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Page 153 Number 32

Page 153 Number 32

Page 153 Number 32. Let T : Rn → Rm be a linear transformation.
Prove that

T (r~u + s~v) = rT (~u) + sT (~v)

for all ~u, ~v ∈ Rn and r and s. (As the text says, “linear transformations
preserve linear combinations.”)

Solution. Let ~u, ~v ∈ Rn and let r ∈ R be a scalar. Then we have

T (r~u + s~v) = T ((r~u) + (s~v)) = T (r~u) + T (s~v) by Definition 2.3(1),

“Linear Transformation”

= rT (~u) + sT (~v) by Definition 2.3(2),

as claimed.
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Page 144 Example 3

Page 144 Example 3

Page 144 Example 3. Let A be an m × n matrix and let TA : Rn → Rm

be defined by TA(~x) = A~x for each column vector ~x ∈ Rn. Prove that TA

is a linear transformation.

Solution. First, notice that for m × n matrix A and n × 1 column vector
in Rn, we have that A~x is in fact an m × 1 column vector in Rm. Let
~u, ~v ∈ Rn and let r ∈ R be a scalar.

Then we have

TA(~u + ~v) = A(~u + ~v) by the definition of TA

= A~u + A~v by Theorem 1.3.A(10), “Distribution Laws”

= TA(~u) + TA(~v) by the definition of TA,

and TA(r~u) = A(r~u) by the definition of TA

= rA~u by Theorem 1.3.A(7), “Scalars Pull Through”

= rTA(~u) by the definition of TA.

So TA satisfies (1) and (2) of Definition 2.3, “Linear Transformation,” and
so TA is a linear transformation.
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Page 152 Number 4

Page 152 Number 4. Is T ([x1, x2]) = [x1 − x2, x2 + 1, 3x1 − 2x2] a linear
transformation of R2 into R3? Why or why not?

Solution. We need to test T to see if it satisfies the definition of “linear
transformation.” Let ~u = [u1, u2], ~v = [v1, v2] ∈ R2.

Then

T (~u) + T (~v) = T ([u1, u2]) + T ([v1, v2])

= [u1 − u2, u2 + 1, 3u1 − 2u2] + [v1 − v2, v2 + 1, 3v1 − 2v2)]

= [(u1 − u2) + (v1 − v2), (u2 + 1) + (v2 + 1), (3u2 − 2u2) + (3v1 − 2v2)]

and
T (~u + ~v) = T ([u1, u2] + [v1, v2]) = T ([u1 + v1, u2 + v2])

= [(u1 + v1) − (u2 + v2), (u2 + v2) + 1, 3(u1 + v1) − 2(u2 + v2)]

= [(u1 − u2) + (v1 − v2), u2 + v2 + 1, (3u1 − 2u2) + (3v1 − 2v2)].

So T (~u + ~v) = T (~u) + T (~v) if and only if the components of these
vectors are equal.
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Page 152 Number 4

Page 152 Number 4 (continued)

Page 152 Number 4. If T ([x1, x2]) = [x1 − x2, x2 + 1, 3x1 − 2x2] a linear
transformation of R2 into R3? Why or why not?

Solution (continued). But the second component of T (~u) + T (~v) =
[(u1 − u2) + (v1 − v2), (u2 + 1) + (v2 + 1), (3u2 − 2u2) + (3v1 − 2v2)] is
u2 + v2 + 2 and the second component of
T (~u + ~v) = [(u1 − u2) + (v1 − v2), u2 + v2 + 1, (3u1 − 2u2) + (3v1 − 2v2)]
is u2 + v2 + 1. So the second components are different and
T (~u + ~v) 6= T (~u) + T (~v), so T fails the definition of linear transformation

and T is not a linear transformation. �
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Page 145 Example 4

Page 145 Example 4

Page 145 Example 4. Determine all linear transformations of R into R.

Solution. Let T : R → R be a linear transformation. Denote T ([1]) as
[m], that is, T ([1]) = [m].

Then for any [x ] ∈ R we have

T ([x ]) = T ([x1]) = xT ([1]) by Definition 2.3(2)

= x [m] = [mx ].

So if T : R → R is a linear transformation then
T ([x ]) = [mx ] for some m ∈ R. �
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Theorem 2.7. Bases and Linear Transformations

Theorem 2.7

Theorem 2.7. Bases and Linear Transformations.
Let T : Rn → Rm be a linear transformation and let B = {~b1, ~b2, . . . , ~bn}
be a basis for Rn. For any vector ~v ∈ Rn, the vector T (~v) is uniquely
determined by T (~b1),T (~b2), . . . ,T ( ~bn)..

Proof. Let ~v ∈ Rn. Since B is a basis, then by Definition 2.1, “Linear
Dependence and Independence,” there are unique scalars r1, r2, . . . , rn ∈ R
such that ~v = r1~b1 + r2~b2 + · · · + rn~bn.

Then by Exercise 32,

T (~v) = T (r1~b1 + r2~b2 + · · ·+ rn~bn) = r1T (~b1) + r2T (~b2) + · · ·+ rnT (~bn).

Since r1, r2, . . . , rn are uniquely determined by ~v , then T (~v) is completely
determined by the vectors T (~b1),T (~b2), . . . ,T (~bn).
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Corollary 2.3.A. Standard Matrix Representation of Linear
Transformations

Corollary 2.3.A

Corollary 2.3.A. Standard Matrix Representation of Linear
Transformations.
Let T : Rn → Rm be linear, and let A be the m × n matrix whose jth
column is T (êj). Then T (~x) = A~x for each ~x ∈ Rn. A is the standard
matrix representation of T .

Proof. Recall that with êj as the jth standard basis vector of Rn, we have
Aêj is the jth column of A (see Note 1.3.A) and so Aêj = T (êj).

If we
define TA : Rn → Rm as TA(~x) = A~x for all ~x ∈ Rn then TA is a linear
transformation by Example 3 and T and TA are the same on the standard
basis {ê1, ê2, . . . , ên} of Rn. So by Theorem 2.7, “Bases and Linear
Transformations,” T and TA are the same linear transformations mapping
Rn → Rm. That is, T (~x) = TA(~x) = A~x for all ~x ∈ Rn, as claimed.
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Page 152 Number 10

Page 152 Number 10

Page 152 Number 10. Assume that T is a linear transformation where
T ([−1, 1]) = [2, 1, 4] and T ([1, 1]) = [−6, 3, 2]. Find the standard matrix
representation AT of T and a (row) formula for T ([x , y ]).

Solution. We need to write the vector [x , y ] in terms of [−1, 1] and [1, 1].
Notice that −1

2 [−1, 1] + 1
2 [1, 1] = [1, 0] and 1

2 [−1, 1] + 1
2 [1, 1] = [0, 1].

So
by Corollary 2.3.A the columns of the standard matrix representation of T
are T ([1, 0]) and T ([0, 1]). We have

T ([1, 0]) = T

(
−1

2
[−1, 1] +

1

2
[1, 1]

)
= −1

2
T ([−1, 1]) +

1

2
T ([1, 1])

= −1

2
[2, 1, 4] +

1

2
[−6, 3, 2] = [−1,−1/2,−2] + [−3, 3/2, 1] = [−4, 1,−1]

and T ([0, 1]) = T

(
1

2
[−1, 1] +

1

2
[1, 1]

)
=

1

2
T ([−1, 1]) +

1

2
T ([1, 1])

=
1

2
[2, 1, 4] +

1

2
[−6, 3, 2] = [1, 1/2, 2] + [−3, 3/2, 1] = [−2, 2, 3].
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Theorem 2.3.A

Theorem 2.3.A

Theorem 2.3.A. Let T : Rn → Rm be a linear transformation with
standard matrix representation A.
(1) The range T [Rn] of T is the column space of A.
(2) If W is a subspace of Rn, then T [W ] is a subspace of Rm (i.e. T
preserves subspaces).

Proof. (1) Recall that T [Rn] = {T (~x) | ~x ∈ Rn}. Since A is the standard
matrix representation of T then T [Rn] = {A~x | ~x ∈ Rn}.

Now for ~x ∈ Rn,
A~x is a linear combination of the columns of A with the components of ~x
as the coefficients (see Note 1.3.A) and conversely any linear combination
of the columns of A equals A~x for some ~x ∈ Rn (namely, ~x with
components equal to the coefficients in the linear combination). So the
range of T , T [Rn], consists of precisely the same vectors as the column
space of A.
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Theorem 2.3.A

Theorem 2.3.A (continued)

Theorem 2.3.A. Let T : Rn → Rm be a linear transformation with
standard matrix representation A.
(1) The range T [Rn] of T is the column space of A.
(2) If W is a subspace of Rn, then T [W ] is a subspace of Rm (i.e. T
preserves subspaces).

Proof (continued). (2) Let W be a subspace of Rn. Then W has a basis
by Theorem 2.3(1), “Existence and Determination of Bases,” say
B = {~b1,~b2, . . . ,~bk}. Now by Exercise 32,

T (r1~b1 + r2~b2 + · · · + rk~bk) = r1T (~b1) + r2T (~b2) + · · · + rkT (~bk)

for any r1, r2, . . . , rk ∈ R.

So T [W ] = sp(T (~b1),T (~b2), . . . ,T (~bk)) and
since the span of a set of vectors in Rm is a subspace of Rm by Theorem
1.14, “Subspace Property of a Span,” we have that T [W ] is a subspace of
Rm.
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Theorem 2.3.B. Matrix Multiplication and Composite
Transformations

Theorem 2.3.B

Theorem 2.3.B. Matrix Multiplication and Composite
Transformations.
A composition of two linear transformations T and T ′ with standard
matrix representation A and A′ yields a linear transformation T ′ ◦ T with
standard matrix representation A′A.

Proof. We have that T (~x) = A~x and T ′(~y) = A′~y for all appropriate ~x
and ~y (that is, ~x is the domain of T and ~y in the domain of T ′).

Then for
any ~x in the domain of T we have

(T ′ ◦ T )(~w) = T ′(T (~x)) by the definition of composition

= T ′(A~x) since T (~x) = A~x

= A′(A~x) since T ′(~y) = A′~y
= (A′A)~x by Theorem 1.3.A(8),

“Associativity of Matrix Multiplication”.

So the standard matrix representation of T ′ ◦ T is A′A, as claimed.
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Page 153 Number 20

Page 153 Number 20

Page 153 Number 20. If T : R2 → R3 is defined as
T ([x1, x2]) = [2x1 + x2, x1, x1 − x2] and T ′ : R3 → R2 is defined by
T ′([x1, x2, x3]) = [x1 − x2 + x3, x1 + x2]. Find the standard matrix
representation for the linear transformation T ◦ T ′ that carries R3 into R3.
Find a formula for (T ◦ T ′)([x1, x2, x3]).

Solution. First, we find the standard matrix representation of T and T ′.
We have T ([1, 0]) = [2, 1, 1] and T ([0, 1]) = [1, 0,−1], so by Corollary

2.3.A the standard matrix representation of T is AT =

 2 1
1 0
1 −1

 .

Also,

T ′([1, 0, 0]) = [1, 1], T ′([0, 1, 0]) = [−1, 1], and T ′([0, 0, 1]) = [1, 0] so the

standard matrix representation of T ′ is AT ′ =

[
1 −1 1
1 1 0

]
.
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Page 153 Number 20

Page 153 Number 20 (continued)

Solution (continued). By Theorem 2.3.B, the standard matrix
representation of T ◦ T ′ is

ATAT ′ =

 2 1
1 0
1 −1

[
1 −1 1
1 1 0

]
=

 3 −1 2
1 −1 1
0 −2 1

 .

By Corollary 2.3.A, a formula for T ◦ T ′([x1, x2, x3]) can be found from

ATAT ′~x =

 3 −1 2
1 −1 1
0 −2 1

 x1

x2

x3

 =

 3x1 − x2 + 2x3

x1 − x2 + x3

−2x2 + x3

 ,

and so T ◦ T ′([x1, x2, x3]) = [3x1 − x2 + 2x3, x1 − x2 + x3,−2x2 + x3]. �
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Page 153 Number 20 (continued)
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Page 153 Number 23

Page 153 Number 23

Page 153 Number 23. Consider the linear transformation
T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]. Find the standard matrix
representation for T and determine if T is invertible. If it is, find a
formula for T−1 in row notation.

Solution. We find the standard matrix representation for T using
Corollary 2.3.A. We have T ([1, 0, 0]) = [1, 1, 1], T ([0, 1, 0]) = [1, 1, 0], and
T ([0, 0, 1]) = [1, 0, 0]. So the standard matrix representation for T is

A =

 1 1 1
1 1 0
1 0 0

 .

We test A for invertibility:

[A | I] =

 1 1 1 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

 R2→R2−R1

˜R3 → R3 − R1

 1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 −1 −1 0 1



() Linear Algebra June 20, 2019 17 / 19



Page 153 Number 23

Page 153 Number 23

Page 153 Number 23. Consider the linear transformation
T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]. Find the standard matrix
representation for T and determine if T is invertible. If it is, find a
formula for T−1 in row notation.

Solution. We find the standard matrix representation for T using
Corollary 2.3.A. We have T ([1, 0, 0]) = [1, 1, 1], T ([0, 1, 0]) = [1, 1, 0], and
T ([0, 0, 1]) = [1, 0, 0]. So the standard matrix representation for T is

A =

 1 1 1
1 1 0
1 0 0

 . We test A for invertibility:

[A | I] =

 1 1 1 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

 R2→R2−R1

˜R3 → R3 − R1

 1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 −1 −1 0 1


() Linear Algebra June 20, 2019 17 / 19



Page 153 Number 23

Page 153 Number 23

Page 153 Number 23. Consider the linear transformation
T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]. Find the standard matrix
representation for T and determine if T is invertible. If it is, find a
formula for T−1 in row notation.

Solution. We find the standard matrix representation for T using
Corollary 2.3.A. We have T ([1, 0, 0]) = [1, 1, 1], T ([0, 1, 0]) = [1, 1, 0], and
T ([0, 0, 1]) = [1, 0, 0]. So the standard matrix representation for T is

A =

 1 1 1
1 1 0
1 0 0

 . We test A for invertibility:

[A | I] =

 1 1 1 1 0 0
1 1 0 0 1 0
1 0 0 0 0 1

 R2→R2−R1

˜R3 → R3 − R1

 1 1 1 1 0 0
0 0 −1 −1 1 0
0 −1 −1 −1 0 1


() Linear Algebra June 20, 2019 17 / 19



Page 153 Number 23

Page 153 Number 23 (continued 1)

Solution (continued).

R2↔R3

˜

 1 1 1 1 0 0
0 −1 −1 −1 0 1
0 0 −1 −1 1 0

 R2→−R2

˜R3 → −R3

 1 1 1 1 0 0
0 1 1 1 0 −1
0 0 1 1 −1 0


R1→R1−R2

˜

 1 0 0 0 0 1
0 1 1 1 0 −1
0 0 1 1 −1 0

 R2→R2−R3

˜

 1 0 0 0 0 1
0 1 0 0 1 −1
0 0 1 1 −1 0

 .

So A is invertible and A−1 =

 0 0 1
0 1 −1
1 −1 0

 and so T is invertible by

Theorem 2.3.C.
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Page 153 Number 23

Page 153 Number 23 (continued 2)

Page 153 Number 23. Consider the linear transformation
T ([x1, x2, x3]) = [x1 + x2 + x3, x1 + x2, x1]. Find the standard matrix
representation for T and determine if T is invertible. If it is, find a
formula for T−1 in row notation.

Solution (continued). Also by Theorem 2.3.C, A−1 is the standard
matrix representation of T−1 and we can find the formula for T−1 from

A−1~x =

 0 0 1
0 1 −1
1 −1 0

 x1

x2

x3

 =

 x3

x2 − x3

x1 − x2

 .

So T−1([x1, x2, x3]) = [x3, x2 − x3, x1 − x2].

() Linear Algebra June 20, 2019 19 / 19


	Page 153 Number 32
	Page 144 Example 3
	Page 152 Number 4
	Page 145 Example 4
	Theorem 2.7. Bases and Linear Transformations
	Corollary 2.3.A. Standard Matrix Representation of Linear Transformations
	Page 152 Number 10
	Theorem 2.3.A
	Theorem 2.3.B. Matrix Multiplication and Composite Transformations
	Page 153 Number 20
	Page 153 Number 23

