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Chapter 2. Dimension, Rank, and Linear Transformations
Section 2.4. Linear Transformations of the Plane—Proofs of Theorems
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Page 165 Number 4

Page 165 Number 4. Use the rotation matrix to derive trigonometric
identities for sin 30 and cos 36 in terms of sin§ and cos®.
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Page 165 Number 4

Page 165 Number 4

Page 165 Number 4. Use the rotation matrix to derive trigonometric
identities for sin 30 and cos 36 in terms of sin§ and cos®.

. . cosf) —sinf )
Solution. Since A = . represents a rotation of R? about
sinf  cosf

the origin through an angle of @, then A3 represents a rotation of R?
about the origin through an angle 36.
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Page 165 Number 4

Page 165 Number 4

Page 165 Number 4. Use the rotation matrix to derive trigonometric
identities for sin 30 and cos 36 in terms of sin§ and cos®.

. . cosf) —sinf )
Solution. Since A = . represents a rotation of R? about
sinf  cosf

the origin through an angle of @, then A3 represents a rotation of R?
about the origin through an angle 36. So

cos30 —sin30 | | cosf) —sind 3
sin30 cos30 | | sin@ cosé

[ cos?6 —sin?0  —2cosBsind cosf) —sinf

o 2cosfsinf  cos?6 —sin?6 sin@ cosf
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Page 165 Number 4

Page 165 Number 4

Page 165 Number 4. Use the rotation matrix to derive trigonometric
identities for sin 30 and cos 36 in terms of sin§ and cos®.

. . cosf) —sinf )
Solution. Since A = . represents a rotation of R? about
sinf  cosf

the origin through an angle of @, then A3 represents a rotation of R?
about the origin through an angle 36. So

cos30 —sin30 | | cosf) —sind 3
sin30 cos30 | | sin@ cosé

[ cos?6 —sin?0  —2cosBsind cosf) —sinf
o 2cosfsinf  cos?6 —sin?6 sin@ cosf

[ cos®0 —cosOsin0 —2cosfsin®0 — cos® Osin + sin® O — 2 cos® O sin O
" | 2cos’0sin@ + cos?fsinh —sin®0  —2cosfsin’ 6 + cos® § — cosfsin’f |-

Hence ’cos 30 = cos3 0 — 3cosfsin® @ and sin 30 = 3cos? fsinh — sin3 4. ‘
O
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Page 165 Number 6

Page 165 Number 6. Find the general matrix representation for the
reflection of the plane about the line y = mx.
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Page 165 Number 6

Page 165 Number 6

Page 165 Number 6. Find the general matrix representation for the
reflection of the plane about the line y = mx.

Solution. Let by = [1, m] be a vector which, in standard position, lies
along the line y = mx. Let by = [—m, 1] so that b is orthogonal to b;.
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Page 165 Number 6

Page 165 Number 6

Page 165 Number 6. Find the general matrix representation for the
reflection of the plane about the line y = mx.

Solution. Let by = [1, m] be a vector which, in standard position, lies
along the line y = mx. Let by = [-m, 1] so that by is orthogonal to b;. In
standard position, b;, by, and y = mx are:

¥
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Page 165 Number 6

Page 165 Number 6

Page 165 Number 6. Find the general matrix representation for the
reflection of the plane about the line y = mx.

Solution. Let by = [1, m] be a vector which, in standard position, lies

along the line y = mx. Let by = [-m, 1] so that by is orthogonal to by. In
standard position, b;, by, and y = mx are:

¥

y =mx

So 51 and 52 form a basis for R? and by Theorem 2.7, “Bases and Linear
Transformations,” T is completely determined by T(b1) and T(b).
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Page 165 Number 6

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of
Ais T(&) = T([1,0]) and the second column of Ais T(&) = T([0,1]).
Next, we need & and & in terms of 51 and 52. So we consider the system
of equations 3151 + 3252 = & and c152 + CQBz = &.
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Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of
Ais T(&) = T([1,0]) and the second column of Ais T(&) = T([0,1]).
Next, we need & and & in terms of 51 and 52. So we consider the system
of equations 3151 + 3252 = & and c152 + CQBz = &. So we have

a1[l, m| + ax[—m, 1] = [a1 — aam,aim + ap| = [1,0] and

ci[l, m] + co[—m, 1] = [c1 — com, c1m + ] = [0, 1], so we consider the
augmented matrices:

1

1 —ml|1] Rz _py
—m

Ao (15
m 1/0 0 1+m ]

1 —m
01

1 FizRimRrq g
0 1| —m/(1+m?)

1—m?/(1+ m?) ]
-m/(1+m?) |’

soa; =1/(1+ m?) and ap = —m/(1 + m?); and
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Page 165 Number 6 (continued 2)

Solution (continued).

[ 1 —mo]R2ﬂc"R1[1 —m

0 ] ReRelm)
m 1|1 0 1+m? }

1

RV R P e

socp =m/(L+m?) and c; = 1/(1+ m?).
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Page 165 Number 6 (continued 2)

Solution (continued).

m 1|1 0 1+ m?

[ 1 —mo]R2ﬂc"R1[1 —m
1

0 } RemRo/ ()

RV R P et

so c; = m/(1+ m?) and c; = 1/(1 + m?). Therefore,

1 - m - 1 - m -
T(&)=T b; — b| =——=T(by)— —=T(b
(&) (1—|—m2 L1 m? 2> 1+ m? (b) 1+ m? (b2)
1 - m - m
= by — —b)=—"-—]1 —[-m,1
_ 1—-m? 2m
14+ m2 14+ m2|
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Page 165 Number 6 (continued 3)

Solution (continued). ...and

AN m - 1 2\ _  m - 1 .
T(eg)— T<1+m2b1—|— 1+m2b2> = T(bl)—l- T(bz)

m - 1 - m 1
- b By =-—""_[1,m] -
1+ m? 1+1+m2( 2) 1+m2[’ ) 1+ z=m. 1]
_ 2m m? -1
14+ m 1+ m2 |
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Page 165 Number 6 (continued 3)

Solution (continued). ...and

AN m - 1 2\ _  m - 1 .
T(eg)— T<1+m2b1—|— 1+m2b2> = T(bl)—l- T(b2)

m - 1 - m 1
- b By =-""[im - ——[-m1
1+ m? 1+1+m2( 2) 1+m2[’m] 1+m2[ m. 1]
_ 2m m? -1
14+ m 1+ m2 |

So the matrix A representing T is

1-m 2m 2
A _ 1+m2 1_;’2_m2 o 1 1 —m 2m
- 2m m2—1 | 1+m? o’m m2 -1
1+m?2  14+m?
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Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (ii, iv). Let T<[ ; D = [(1) S] [ﬂ

(iii) Show that T is a vertical expansion followed by a reflection about the
x-axis if r < —1.

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if =1 < r < 0.
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Page 165 Number 8 (iii, iv)

Page 165 Number 8 (ii, iv). Let T<[ ; D = [(1) 8] [ﬂ

(iii) Show that T is a vertical expansion followed by a reflection about the
x-axis if r < —1.

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if —1 < r < 0.

0 |(r)| ] is the
standard matrix representation of a linear transformation T, which is a

) ) 1 0 ) )
vertical expansion. Next, X = { 0 _1 ] is the standard matrix
representation of a linear transformation T; which is a reflection about the

X-axis.

Solution. (iii) If r < —1 then |r| > 1 and so A; = [ L
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Page 165 Number 8 (iii, iv)

Page 165 Number 8 (ii, iv). Let T<[ ; D = [(1) 8] [ﬂ

(iii) Show that T is a vertical expansion followed by a reflection about the
x-axis if r < —1.

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if —1 < r < 0.

0 |(r)| ] is the
standard matrix representation of a linear transformation T, which is a

) ) 1 0 ) )
vertical expansion. Next, X = { 0 _1 ] is the standard matrix
representation of a linear transformation T; which is a reflection about the

x-axis. Now

XAlz[(l) _OlH(l) M:[cl) —(I)rl]:[fl) (r)]

and so T is a vertical expansion followed by a reflection about the x-axis.

Linear Algebra April 30,2018 8/ 17

Solution. (iii) If r < —1 then |r| > 1 and so A; = [ L



Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let T<[ , D _ [(1) S] [ﬂ

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if =1 < r < 0.

Solution (continued). (iv) If —1 < r < 0 then 0 < |r| <1 and so
Ay = [ (1) ‘(: } is the standard matrix representation of a linear

transformation T», which is a vertical contraction.
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Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let T<[ , D _ [(1) S] [ﬂ

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if =1 < r < 0.

Solution (continued). (iv) If —1 < r < 0 then 0 < |r| <1 and so
Ay = [ (1) ‘(: } is the standard matrix representation of a linear

transformation Ty, which is a vertical contraction. With X as in part (iii),
we have

XAzZ[(l) _OlH(l) M:[cl) —(I)rl]:[é (r)]

and so T is a vertical contraction followed by a reflection about the
X-axis. [
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of R*

Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2.

A linear transformation T of the plane R? into itself is invertible if and
only if T consists of a finite sequence of:

e Reflections in the x-axis, the y-axis, or the line y = x;

e Vertical or horizontal expansions or contractions; and

e Vertical or horizontal shears.

Linear Algebra Y,



of R*

Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2.

A linear transformation T of the plane R? into itself is invertible if and
only if T consists of a finite sequence of:

e Reflections in the x-axis, the y-axis, or the line y = x;

e Vertical or horizontal expansions or contractions; and

e Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2 x 2 matrices
as follows:

(1) Row Interchange: A = [ 01 ]

10
: r 0 10
(2) Row Scaling: B; = { 0 1 } and By = { 0 r }

01 r 1
Linear Algebra April 30,2018 10 / 17

(3) Row Addition: C; = [ Lr } and G, = [ 1o }



of R*

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line

y = x, By with r = —1 corresponds to reflection about the y-axis, By
corresponds to a horizontal expansion if r > 1, B; corresponds to a
horizontal contraction if 0 < r < 1, By corresponds to a horizontal
expansion followed by a reflection about the y-axis if r < —1 (similar to
Exercise 8(iii)), B1 corresponds to a horizontal contraction followed by a
reflection about the y-axis if —1 < r < 0 (similar to Exercise 8(iv)),

Linear Algebra April 30,2018 11 /17



of R*

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line

y = x, By with r = —1 corresponds to reflection about the y-axis, By
corresponds to a horizontal expansion if r > 1, B; corresponds to a
horizontal contraction if 0 < r < 1, By corresponds to a horizontal
expansion followed by a reflection about the y-axis if r < —1 (similar to
Exercise 8(iii)), B1 corresponds to a horizontal contraction followed by a
reflection about the y-axis if —1 < r < 0 (similar to Exercise 8(iv)), Bz
with r = —1 corresponds to reflection about the x-axis, By corresponds to
a vertical expansion if r > 1, B, corresponds to a vertical contraction if

0 < r <1, B, corresponds to a vertical expansion followed by a reflection
about the x-axis if r < —1 (as shown in Exercise 8(iii)), Bx corresponds to
a vertical contraction followed by a reflection about the x-axis if

—1 < r <0 (as shown in Exercise 8(iv)),
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of R*

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line

y = x, By with r = —1 corresponds to reflection about the y-axis, By
corresponds to a horizontal expansion if r > 1, B; corresponds to a
horizontal contraction if 0 < r < 1, By corresponds to a horizontal
expansion followed by a reflection about the y-axis if r < —1 (similar to
Exercise 8(iii)), B1 corresponds to a horizontal contraction followed by a
reflection about the y-axis if —1 < r < 0 (similar to Exercise 8(iv)), Bz
with r = —1 corresponds to reflection about the x-axis, By corresponds to
a vertical expansion if r > 1, B, corresponds to a vertical contraction if

0 < r <1, B, corresponds to a vertical expansion followed by a reflection
about the x-axis if r < —1 (as shown in Exercise 8(iii)), Bx corresponds to
a vertical contraction followed by a reflection about the x-axis if

—1 < r <0 (as shown in Exercise 8(iv)), C; corresponds to a vertical
shear, and (, corresponds to a horizontal shear.

Linear Algebra April 30,2018 11 /17



of R*

Theorem 2.4.A (continued 2)

Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2.

A linear transformation T of the plane R? into itself is invertible if and
only if T consists of a finite sequence of:

o Reflections in the x-axis, the y-axis, or the line y = x;

e Vertical or horizontal expansions or contractions; and

e Vertical or horizontal shears.

Proof (continued). Notice that this is an exhaustive list of all 2 x 2
elementary matrices and of reflections, expansions, contractions, and
shears as listed in the statement of the theorem. The claim now

follows. ]

Linear Algebra April 30,2018 12 /17



Page 165 Number 14

Page 165 Number 14

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary

matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Linear Algebra April 30,2018 13 /17



Page 165 Number 14

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution. First, T([1,0]) = [1,2] and T([0,1]) = [1,—1], so the standard

2 -1

Section 1.5 to write A as a product of elementary matrices.

. . . 1 1 .
matrix representation of T is |A = { ] We use the technique of

Linear Algebra April 30,2018 13 /17



Page 165 Number 14

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution. First, T([1,0]) = [1,2] and T([0,1]) = [1,—1], so the standard

matrix representation of T is |A = ; _1 ] We use the technique of

Section 1.5 to write A as a product of elementary matrices. We have

_[1 1}’?21&/2—2"’1{1 1] [1 orzjﬁ/zﬂ"’l[l 0}

2 -1 0 3| |01

1] RZR/ED T 1 o]R=3RT1 0 e
-3 01(°]0 1 0 3| "2

1

1

fizRizRer 1 o 1 o] R=RhtRer 1 1 _ gt
01|01 01 3

Linear Algebra April 30,2018 13 /17



Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,

contractions, and shears.

Linear Algebra April 30,2018 14 / 17



Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution (continued). So

i, [1 071 o)1 1
a=greret =5 Vo 501 ]

Linear Algebra April 30,2018 14 / 17



Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y,2x — y]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution (continued). So

i, [1 071 o)1 1
a=greret =5 Vo 501 ]

So T consist of in order (reading from right to left) a horizontal shear, a
vertical expansion and a reflection about the x-axis (see Exercise 8), and a
vertical shear. [J

Linear Algebra April 30,2018 14 / 17



Page 166 Number 18

Page 166 Number 18

Page 166 Number 18. Use algebraic properties of the dot product to
compute ||i — V||? = (i — V) - (47 — V), and prove from the resulting
equation that a linear transformation T : R? — R? that preserves length
also preserves the dot product.

Linear Algebra April 30,2018 15 /17



Page 166 Number 18

Page 166 Number 18

Page 166 Number 18. Use algebraic properties of the dot product to
compute ||i — V||? = (i — V) - (47 — V), and prove from the resulting
equation that a linear transformation T : R? — R? that preserves length
also preserves the dot product.

Solution. Let & and v be any vectors in R2. Then

|G- VP=G—V) (G-V)=G-G—V-G—0G-V+V-V
=G G—20- V4V =) 27+ |7
Linear Algebra

April 30, 2018 15 / 17



Page 166 Number 18

Page 166 Number 18. Use algebraic properties of the dot product to
compute ||i — V||? = (i — V) - (47 — V), and prove from the resulting
equation that a linear transformation T : R? — R? that preserves length
also preserves the dot product.

Solution. Let & and v be any vectors in R2. Then

|G- VP=G—V) (G-V)=G-G—V-G—0G-V+V-V

N

—G-0—-20-V+v-v=|d|*-2d-v+|V|*
Solving for i - V gives

- - _1 = v 17 v
-7 = - (la— 2~ |j@)? - 7))

L. . T
= S3al + 190 = l1d = v[[*).

. . . 1 - . . .
Similarly, T(d) - T(V) = S(IT@|* + I T@)II* = [ (@) = T(V)[*).
Linear Algebra April 30,2018 15/ 17



Page 166 Number 18

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to
compute ||t — V|2 = (i — V) - - - (i — V), and prove from the resulting
equation that a linear transformation T : R> — IR? that preserves length
also preserves the dot product.

Solution (continued). Now if T preserves lengths then ||d|| = || T (d)]],
VIl =TVl and [ T(& = V)| = ||z — V]|

Linear Algebra April 30,2018 16 / 17



Page 166 Number 18

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to
compute ||t — V|2 = (i — V) - - - (i — V), and prove from the resulting
equation that a linear transformation T : R> — IR? that preserves length
also preserves the dot product.

Solution (continued). Now if T preserves lengths then ||d|| = || T (d)]],
VIl = IT(V)|l. and || T(& — V)|| = ||t — V|| Hence

<

(@) @) = A(IT(
= ST

1 =112 =12 - =2 .
= Sl +II" =g =v[F) =a-v.

N2+ IT@IZ = 1T (@) - T@)]?)

(=

N2+ || T(V)||? = || T(d— V)|) since T is linear

So T preserves dot products as claimed. []
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Page 166 Number 20

Page 166 Number 20

Page 166 Number 20. Suppose that T, : R? — R? preserves both

length and angle. Prove that the two column vectors of the matrix A are
orthogonal unit vectors.

Linear Algebra April 30, 2018 17 /17



Page 166 Number 20

Page 166 Number 20. Suppose that T, : R? — R? preserves both
length and angle. Prove that the two column vectors of the matrix A are

orthogonal unit vectors.
Proof. Since A is the standard matrix representation of T, the columns of

Aare T(&)= T([1,0]) and T(&) = T([0,1]) by Corollary 2.3.A,
“Standard Matrix Representation of Linear Transformations.”

Linear Algebra April 30,2018 17 / 17



Page 166 Number 20

Page 166 Number 20. Suppose that T, : R? — R? preserves both
length and angle. Prove that the two column vectors of the matrix A are
orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of
Aare T(&)= T([1,0]) and T(&) = T([0,1]) by Corollary 2.3.A,
“Standard Matrix Representation of Linear Transformations.” Since Tx
preserves lengths then || T(&1)|| = ||é1]| =1 and || T(&)| = ||&2]] = 1, so
the columns of A are unit vectors.

Linear Algebra April 30,2018 17 / 17



Page 166 Number 20

Page 166 Number 20. Suppose that T, : R? — R? preserves both
length and angle. Prove that the two column vectors of the matrix A are
orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of
Aare T(&)= T([1,0]) and T(&) = T([0,1]) by Corollary 2.3.A,
“Standard Matrix Representation of Linear Transformations.” Since Tx
preserves lengths then || T(&1)|| = ||é1]| =1 and || T(&)| = ||&2]] = 1, so
the columns of A are unit vectors. Since T preserves angles and &; | &
then T(&) L T(&); that is, the columns of A are orthogonal, as

claimed. O
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