Linear Algebra

Chapter 2. Dimension, Rank, and Linear Transformations Section 2.4. Linear Transformations of the Plane—Proofs of Theorems

- 1 [Page 165 Number 4](#page-2-0)
- 2 [Page 165 Number 6](#page-6-0)
- 3 [Page 165 Number 8 \(iii, iv\)](#page-16-0)
	- 4 [Theorem 2.4.A. Geometric Description of Invertible Transformations of](#page-21-0) \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^2
- 5 [Page 165 Number 14](#page-27-0)
- 6 [Page 166 Number 18](#page-33-0)
	- [Page 166 Number 20](#page-38-0)

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3 θ and cos 3 θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ $\sin \theta$ cos θ $\Big\}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ .

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3 θ and cos 3 θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ sin θ cos θ $\Big\}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$
\begin{bmatrix}\n\cos 3\theta & -\sin 3\theta \\
\sin 3\theta & \cos 3\theta\n\end{bmatrix} = \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}^3
$$

$$
= \begin{bmatrix}\n\cos^2 \theta - \sin^2 \theta & -2\cos \theta \sin \theta \\
2\cos \theta \sin \theta & \cos^2 \theta - \sin^2 \theta\n\end{bmatrix} \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}
$$

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3 θ and cos 3 θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ sin θ cos θ $\Big\}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$
\begin{bmatrix}\n\cos 3\theta & -\sin 3\theta \\
\sin 3\theta & \cos 3\theta\n\end{bmatrix} = \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}^{3}
$$
\n
$$
= \begin{bmatrix}\n\cos^{2} \theta - \sin^{2} \theta & -2 \cos \theta \sin \theta \\
2 \cos \theta \sin \theta & \cos^{2} \theta - \sin^{2} \theta\n\end{bmatrix} \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\n\cos^{3} \theta - \cos \theta \sin^{2} \theta - 2 \cos \theta \sin^{2} \theta & -\cos^{2} \theta \sin \theta + \sin^{3} \theta - 2 \cos^{2} \theta \sin \theta \\
2 \cos^{2} \theta \sin \theta + \cos^{2} \theta \sin \theta - \sin^{3} \theta & -2 \cos \theta \sin^{2} \theta + \cos^{3} \theta - \cos \theta \sin^{2} \theta\n\end{bmatrix}.
$$
\nHence $\cos 3\theta = \cos^{3} \theta - 3 \cos \theta \sin^{2} \theta$ and $\sin 3\theta = 3 \cos^{2} \theta \sin \theta - \sin^{3} \theta$.

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3 θ and cos 3 θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ sin θ cos θ $\Big\}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$
\begin{bmatrix}\n\cos 3\theta & -\sin 3\theta \\
\sin 3\theta & \cos 3\theta\n\end{bmatrix} = \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}^{3}
$$
\n
$$
= \begin{bmatrix}\n\cos^{2} \theta - \sin^{2} \theta & -2 \cos \theta \sin \theta \\
2 \cos \theta \sin \theta & \cos^{2} \theta - \sin^{2} \theta\n\end{bmatrix} \begin{bmatrix}\n\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\n\cos^{3} \theta - \cos \theta \sin^{2} \theta - 2 \cos \theta \sin^{2} \theta & -\cos^{2} \theta \sin \theta + \sin^{3} \theta - 2 \cos^{2} \theta \sin \theta \\
2 \cos^{2} \theta \sin \theta + \cos^{2} \theta \sin \theta - \sin^{3} \theta & -2 \cos \theta \sin^{2} \theta + \cos^{3} \theta - \cos \theta \sin^{2} \theta\n\end{bmatrix}.
$$
\nHence $\begin{bmatrix}\n\cos 3\theta = \cos^{3} \theta - 3 \cos \theta \sin^{2} \theta \text{ and } \sin 3\theta = 3 \cos^{2} \theta \sin \theta - \sin^{3} \theta\n\end{bmatrix}$

 \Box

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line $y = mx$.

Solution. Let $b_1 = [1, m]$ be a vector which, in standard position, lies along the line $y = mx$. Let $b_2 = [-m, 1]$ so that b_2 is orthogonal to \bar{b}_1 .

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line $y = mx$.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line $y = mx$. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, \vec{b}_1 , \vec{b}_2 , and $y = m x$ are:

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line $y = mx$.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line $y = mx$. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, $\vec{b}_1,~\vec{b}_2,$ and $y = m {\sf x}$ are:

So \vec{b}_1 and \vec{b}_2 form a basis for \mathbb{R}^2 and by Theorem 2.7, "Bases and Linear Transformations," $\mathcal T$ is completely determined by $\mathcal T(\vec b_1)$ and $\mathcal T(\vec b_2).$

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line $y = mx$.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line $y = mx$. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, $\vec{b}_1,~\vec{b}_2,$ and $y = m {\sf x}$ are:

So \vec{b}_1 and \vec{b}_2 form a basis for \mathbb{R}^2 and by Theorem 2.7, "Bases and Linear Transformations," $\mathcal T$ is completely determined by $\mathcal T(\vec b_1)$ and $\mathcal T(\vec b_2).$

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of A is $T(\hat{e}_1) = T([1,0])$ and the second column of A is $T(\hat{e}_2) = T([0,1])$. Next, we need \hat{e}_1 and \hat{e}_2 in terms of \vec{b}_1 and \vec{b}_2 . So we consider the system **of equations** $a_1\vec{b}_1 + a_2\vec{b}_2 = \hat{e}_1$ **and** $c_1\vec{b}_2 + c_2\vec{b}_2 = \hat{e}_2$ **.** So we have $a_1[1, m] + a_2[-m, 1] = [a_1 - a_2m, a_1m + a_2] = [1, 0]$ and $c_1[1, m] + c_2[-m, 1] = [c_1 - c_2m, c_1m + c_2] = [0, 1]$, so we consider the augmented matrices:

$$
\left[\begin{array}{cc} 1 & -m & 1 \\ m & 1 & 0 \end{array}\right] \stackrel{R_2 \rightarrow R_2 - mR_1}{\longrightarrow} \left[\begin{array}{cc} 1 & -m & 1 \\ 0 & 1 + m^2 & -m \end{array}\right] \stackrel{R_2 \rightarrow R_2/(1+m^2)}{\longrightarrow}
$$

$$
\begin{bmatrix} 1 & -m & 1 \ 0 & 1 & -m/(1+m^2) \end{bmatrix} \stackrel{R_1 \to R_1 + mR_2}{=} \begin{bmatrix} 1 & 0 & 1 - \frac{m^2}{(1+m^2)} \\ 0 & 1 & -\frac{m}{(1+m^2)} \end{bmatrix},
$$
so $a_1 = \frac{1}{(1+m^2)}$ and $a_2 = -\frac{m}{(1+m^2)}$; and

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of A is $T(\hat{e}_1) = T([1, 0])$ and the second column of A is $T(\hat{e}_2) = T([0, 1]).$ Next, we need \hat{e}_1 and \hat{e}_2 in terms of \vec{b}_1 and \vec{b}_2 . So we consider the system of equations $\vec{a_1}\vec{b_1}+\vec{a_2}\vec{b_2}=\hat{e}_1$ and $\vec{c_1}\vec{b_2}+\vec{c_2}\vec{b_2}=\hat{e}_2.$ So we have $a_1[1, m] + a_2[-m, 1] = [a_1 - a_2m, a_1m + a_2] = [1, 0]$ and $c_1[1, m] + c_2[-m, 1] = [c_1 - c_2m, c_1m + c_2] = [0, 1]$, so we consider the augmented matrices:

$$
\begin{bmatrix} 1 & -m & 1 \ m & 1 & 0 \end{bmatrix}^{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & 1 \ 0 & 1 + m^2 & -m \end{bmatrix}^{R_2 \to R_2/(1 + m^2)}
$$

$$
\begin{bmatrix} 1 & -m & 1 \ 0 & 1 & -m/(1 + m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & 1 - m^2/(1 + m^2) \ 0 & 1 & -m/(1 + m^2) \end{bmatrix},
$$

so $a_1 = 1/(1 + m^2)$ and $a_2 = -m/(1 + m^2)$; and

Page 165 Number 6 (continued 2)

Solution (continued).

$$
\begin{bmatrix} 1 & -m & 0 \\ m & 1 & 1 \end{bmatrix}^{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & 0 \\ 0 & 1 + m^2 & 1 \end{bmatrix}^{R_2 \to R_2/(1+m^2)}
$$

\n
$$
\begin{bmatrix} 1 & -m & 0 \\ 0 & 1 & 1/(1+m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & m/(1+m^2) \\ 0 & 1 & 1/(1+m^2) \end{bmatrix},
$$

\nso $c_1 = m/(1+m^2)$ and $c_2 = 1/(1+m^2)$. Therefore,
\n
$$
T(\hat{e}_1) = T\left(\frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}\vec{b}_2\right) = \frac{1}{1+m^2}T(\vec{b}_1) - \frac{m}{1+m^2}T(\vec{b}_2)
$$

\n
$$
= \frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}(-\vec{b}_2) = \frac{1}{1+m^2}[1, m] + \frac{m}{1+m^2}[-m, 1]
$$

\n
$$
= \left[\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right], ...
$$

Page 165 Number 6 (continued 2)

Solution (continued).

$$
\begin{bmatrix} 1 & -m & 0 \ m & 1 & 1 \end{bmatrix}^{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & 0 \ 0 & 1 + m^2 & 1 \end{bmatrix}^{R_2 \to R_2/(1+m^2)}
$$

\n
$$
\begin{bmatrix} 1 & -m & 0 \ 0 & 1 & 1/(1+m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & m/(1+m^2) \ 0 & 1 & 1/(1+m^2) \end{bmatrix},
$$

\nso $c_1 = m/(1+m^2)$ and $c_2 = 1/(1+m^2)$. Therefore,
\n
$$
\mathcal{T}(\hat{e}_1) = \mathcal{T} \left(\frac{1}{1+m^2} \vec{b}_1 - \frac{m}{1+m^2} \vec{b}_2 \right) = \frac{1}{1+m^2} \mathcal{T}(\vec{b}_1) - \frac{m}{1+m^2} \mathcal{T}(\vec{b}_2)
$$

\n
$$
= \frac{1}{1+m^2} \vec{b}_1 - \frac{m}{1+m^2} (-\vec{b}_2) = \frac{1}{1+m^2} [1, m] + \frac{m}{1+m^2} [-m, 1]
$$

\n
$$
= \left[\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2} \right], ...
$$

Page 165 Number 6 (continued 3)

Solution (continued). . . . and

$$
T(\hat{e}_2) = T\left(\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2\right) = \frac{m}{1+m^2}T(\vec{b}_1) + \frac{1}{1+m^2}T(\vec{b}_2)
$$

=
$$
\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}(-\vec{b}_2) = \frac{m}{1+m^2}[1,m] - \frac{1}{1+m^2}[-m,1]
$$

=
$$
\left[\frac{2m}{1+m^2}, \frac{m^2-1}{1+m^2}\right].
$$

So the matrix A representing T is

 \Box

$$
A = \begin{bmatrix} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2} \\ \frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}.
$$

Page 165 Number 6 (continued 3)

Solution (continued). . . . and

$$
\mathcal{T}(\hat{e}_2) = \mathcal{T}\left(\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2\right) = \frac{m}{1+m^2}\mathcal{T}(\vec{b}_1) + \frac{1}{1+m^2}\mathcal{T}(\vec{b}_2)
$$

$$
= \frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}(-\vec{b}_2) = \frac{m}{1+m^2}[1,m] - \frac{1}{1+m^2}[-m,1]
$$

$$
= \left[\frac{2m}{1+m^2}, \frac{m^2-1}{1+m^2}\right].
$$

So the matrix A representing T is

 \Box

$$
A = \left[\begin{array}{cc} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2} \\ \frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2} \end{array} \right] = \boxed{\frac{1}{1+m^2}\left[\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right]} \, .
$$

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $\mathcal{T} \left(\left[\begin{array}{c} x \ y \end{array} \right]$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix}$ 0 r $\bigcap x$ y .

(iii) Show that T is a vertical expansion followed by a reflection about the x-axis if $r < -1$.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$.

Solution. (iii) If $r < -1$ then $|r| > 1$ and so $A_1 = \left[\begin{array}{cc} 1 & 0 \ 0 & r \end{array}\right]$ 0 |r| $\Big]$ is the standard matrix representation of a linear transformation T , which is a vertical expansion. Next, $X = \begin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}$ $0 -1$ $\big]$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the x-axis.

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $\mathcal{T} \left(\left[\begin{array}{c} x \ y \end{array} \right]$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix}$ 0 r $\bigcap x$ y .

(iii) Show that T is a vertical expansion followed by a reflection about the x-axis if $r < -1$.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$.

Solution. (iii) If $r < -1$ then $|r| > 1$ and so $A_1 = \left[\begin{array}{cc} 1 & 0 \ 0 & \frac{1}{2} \end{array}\right]$ 0 |r| $\Big]$ is the standard matrix representation of a linear transformation T , which is a vertical expansion. Next, $X = \left[\begin{array}{cc} 1 & 0 \ 0 & 0 \end{array}\right]$ $0 -1$ $\big]$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the x-axis. Now

$$
XA_1 = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & |r| \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & -|r| \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & r \end{array} \right]
$$

and so T is a vertical expansion followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $\mathcal{T} \left(\left[\begin{array}{c} x \ y \end{array} \right]$ $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r \end{pmatrix}$ 0 r $\bigcap x$ y .

(iii) Show that T is a vertical expansion followed by a reflection about the x-axis if $r < -1$.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$.

Solution. (iii) If $r < -1$ then $|r| > 1$ and so $A_1 = \left[\begin{array}{cc} 1 & 0 \ 0 & \frac{1}{2} \end{array}\right]$ 0 |r| $\Big]$ is the standard matrix representation of a linear transformation T , which is a vertical expansion. Next, $X = \left[\begin{array}{cc} 1 & 0 \ 0 & 0 \end{array}\right]$ $0 -1$ $\big]$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the x-axis. Now

$$
XA_1=\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]\left[\begin{array}{cc}1&0\\0&|r|\end{array}\right]=\left[\begin{array}{cc}1&0\\0&-|r|\end{array}\right]=\left[\begin{array}{cc}1&0\\0&r\end{array}\right]
$$

and so T is a vertical expansion followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let $\mathcal{T}\left(\left[\begin{array}{c} x \ y \end{array}\right]\right)$ $\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & r \end{array}\right]$ 0 r $\bigcap x$ y . (iv) Show that T is a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$.

Solution (continued). (iv) If $-1 < r < 0$ then $0 < |r| < 1$ and so $A_2=\left[\begin{array}{cc} 1 & 0 \ 0 & \text{or} \end{array}\right]$ 0 |r| $\Big\}$ is the standard matrix representation of a linear transformation T_2 , which is a vertical contraction. With X as in part (iii), we have

$$
XA_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}
$$

and so \overline{T} is a vertical contraction followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let $\mathcal{T}\left(\left[\begin{array}{c} x \ y \end{array}\right]\right)$ $\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & r \end{array}\right]$ 0 r $\bigcap x$ y . (iv) Show that T is a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$.

Solution (continued). (iv) If $-1 < r < 0$ then $0 < |r| < 1$ and so $A_2=\left[\begin{array}{cc} 1 & 0 \ 0 & \text{or} \end{array}\right]$ 0 |r| $\Big\}$ is the standard matrix representation of a linear transformation T_2 , which is a vertical contraction. With X as in part (iii), we have

$$
XA_2=\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]\left[\begin{array}{cc}1&0\\0&|r|\end{array}\right]=\left[\begin{array}{cc}1&0\\0&-|r|\end{array}\right]=\left[\begin{array}{cc}1&0\\0&r\end{array}\right]
$$

and so \overline{T} is a vertical contraction followed by a reflection about the x-axis.

Theorem 24A

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

A linear transformation $\,\mathcal{T}\,$ of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line $y = x$;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2×2 matrices as follows:

(1) Row Interchange:
$$
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
,
\n(2) Row Scaling: $B_1 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$,
\n(3) Row Addition: $C_1 = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$.

Theorem 24A

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

A linear transformation $\,\mathcal{T}\,$ of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line $y = x$;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2×2 matrices as follows:

(1) Row Interchange:
$$
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
,
\n(2) Row Scaling: $B_1 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$,
\n(3) Row Addition: $C_1 = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$.

Theorem 2.4.A (continued 1)

Theorem 2.4.A. Geometric Description of Invertible Transformation of Invertible Transformation of Λ

Proof (continued). Now A corresponds to reflection about the line $y = x$, B_1 with $r = -1$ corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if $r > 1$, B_1 corresponds to a horizontal contraction if $0 < r < 1$, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if $r < -1$ (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if $-1 < r < 0$ (similar to Exercise 8(iv)), B_2 with $r = -1$ corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if $r > 1$, $B₂$ corresponds to a vertical contraction if $0 < r < 1$, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if $r < -1$ (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$ (as shown in Exercise 8(iv)),

of \mathbb{R}^2

Theorem 2.4.A (continued 1)

Theorem 2.4.A. Geometric Description of Invertible Transformation of Invertible Transformation of Λ

Proof (continued). Now A corresponds to reflection about the line $y = x$, B_1 with $r = -1$ corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if $r > 1$, B_1 corresponds to a horizontal contraction if $0 < r < 1$, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if $r < -1$ (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if $-1 < r < 0$ (similar to Exercise 8(iv)), B_2 with $r = -1$ corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if $r > 1$, B_2 corresponds to a vertical contraction if $0 < r < 1$, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if $r < -1$ (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$ (as shown in Exercise 8(iv)), C_1 corresponds to a vertical shear, and C_2 corresponds to a horizontal shear.

of $\mathbb R$ 2

Theorem 2.4.A (continued 1)

Theorem 2.4.A. Geometric Description of Invertible Transformation of Invertible Transformation of Λ

Proof (continued). Now A corresponds to reflection about the line $y = x$, B_1 with $r = -1$ corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if $r > 1$, B_1 corresponds to a horizontal contraction if $0 < r < 1$, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if $r < -1$ (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if $-1 < r < 0$ (similar to Exercise 8(iv)), B₂ with $r = -1$ corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if $r > 1$, $B₂$ corresponds to a vertical contraction if $0 < r < 1$, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if $r < -1$ (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if $-1 < r < 0$ (as shown in Exercise 8(iv)), C_1 corresponds to a vertical shear, and C_2 corresponds to a horizontal shear.

of $\mathbb R$ 2

Theorem 2.4.A (continued 2)

Theorem 2.4.A. Geometric Description of Invertible Transformation of Invertible Transformation of Λ

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

A linear transformation $\,\mathcal{T}\,$ of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:

of $\mathbb R$ 2

- Reflections in the x-axis, the y-axis, or the line $y = x$;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof (continued). Notice that this is an exhaustive list of all 2×2 elementary matrices and of reflections, expansions, contractions, and shears as listed in the statement of the theorem. The claim now follows.

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First,
$$
\mathcal{T}([1, 0]) = [1, 2]
$$
 and $\mathcal{T}([0, 1]) = [1, -1]$, so the standard matrix representation of T is $\begin{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \end{bmatrix}$. We use the technique of

Section 1.5 to write A as a product of elementary matrices.

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First,
$$
\mathcal{T}([1, 0]) = [1, 2]
$$
 and $\mathcal{T}([0, 1]) = [1, -1]$, so the standard matrix representation of \mathcal{T} is $\begin{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \end{bmatrix}$. We use the technique of

Section 1.5 to write A as a product of elementary matrices. We have

$$
A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}^{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to R_2 + 2R_1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = E_1^{-1},
$$

$$
\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}^{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to -3R_2} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} = E_2^{-1},
$$

$$
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = E_3^{-1},
$$

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First,
$$
T([1, 0]) = [1, 2]
$$
 and $T([0, 1]) = [1, -1]$, so the standard matrix representation of T is
$$
\begin{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \end{bmatrix}
$$
We use the technique of Section 1.5 to the above

Section 1.5 to write A as a product of elementary matrices. We have

$$
A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}^{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to R_2 + 2R_1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = E_1^{-1},
$$

$$
\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}^{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to -3R_2} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} = E_2^{-1},
$$

$$
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = E_3^{-1},
$$

Page 165 Number 14 (continued)

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$
A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
$$

Page 165 Number 14 (continued)

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$
A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
$$

So T consist of in order (reading from right to left) a horizontal shear, a vertical expansion and a reflection about the x-axis (see Exercise 8), and a vertical shear.

Page 165 Number 14 (continued)

Page 165 Number 14. Consider $T([x, y]) = [x + y, 2x - y]$. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$
A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
$$

So T consist of in order (reading from right to left) a horizontal shear, a vertical expansion and a reflection about the x -axis (see Exercise 8), and a vertical shear. \Box

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{\mathit{u}}-\vec{\mathit{v}}\|^2 = (\vec{\mathit{u}}-\vec{\mathit{v}})\cdot(\vec{\mathit{u}}-\vec{\mathit{v}})$, and prove from the resulting equation that a linear transformation $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$
\begin{aligned} \|\vec{u} - \vec{v}\|^2 &= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} \\ &= \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2. \end{aligned}
$$

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{\mathit{u}}-\vec{\mathit{v}}\|^2 = (\vec{\mathit{u}}-\vec{\mathit{v}})\cdot(\vec{\mathit{u}}-\vec{\mathit{v}})$, and prove from the resulting equation that a linear transformation $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$
\begin{aligned} \|\vec{u}-\vec{v}\|^2 &= (\vec{u}-\vec{v}) \cdot (\vec{u}-\vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} \\ &= \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2. \end{aligned}
$$

Solving for $\vec{u} \cdot \vec{v}$ gives

$$
\vec{u} \cdot \vec{v} = \frac{-1}{2} (\|\vec{u} - \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)
$$

$$
= \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2).
$$
Similarly,
$$
\mathcal{T}(\vec{u}) \cdot \mathcal{T}(\vec{v}) = \frac{1}{2} (\|\mathcal{T}(\vec{u})\|^2 + \|\mathcal{T}(\vec{v})\|^2 - \|\mathcal{T}(\vec{u}) - \mathcal{T}(\vec{v})\|^2).
$$

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{\mathit{u}}-\vec{\mathit{v}}\|^2 = (\vec{\mathit{u}}-\vec{\mathit{v}})\cdot(\vec{\mathit{u}}-\vec{\mathit{v}})$, and prove from the resulting equation that a linear transformation $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$
\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}
$$

$$
= \vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2.
$$

Solving for $\vec{u} \cdot \vec{v}$ gives

$$
\vec{u} \cdot \vec{v} = \frac{-1}{2} (\|\vec{u} - \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)
$$

$$
= \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2).
$$
Similarly,
$$
\mathcal{T}(\vec{u}) \cdot \mathcal{T}(\vec{v}) = \frac{1}{2} (\|\mathcal{T}(\vec{u})\|^2 + \|\mathcal{T}(\vec{v})\|^2 - \|\mathcal{T}(\vec{u}) - \mathcal{T}(\vec{v})\|^2).
$$

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{\mathit{u}}-\vec{\mathit{v}}\|^2 = (\vec{\mathit{u}}-\vec{\mathit{v}})\cdots (\vec{\mathit{u}}-\vec{\mathit{v}})$, and prove from the resulting equation that a linear transformation $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ that preserves length also preserves the dot product.

Solution (continued). Now if T preserves lengths then $\|\vec{u}\| = \|\mathcal{T}(\vec{u})\|$, $\|\vec{v}\| = \|\mathcal{T}(\vec{v})\|$, and $\|\mathcal{T}(\vec{u} - \vec{v})\| = \|\vec{u} - \vec{v}\|$. Hence

$$
T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|\mathcal{T}(\vec{u}) - \mathcal{T}(\vec{v})\|^2)
$$

\n
$$
= \frac{1}{2} (\|\mathcal{T}(\vec{u})\|^2 + \|\mathcal{T}(\vec{v})\|^2 - \|\mathcal{T}(\vec{u} - \vec{v})\|) \text{ since } \mathcal{T} \text{ is linear}
$$

\n
$$
= \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \vec{u} \cdot \vec{v}.
$$

So T preserves dot products as claimed.

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{\mathit{u}}-\vec{\mathit{v}}\|^2 = (\vec{\mathit{u}}-\vec{\mathit{v}})\cdots (\vec{\mathit{u}}-\vec{\mathit{v}})$, and prove from the resulting equation that a linear transformation $\,\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ that preserves length also preserves the dot product.

Solution (continued). Now if T preserves lengths then $\|\vec{u}\| = \|\mathcal{T}(\vec{u})\|$, $\|\vec{v}\| = \|T(\vec{v})\|$, and $\|T(\vec{u} - \vec{v})\| = \|\vec{u} - \vec{v}\|$. Hence

$$
T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u}) - T(\vec{v})\|^2)
$$

= $\frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u} - \vec{v})\|)$ since T is linear
= $\frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \vec{u} \cdot \vec{v}.$

So T preserves dot products as claimed.

Page 166 Number 20. Suppose that $\mathcal{T}_A:\mathbb{R}^2\to\mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T , the columns of A are $T(\hat{e}_1) = T([1, 0])$ and $T(\hat{e}_2) = T([0, 1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations."

Page 166 Number 20. Suppose that $\mathcal{T}_A:\mathbb{R}^2\to\mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T , the columns of A are $T(\hat{e}_1) = T([1, 0])$ and $T(\hat{e}_2) = T([0, 1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors.

Page 166 Number 20. Suppose that $\mathcal{T}_A:\mathbb{R}^2\to\mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T , the columns of A are $T(\hat{e}_1) = T([1, 0])$ and $T(\hat{e}_2) = T([0, 1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors. Since T preserves angles and $\hat{e}_1 \perp \hat{e}_2$ then $T(\hat{e}_1) \perp T(\hat{e}_2)$; that is, the columns of A are orthogonal, as claimed.

Page 166 Number 20. Suppose that $\mathcal{T}_A:\mathbb{R}^2\to\mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T , the columns of A are $T(\hat{e}_1) = T([1, 0])$ and $T(\hat{e}_2) = T([0, 1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors. Since T preserves angles and $\hat{e}_1 \perp \hat{e}_2$ then $T(\hat{e}_1) \perp T(\hat{e}_2)$; that is, the columns of A are orthogonal, as claimed.