T(\vec{b_2}), \dots, T(\vec{b_n})$..

Proof. Let $\vec{v} \in \mathbb{R}^n$. Since *B* is a basis, then by Definition 2.1, "Linear Dependence and Independence," there are unique scalars $r_1, r_2, \ldots, r_n \in \mathbb{R}$ such that $\vec{v} = r_1 \vec{b}_1 + r_2 \vec{b}_2 + \cdots + r_n \vec{b}_n$.

Theorem 2.7

Theorem 2.7. Bases and Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $B = \{\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}\}$ be a basis for \mathbb{R}^n . For any vector $\vec{v} \in \mathbb{R}^n$, the vector $T(\vec{v})$ is uniquely determined by $T(\vec{b_1}), T(\vec{b_2}), \dots, T(\vec{b_n})$.

Proof. Let $\vec{v} \in \mathbb{R}^n$. Since *B* is a basis, then by Definition 2.1, "Linear Dependence and Independence," there are unique scalars $r_1, r_2, \ldots, r_n \in \mathbb{R}$ such that $\vec{v} = r_1 \vec{b}_1 + r_2 \vec{b}_2 + \cdots + r_n \vec{b}_n$. Then by Exercise 32,

 $T(\vec{v}) = T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_n\vec{b}_n) = r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_nT(\vec{b}_n).$

Since r_1, r_2, \ldots, r_n are uniquely determined by \vec{v} , then $T(\vec{v})$ is completely determined by the vectors $T(\vec{b}_1), T(\vec{b}_2), \ldots, T(\vec{b}_n)$.

Theorem 2.7

Theorem 2.7. Bases and Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $B = \{\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}\}$ be a basis for \mathbb{R}^n . For any vector $\vec{v} \in \mathbb{R}^n$, the vector $T(\vec{v})$ is uniquely determined by $T(\vec{b_1}), T(\vec{b_2}), \dots, T(\vec{b_n})$.

Proof. Let $\vec{v} \in \mathbb{R}^n$. Since *B* is a basis, then by Definition 2.1, "Linear Dependence and Independence," there are unique scalars $r_1, r_2, \ldots, r_n \in \mathbb{R}$ such that $\vec{v} = r_1 \vec{b}_1 + r_2 \vec{b}_2 + \cdots + r_n \vec{b}_n$. Then by Exercise 32,

$$T(\vec{v}) = T(r_1\vec{b}_1 + r_2\vec{b}_2 + \cdots + r_n\vec{b}_n) = r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \cdots + r_nT(\vec{b}_n).$$

Since r_1, r_2, \ldots, r_n are uniquely determined by \vec{v} , then $T(\vec{v})$ is completely determined by the vectors $T(\vec{b}_1), T(\vec{b}_2), \ldots, T(\vec{b}_n)$.

Corollary 2.3.A. Standard Matrix Representation of Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear, and let A be the $m \times n$ matrix whose *j*th column is $T(\hat{e}_j)$. Then $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$. A is the standard matrix representation of T.

Proof. Recall that with \hat{e}_j as the *j*th standard basis vector of \mathbb{R}^n , we have $A\hat{e}_j$ is the *j*th column of A (see Note 1.3.A) and so $A\hat{e}_j = T(\hat{e}_j)$.

Corollary 2.3.A. Standard Matrix Representation of Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear, and let A be the $m \times n$ matrix whose *j*th column is $T(\hat{e}_j)$. Then $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$. A is the standard matrix representation of T.

Proof. Recall that with \hat{e}_j as the *j*th standard basis vector of \mathbb{R}^n , we have $A\hat{e}_j$ is the *j*th column of A (see Note 1.3.A) and so $A\hat{e}_j = T(\hat{e}_j)$. If we define $T_A : \mathbb{R}^n \to \mathbb{R}^m$ as $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$ then T_A is a linear transformation by Example 3 and T and T_A are the same on the standard basis $\{\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_n\}$ of \mathbb{R}^n . So by Theorem 2.7, "Bases and Linear Transformations," T and T_A are the same linear transformations mapping $\mathbb{R}^n \to \mathbb{R}^m$.

Corollary 2.3.A. Standard Matrix Representation of Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear, and let A be the $m \times n$ matrix whose *j*th column is $T(\hat{e}_j)$. Then $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$. A is the standard matrix representation of T.

Proof. Recall that with \hat{e}_j as the *j*th standard basis vector of \mathbb{R}^n , we have $A\hat{e}_j$ is the *j*th column of *A* (see Note 1.3.A) and so $A\hat{e}_j = T(\hat{e}_j)$. If we define $T_A : \mathbb{R}^n \to \mathbb{R}^m$ as $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$ then T_A is a linear transformation by Example 3 and *T* and T_A are the same on the standard basis $\{\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_n\}$ of \mathbb{R}^n . So by Theorem 2.7, "Bases and Linear Transformations," *T* and T_A are the same linear transformations mapping $\mathbb{R}^n \to \mathbb{R}^m$. That is, $T(\vec{x}) = T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$, as claimed.

Corollary 2.3.A. Standard Matrix Representation of Linear Transformations.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be linear, and let A be the $m \times n$ matrix whose *j*th column is $T(\hat{e}_j)$. Then $T(\vec{x}) = A\vec{x}$ for each $\vec{x} \in \mathbb{R}^n$. A is the standard matrix representation of T.

Proof. Recall that with \hat{e}_j as the *j*th standard basis vector of \mathbb{R}^n , we have $A\hat{e}_j$ is the *j*th column of *A* (see Note 1.3.A) and so $A\hat{e}_j = T(\hat{e}_j)$. If we define $T_A : \mathbb{R}^n \to \mathbb{R}^m$ as $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$ then T_A is a linear transformation by Example 3 and *T* and T_A are the same on the standard basis $\{\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_n\}$ of \mathbb{R}^n . So by Theorem 2.7, "Bases and Linear Transformations," *T* and T_A are the same linear transformations mapping $\mathbb{R}^n \to \mathbb{R}^m$. That is, $T(\vec{x}) = T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$, as claimed.

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and a (row) formula for T([x,y]).

Solution. We need to write the vector [x, y] in terms of [-1, 1] and [1, 1]. Notice that $-\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [1, 0]$ and $\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [0, 1]$.

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and a (row) formula for T([x,y]).

Solution. We need to write the vector [x, y] in terms of [-1, 1] and [1, 1]. Notice that $-\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [1, 0]$ and $\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [0, 1]$. So by Corollary 2.3.A the columns of the standard matrix representation of T are T([1, 0]) and T([0, 1]). We have

$$T([1,0]) = T\left(-\frac{1}{2}[-1,1] + \frac{1}{2}[1,1]\right) = -\frac{1}{2}T([-1,1]) + \frac{1}{2}T([1,1])$$
$$= -\frac{1}{2}[2,1,4] + \frac{1}{2}[-6,3,2] = [-1,-1/2,-2] + [-3,3/2,1] = [-4,1,-1]$$

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and a (row) formula for T([x,y]).

Solution. We need to write the vector [x, y] in terms of [-1, 1] and [1, 1]. Notice that $-\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [1, 0]$ and $\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [0, 1]$. So by Corollary 2.3.A the columns of the standard matrix representation of T are T([1, 0]) and T([0, 1]). We have

$$\mathcal{T}([1,0]) = \mathcal{T}\left(-rac{1}{2}[-1,1] + rac{1}{2}[1,1]
ight) = -rac{1}{2}\mathcal{T}([-1,1]) + rac{1}{2}\mathcal{T}([1,1])$$

$$= -\frac{1}{2}[2,1,4] + \frac{1}{2}[-6,3,2] = [-1,-1/2,-2] + [-3,3/2,1] = [-4,1,-1]$$

and
$$T([0,1]) = T\left(\frac{1}{2}[-1,1] + \frac{1}{2}[1,1]\right) = \frac{1}{2}T([-1,1]) + \frac{1}{2}T([1,1])$$

$$= \frac{1}{2}[2,1,4] + \frac{1}{2}[-6,3,2] = [1,1/2,2] + [-3,3/2,1] = [-2,2,3].$$

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and a (row) formula for T([x,y]).

Solution. We need to write the vector [x, y] in terms of [-1, 1] and [1, 1]. Notice that $-\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [1, 0]$ and $\frac{1}{2}[-1, 1] + \frac{1}{2}[1, 1] = [0, 1]$. So by Corollary 2.3.A the columns of the standard matrix representation of T are T([1, 0]) and T([0, 1]). We have

$$T([1,0]) = T\left(-\frac{1}{2}[-1,1] + \frac{1}{2}[1,1]\right) = -\frac{1}{2}T([-1,1]) + \frac{1}{2}T([1,1])$$
$$= -\frac{1}{2}[2,1,4] + \frac{1}{2}[-6,3,2] = [-1,-1/2,-2] + [-3,3/2,1] = [-4,1,-1]$$
and $T([0,1]) = T\left(\frac{1}{2}[-1,1] + \frac{1}{2}[1,1]\right) = \frac{1}{2}T([-1,1]) + \frac{1}{2}T([1,1])$

$$= \frac{1}{2}[2,1,4] + \frac{1}{2}[-6,3,2] = [1,1/2,2] + [-3,3/2,1] = [-2,2,3].$$

Page 152 Number 10 (continued)

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and and a (row) formula for T([x,y]).

Solution (continued). So the matrix representation of T is

$$A = \begin{bmatrix} T([1,0])^T, T([0,1])^T \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ 1 & 2 \\ -1 & 3 \end{bmatrix}.$$

Page 152 Number 10 (continued)

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and and a (row) formula for T([x,y]).

Solution (continued). So the matrix representation of T is

$$A = \begin{bmatrix} T([1,0])^T, T([0,1])^T \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ 1 & 2 \\ -1 & 3 \end{bmatrix}.$$
 Therefore

$$T([x,y]) = A\vec{x} = \begin{bmatrix} -4 & -2\\ 1 & 2\\ -1 & 3 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} -4x - 2y\\ x + 2y\\ -x + 3y \end{bmatrix}$$

So
$$T([x,y]) = [-4x - 2y, x + 2y, -x + 3y].$$

Page 152 Number 10 (continued)

Page 152 Number 10. Assume that T is a linear transformation where T([-1,1]) = [2,1,4] and T([1,1]) = [-6,3,2]. Find the standard matrix representation A_T of T and and a (row) formula for T([x,y]).

Solution (continued). So the matrix representation of T is

$$A = \begin{bmatrix} T([1,0])^T, T([0,1])^T \end{bmatrix} = \begin{bmatrix} -4 & -2 \\ 1 & 2 \\ -1 & 3 \end{bmatrix}.$$
 Therefore

$$T([x,y]) = A\vec{x} = \begin{bmatrix} -4 & -2\\ 1 & 2\\ -1 & 3 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} -4x - 2y\\ x + 2y\\ -x + 3y \end{bmatrix}$$

So
$$T([x,y]) = [-4x - 2y, x + 2y, -x + 3y].$$

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A. (1) The range $T[\mathbb{R}^n]$ of T is the column space of A. (2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof. (1) Recall that $T[\mathbb{R}^n] = \{T(\vec{x}) \mid \vec{x} \in \mathbb{R}^n\}$. Since A is the standard matrix representation of T then $T[\mathbb{R}^n] = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$.

Linear Algebra

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof. (1) Recall that $T[\mathbb{R}^n] = \{T(\vec{x}) \mid \vec{x} \in \mathbb{R}^n\}$. Since *A* is the standard matrix representation of *T* then $T[\mathbb{R}^n] = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$. Now for $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of *A* with the components of \vec{x} as the coefficients (see Note 1.3.A) and conversely any linear combination of the columns of *A* equals $A\vec{x}$ for some $\vec{x} \in \mathbb{R}^n$ (namely, \vec{x} with components equal to the coefficients in the linear combination).

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof. (1) Recall that $T[\mathbb{R}^n] = \{T(\vec{x}) \mid \vec{x} \in \mathbb{R}^n\}$. Since *A* is the standard matrix representation of *T* then $T[\mathbb{R}^n] = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$. Now for $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of *A* with the components of \vec{x} as the coefficients (see Note 1.3.A) and conversely any linear combination of the columns of *A* equals $A\vec{x}$ for some $\vec{x} \in \mathbb{R}^n$ (namely, \vec{x} with components equal to the coefficients in the linear combination). So the range of T, $T[\mathbb{R}^n]$, consists of precisely the same vectors as the column space of *A*.

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof. (1) Recall that $T[\mathbb{R}^n] = \{T(\vec{x}) \mid \vec{x} \in \mathbb{R}^n\}$. Since *A* is the standard matrix representation of *T* then $T[\mathbb{R}^n] = \{A\vec{x} \mid \vec{x} \in \mathbb{R}^n\}$. Now for $\vec{x} \in \mathbb{R}^n$, $A\vec{x}$ is a linear combination of the columns of *A* with the components of \vec{x} as the coefficients (see Note 1.3.A) and conversely any linear combination of the columns of *A* equals $A\vec{x}$ for some $\vec{x} \in \mathbb{R}^n$ (namely, \vec{x} with components equal to the coefficients in the linear combination). So the range of *T*, $T[\mathbb{R}^n]$, consists of precisely the same vectors as the column space of *A*.

Theorem 2.3.A (continued)

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof (continued). (2) Let W be a subspace of \mathbb{R}^n . Then W has a basis by Theorem 2.3(1), "Existence and Determination of Bases," say $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$. Now by Exercise 32,

$$T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k) = r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_kT(\vec{b}_k)$$

for any $r_1, r_2, \ldots, r_k \in \mathbb{R}$.

Theorem 2.3.A (continued)

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof (continued). (2) Let W be a subspace of \mathbb{R}^n . Then W has a basis by Theorem 2.3(1), "Existence and Determination of Bases," say $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$. Now by Exercise 32,

 $T(r_1\vec{b}_1 + r_2\vec{b}_2 + \cdots + r_k\vec{b}_k) = r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \cdots + r_kT(\vec{b}_k)$

for any $r_1, r_2, \ldots, r_k \in \mathbb{R}$. So $T[W] = sp(T(\vec{b}_1), T(\vec{b}_2), \ldots, T(\vec{b}_k))$ and since the span of a set of vectors in \mathbb{R}^m is a subspace of \mathbb{R}^m by Theorem 1.14, "Subspace Property of a Span," we have that T[W] is a subspace of \mathbb{R}^m .

Theorem 2.3.A (continued)

Theorem 2.3.A. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix representation A.

(1) The range $T[\mathbb{R}^n]$ of T is the column space of A.

(2) If W is a subspace of \mathbb{R}^n , then T[W] is a subspace of \mathbb{R}^m (i.e. T preserves subspaces).

Proof (continued). (2) Let W be a subspace of \mathbb{R}^n . Then W has a basis by Theorem 2.3(1), "Existence and Determination of Bases," say $B = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_k\}$. Now by Exercise 32,

$$T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k) = r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_kT(\vec{b}_k)$$

for any $r_1, r_2, \ldots, r_k \in \mathbb{R}$. So $T[W] = sp(T(\vec{b}_1), T(\vec{b}_2), \ldots, T(\vec{b}_k))$ and since the span of a set of vectors in \mathbb{R}^m is a subspace of \mathbb{R}^m by Theorem 1.14, "Subspace Property of a Span," we have that T[W] is a subspace of \mathbb{R}^m .

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.

A composition of two linear transformations T and T' with standard matrix representation A and A' yields a linear transformation $T' \circ T$ with standard matrix representation A'A.

Proof. We have that $T(\vec{x}) = A\vec{x}$ and $T'(\vec{y}) = A'\vec{y}$ for all appropriate \vec{x} and \vec{y} (that is, \vec{x} is the domain of T and \vec{y} in the domain of T').

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.

A composition of two linear transformations T and T' with standard matrix representation A and A' yields a linear transformation $T' \circ T$ with standard matrix representation A'A.

Proof. We have that $T(\vec{x}) = A\vec{x}$ and $T'(\vec{y}) = A'\vec{y}$ for all appropriate \vec{x} and \vec{y} (that is, \vec{x} is the domain of T and \vec{y} in the domain of T'). Then for any \vec{x} in the domain of T we have

$$(T' \circ T)(\vec{w}) = T'(T(\vec{x}))$$
 by the definition of composition

- = $T'(A\vec{x})$ since $T(\vec{x}) = A\vec{x}$
- = $A'(A\vec{x})$ since $T'(\vec{y}) = A'\vec{y}$
- $= (A'A)\vec{x}$ by Theorem 1.3.A(8),

"Associativity of Matrix Multiplication".

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.

A composition of two linear transformations T and T' with standard matrix representation A and A' yields a linear transformation $T' \circ T$ with standard matrix representation A'A.

Proof. We have that $T(\vec{x}) = A\vec{x}$ and $T'(\vec{y}) = A'\vec{y}$ for all appropriate \vec{x} and \vec{y} (that is, \vec{x} is the domain of T and \vec{y} in the domain of T'). Then for any \vec{x} in the domain of T we have

$$(T' \circ T)(\vec{w}) = T'(T(\vec{x})) \text{ by the definition of composition}$$

= $T'(A\vec{x}) \text{ since } T(\vec{x}) = A\vec{x}$
= $A'(A\vec{x}) \text{ since } T'(\vec{y}) = A'\vec{y}$
= $(A'A)\vec{x}$ by Theorem 1.3.A(8),

"Associativity of Matrix Multiplication".

So the standard matrix representation of $T' \circ T$ is A'A, as claimed.

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.

A composition of two linear transformations T and T' with standard matrix representation A and A' yields a linear transformation $T' \circ T$ with standard matrix representation A'A.

Proof. We have that $T(\vec{x}) = A\vec{x}$ and $T'(\vec{y}) = A'\vec{y}$ for all appropriate \vec{x} and \vec{y} (that is, \vec{x} is the domain of T and \vec{y} in the domain of T'). Then for any \vec{x} in the domain of T we have

$$(T' \circ T)(\vec{w}) = T'(T(\vec{x})) \text{ by the definition of composition}$$

= $T'(A\vec{x}) \text{ since } T(\vec{x}) = A\vec{x}$
= $A'(A\vec{x}) \text{ since } T'(\vec{y}) = A'\vec{y}$
= $(A'A)\vec{x}$ by Theorem 1.3.A(8),
"Associativity of Matrix Multiplication".

So the standard matrix representation of $T' \circ T$ is A'A, as claimed.

Page 153 Number 20. If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is defined as $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 - x_2]$ and $T' : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 - x_2 + x_3, x_1 + x_2]$. Find the standard matrix representation for the linear transformation $T \circ T'$ that carries \mathbb{R}^3 into \mathbb{R}^3 . Find a formula for $(T \circ T')([x_1, x_2, x_3])$.

Solution. First, we find the standard matrix representation of T and T'. We have T([1,0]) = [2,1,1] and T([0,1]) = [1,0,-1], so by Corollary $\begin{bmatrix} 2 & 1 \end{bmatrix}$

2.3.A the standard matrix representation of T is $A_T = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$.

Page 153 Number 20. If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is defined as $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 - x_2]$ and $T' : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 - x_2 + x_3, x_1 + x_2]$. Find the standard matrix representation for the linear transformation $T \circ T'$ that carries \mathbb{R}^3 into \mathbb{R}^3 . Find a formula for $(T \circ T')([x_1, x_2, x_3])$.

Solution. First, we find the standard matrix representation of T and T'. We have T([1,0]) = [2,1,1] and T([0,1]) = [1,0,-1], so by Corollary 2.3.A the standard matrix representation of T is $A_T = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix}$. Also,

T'([1,0,0]) = [1,1], T'([0,1,0]) = [-1,1], and T'([0,0,1]) = [1,0] so thestandard matrix representation of T' is $A_{T'} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

Page 153 Number 20. If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is defined as $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 - x_2]$ and $T' : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 - x_2 + x_3, x_1 + x_2]$. Find the standard matrix representation for the linear transformation $T \circ T'$ that carries \mathbb{R}^3 into \mathbb{R}^3 . Find a formula for $(T \circ T')([x_1, x_2, x_3])$.

Solution. First, we find the standard matrix representation of T and T'. We have T([1,0]) = [2,1,1] and T([0,1]) = [1,0,-1], so by Corollary 2.3.A the standard matrix representation of T is $A_T = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix}$. Also, T'([1,0,0]) = [1,1], T'([0,1,0]) = [-1,1], and T'([0,0,1]) = [1,0] so the standard matrix representation of T' is $A_{T'} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.

Page 153 Number 20 (continued)

Solution (continued). By Theorem 2.3.B, the standard matrix representation of $T \circ T'$ is

$$A_{\mathcal{T}}A_{\mathcal{T}'} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & -1 & 1 \\ 0 & -2 & 1 \end{bmatrix}.$$

By Corollary 2.3.A, a formula for $T \circ T'([x_1, x_2, x_3])$ can be found from

$$A_T A_{T'} \vec{x} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & -1 & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - x_2 + 2x_3 \\ x_1 - x_2 + x_3 \\ -2x_2 + x_3 \end{bmatrix},$$

and so $T \circ T'([x_1, x_2, x_3]) = [3x_1 - x_2 + 2x_3, x_1 - x_2 + x_3, -2x_2 + x_3].$

Page 153 Number 20 (continued)

Solution (continued). By Theorem 2.3.B, the standard matrix representation of $T \circ T'$ is

$$A_{\mathcal{T}}A_{\mathcal{T}'} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & -1 & 1 \\ 0 & -2 & 1 \end{bmatrix}.$$

By Corollary 2.3.A, a formula for $T \circ T'([x_1, x_2, x_3])$ can be found from

$$A_T A_{T'} \vec{x} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & -1 & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3x_1 - x_2 + 2x_3 \\ x_1 - x_2 + x_3 \\ -2x_2 + x_3 \end{bmatrix},$$

and so $T \circ T'([x_1, x_2, x_3]) = [3x_1 - x_2 + 2x_3, x_1 - x_2 + x_3, -2x_2 + x_3].$

Page 153 Number 23. Consider the linear transformation $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$. Find the standard matrix representation for T and determine if T is invertible. If it is, find a formula for T^{-1} in row notation.

Solution. We find the standard matrix representation for T using Corollary 2.3.A. We have T([1,0,0]) = [1,1,1], T([0,1,0]) = [1,1,0], and T([0,0,1]) = [1,0,0]. So the standard matrix representation for T is

Linear Algebra

Page 153 Number 23. Consider the linear transformation $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$. Find the standard matrix representation for T and determine if T is invertible. If it is, find a formula for T^{-1} in row notation.

Solution. We find the standard matrix representation for T using Corollary 2.3.A. We have T([1,0,0]) = [1,1,1], T([0,1,0]) = [1,1,0], and T([0,0,1]) = [1,0,0]. So the standard matrix representation for T is

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$
 We test *A* for invertibility:

$$\begin{bmatrix} A \mid \mathcal{I} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \mid 1 & 0 & 0 \\ 1 & 1 & 0 \mid 0 & 1 & 0 \\ 1 & 0 & 0 \mid 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1}_{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & 1 & 1 \mid 1 & 0 & 0 \\ 0 & 0 & -1 \mid -1 & 1 & 0 \\ 0 & -1 & -1 \mid -1 & 0 & 1 \end{bmatrix}$$

Page 153 Number 23. Consider the linear transformation $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$. Find the standard matrix representation for T and determine if T is invertible. If it is, find a formula for T^{-1} in row notation.

Solution. We find the standard matrix representation for *T* using Corollary 2.3.A. We have T([1,0,0]) = [1,1,1], T([0,1,0]) = [1,1,0], and T([0,0,1]) = [1,0,0]. So the standard matrix representation for *T* is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$ We test *A* for invertibility: $[A \mid \mathcal{I}] = \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \stackrel{R_2 \to R_2 - R_1}{\underset{R_3 \to R_3 - R_1}{\overset{R_2 \to R_2 - R_1}{\underset{R_3 \to R_3 - R_1}{\overset{R_3 \to R_3 - R_1}{\underset{R_3 \to R_3 - R_1}{\overset{R_3 \to R_3 - R_1}{\overset{R_$

Page 153 Number 23 (continued 1)

Solution (continued).

Page 153 Number 23 (continued 1)

Solution (continued).

٠

Page 153 Number 23 (continued 2)

Page 153 Number 23. Consider the linear transformation $T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$. Find the standard matrix representation for T and determine if T is invertible. If it is, find a formula for T^{-1} in row notation.

Solution (continued). Also by Theorem 2.3.C, A^{-1} is the standard matrix representation of T^{-1} and we can find the formula for T^{-1} from

$$A^{-1}\vec{x} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_2 - x_3 \\ x_1 - x_2 \end{bmatrix}.$$

So
$$T^{-1}([x_1, x_2, x_3]) = [x_3, x_2 - x_3, x_1 - x_2].$$