Linear Algebra

Chapter 2. Dimension, Rank, and Linear Transformations Section 2.4. Linear Transformations of the Plane—Proofs of Theorems

- Page 165 Number 4
- 2 Page 165 Number 6
- 3 Page 165 Number 8 (iii, iv)
- Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2
- 5 Page 165 Number 14
- 6 Page 166 Number 18
 - Page 166 Number 20

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3θ and cos 3θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ .

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3θ and cos 3θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$\begin{bmatrix} \cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{3}$$
$$= \begin{bmatrix} \cos^{2} \theta - \sin^{2} \theta & -2\cos \theta \sin \theta \\ 2\cos \theta \sin \theta & \cos^{2} \theta - \sin^{2} \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3θ and cos 3θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$\begin{bmatrix} \cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{3}$$
$$= \begin{bmatrix} \cos^{2} \theta - \sin^{2} \theta & -2\cos \theta \sin \theta \\ 2\cos \theta \sin \theta & \cos^{2} \theta - \sin^{2} \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{3} \theta - \cos \theta \sin^{2} \theta - 2\cos \theta \sin^{2} \theta & -\cos^{2} \theta \sin \theta + \sin^{3} \theta - 2\cos^{2} \theta \sin \theta \\ 2\cos^{2} \theta \sin \theta + \cos^{2} \theta \sin \theta - \sin^{3} \theta & -2\cos \theta \sin^{2} \theta + \cos^{3} \theta - \cos \theta \sin^{2} \theta \end{bmatrix}.$$
ence
$$\cos 3\theta = \cos^{3} \theta - 3\cos \theta \sin^{2} \theta$$
 and
$$\sin 3\theta = 3\cos^{2} \theta \sin \theta - \sin^{3} \theta.$$

Page 165 Number 4. Use the rotation matrix to derive trigonometric identities for sin 3θ and cos 3θ in terms of sin θ and cos θ .

Solution. Since $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ represents a rotation of \mathbb{R}^2 about the origin through an angle of θ , then A^3 represents a rotation of \mathbb{R}^2 about the origin through an angle 3θ . So

$$\begin{bmatrix} \cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{3}$$
$$= \begin{bmatrix} \cos^{2} \theta - \sin^{2} \theta & -2\cos \theta \sin \theta \\ 2\cos \theta \sin \theta & \cos^{2} \theta - \sin^{2} \theta \end{bmatrix} \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{3} \theta - \cos \theta \sin^{2} \theta - 2\cos \theta \sin^{2} \theta & -\cos^{2} \theta \sin \theta + \sin^{3} \theta - 2\cos^{2} \theta \sin \theta \\ 2\cos^{2} \theta \sin \theta + \cos^{2} \theta \sin \theta - \sin^{3} \theta & -2\cos \theta \sin^{2} \theta + \cos^{3} \theta - \cos \theta \sin^{2} \theta \end{bmatrix}.$$
Hence
$$\boxed{\cos 3\theta = \cos^{3} \theta - 3\cos \theta \sin^{2} \theta \text{ and } \sin 3\theta = 3\cos^{2} \theta \sin \theta - \sin^{3} \theta.}$$

~

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line y = mx.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line y = mx. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 .

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line y = mx.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line y = mx. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, \vec{b}_1 , \vec{b}_2 , and y = mx are:

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line y = mx.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line y = mx. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, \vec{b}_1 , \vec{b}_2 , and y = mx are:

So \vec{b}_1 and \vec{b}_2 form a basis for \mathbb{R}^2 and by Theorem 2.7, "Bases and Linear Transformations," T is completely determined by $T(\vec{b}_1)$ and $T(\vec{b}_2)$.

Page 165 Number 6. Find the general matrix representation for the reflection of the plane about the line y = mx.

Solution. Let $\vec{b}_1 = [1, m]$ be a vector which, in standard position, lies along the line y = mx. Let $\vec{b}_2 = [-m, 1]$ so that \vec{b}_2 is orthogonal to \vec{b}_1 . In standard position, \vec{b}_1 , \vec{b}_2 , and y = mx are:

So \vec{b}_1 and \vec{b}_2 form a basis for \mathbb{R}^2 and by Theorem 2.7, "Bases and Linear Transformations," T is completely determined by $T(\vec{b}_1)$ and $T(\vec{b}_2)$.

()

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of A is $T(\hat{e}_1) = T([1,0])$ and the second column of A is $T(\hat{e}_2) = T([0,1])$. Next, we need \hat{e}_1 and \hat{e}_2 in terms of \vec{b}_1 and \vec{b}_2 . So we consider the system of equations $a_1\vec{b}_1 + a_2\vec{b}_2 = \hat{e}_1$ and $c_1\vec{b}_2 + c_2\vec{b}_2 = \hat{e}_2$. So we have $a_1[1,m] + a_2[-m,1] = [a_1 - a_2m, a_1m + a_2] = [1,0]$ and $c_1[1,m] + c_2[-m,1] = [c_1 - c_2m, c_1m + c_2] = [0,1]$, so we consider the augmented matrices:

$$\begin{bmatrix} 1 & -m & | & 1 \\ m & 1 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & | & 1 \\ 0 & 1 + m^2 & | & -m \end{bmatrix} \xrightarrow{R_2 \to R_2/(1+m^2)}$$

$$\begin{bmatrix} 1 & -m & | & 1 \\ 0 & 1 & | & -m/(1+m^2) \end{bmatrix} \xrightarrow{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & | & 1 - m^2/(1+m^2) \\ 0 & 1 & | & -m/(1+m^2) \\ -m/(1+m^2) \text{ and } a_2 = -m/(1+m^2); \text{ and}$$

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of A is $T(\hat{e}_1) = T([1,0])$ and the second column of A is $T(\hat{e}_2) = T([0,1])$. Next, we need \hat{e}_1 and \hat{e}_2 in terms of \vec{b}_1 and \vec{b}_2 . So we consider the system of equations $a_1\vec{b}_1 + a_2\vec{b}_2 = \hat{e}_1$ and $c_1\vec{b}_2 + c_2\vec{b}_2 = \hat{e}_2$. So we have $a_1[1,m] + a_2[-m,1] = [a_1 - a_2m, a_1m + a_2] = [1,0]$ and $c_1[1,m] + c_2[-m,1] = [c_1 - c_2m, c_1m + c_2] = [0,1]$, so we consider the augmented matrices:

$$\begin{bmatrix} 1 & -m & | 1 \\ m & 1 & | 0 \end{bmatrix} \stackrel{R_2 \to R_2 - mR_1}{\longrightarrow} \begin{bmatrix} 1 & -m & | 1 \\ 0 & 1 + m^2 & | -m \end{bmatrix} \stackrel{R_2 \to R_2 / (1 + m^2)}{\longrightarrow}$$

$$\begin{bmatrix} 1 & -m & | & 1 \\ 0 & 1 & | & -m/(1+m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & | & 1 - m^2/(1+m^2) \\ 0 & 1 & | & -m/(1+m^2) \end{bmatrix},$$

so $a_1 = 1/(1+m^2)$ and $a_2 = -m/(1+m^2)$; and

Page 165 Number 6 (continued 2)

Solution (continued).

$$\begin{bmatrix} 1 & -m & | & 0 \\ m & 1 & | & 1 \end{bmatrix}^{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & | & 0 \\ 0 & 1 + m^2 & | & 1 \end{bmatrix}^{R_2 \to R_2/(1+m^2)}$$
$$\begin{bmatrix} 1 & -m & | & 0 \\ 0 & 1 & | & 1/(1+m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & | & m/(1+m^2) \\ 0 & 1 & | & 1/(1+m^2) \end{bmatrix},$$
so $c_1 = m/(1+m^2)$ and $c_2 = 1/(1+m^2)$. Therefore,
$$T(\hat{e}_1) = T\left(\frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}\vec{b}_2\right) = \frac{1}{1+m^2}T(\vec{b}_1) - \frac{m}{1+m^2}T(\vec{b}_2)$$
$$= \frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}(-\vec{b}_2) = \frac{1}{1+m^2}[1,m] + \frac{m}{1+m^2}[-m,1]$$
$$= \left[\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right], \dots$$

Page 165 Number 6 (continued 2)

Solution (continued).

$$\begin{bmatrix} 1 & -m & | & 0 \\ m & 1 & | & 1 \end{bmatrix}^{R_2 \to R_2 - mR_1} \begin{bmatrix} 1 & -m & | & 0 \\ 0 & 1 + m^2 & | & 1 \end{bmatrix}^{R_2 \to R_2/(1+m^2)}$$
$$\begin{bmatrix} 1 & -m & | & 0 \\ 0 & 1 & | & 1/(1+m^2) \end{bmatrix}^{R_1 \to R_1 + mR_2} \begin{bmatrix} 1 & 0 & | & m/(1+m^2) \\ 0 & 1 & | & 1/(1+m^2) \end{bmatrix},$$
so $c_1 = m/(1+m^2)$ and $c_2 = 1/(1+m^2)$. Therefore,
$$T(\hat{e}_1) = T\left(\frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}\vec{b}_2\right) = \frac{1}{1+m^2}T(\vec{b}_1) - \frac{m}{1+m^2}T(\vec{b}_2)$$
$$= \frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}(-\vec{b}_2) = \frac{1}{1+m^2}[1,m] + \frac{m}{1+m^2}[-m,1]$$
$$= \left[\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right], \dots$$

Page 165 Number 6 (continued 3)

Solution (continued). ... and

$$T(\hat{e}_2) = T\left(\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2\right) = \frac{m}{1+m^2}T(\vec{b}_1) + \frac{1}{1+m^2}T(\vec{b}_2)$$
$$= \frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}(-\vec{b}_2) = \frac{m}{1+m^2}[1,m] - \frac{1}{1+m^2}[-m,1]$$
$$= \left[\frac{2m}{1+m^2}, \frac{m^2-1}{1+m^2}\right].$$

So the matrix A representing T is

$$A = \begin{bmatrix} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2} \\ \frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}.$$

Page 165 Number 6 (continued 3)

Solution (continued). ... and

$$T(\hat{e}_2) = T\left(\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2\right) = \frac{m}{1+m^2}T(\vec{b}_1) + \frac{1}{1+m^2}T(\vec{b}_2)$$
$$= \frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}(-\vec{b}_2) = \frac{m}{1+m^2}[1,m] - \frac{1}{1+m^2}[-m,1]$$
$$= \left[\frac{2m}{1+m^2}, \frac{m^2-1}{1+m^2}\right].$$

So the matrix A representing T is

$$A = \begin{bmatrix} \frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2} \\ \frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2} \end{bmatrix} = \boxed{\frac{1}{1+m^2} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}}.$$

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

(iii) Show that T is a vertical expansion followed by a reflection about the x-axis if r < -1.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if -1 < r < 0.

Solution. (iii) If r < -1 then |r| > 1 and so $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}$ is the standard matrix representation of a linear transformation T, which is a vertical expansion. Next, $X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the *x*-axis.

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. (iii) Show that T is a vertical expansion followed by a reflection about the

(III) Show that T is a vertical expansion followed by a reflection about the x-axis if r < -1.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if -1 < r < 0.

Solution. (iii) If r < -1 then |r| > 1 and so $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}$ is the standard matrix representation of a linear transformation T, which is a vertical expansion. Next, $X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the *x*-axis. Now

$$XA_{1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$$

and so T is a vertical expansion followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

(iii) Show that T is a vertical expansion followed by a reflection about the x-axis if r < -1.

(iv) Show that T is a vertical contraction followed by a reflection about the x-axis if -1 < r < 0.

Solution. (iii) If r < -1 then |r| > 1 and so $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}$ is the standard matrix representation of a linear transformation T, which is a vertical expansion. Next, $X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is the standard matrix representation of a linear transformation T_1 which is a reflection about the *x*-axis. Now

$$XA_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$$

and so T is a vertical expansion followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. **(iv)** Show that T is a vertical contraction followed by a reflection about the *x*-axis if -1 < r < 0.

Solution (continued). (iv) If -1 < r < 0 then 0 < |r| < 1 and so $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}$ is the standard matrix representation of a linear transformation T_2 , which is a vertical contraction. With X as in part (iii), we have

$$XA_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$$

and so T is a vertical contraction followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. **(iv)** Show that T is a vertical contraction followed by a reflection about the *x*-axis if -1 < r < 0.

Solution (continued). (iv) If -1 < r < 0 then 0 < |r| < 1 and so $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}$ is the standard matrix representation of a linear transformation T_2 , which is a vertical contraction. With X as in part (iii), we have

$$XA_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$$

and so T is a vertical contraction followed by a reflection about the *x*-axis.

Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

A linear transformation T of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line y = x;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2×2 matrices as follows:

(1) Row Interchange:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,
(2) Row Scaling: $B_1 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$,
(3) Row Addition: $C_1 = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$

Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

A linear transformation T of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line y = x;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2×2 matrices as follows:

(1) Row Interchange:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,
(2) Row Scaling: $B_1 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$,
(3) Row Addition: $C_1 = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}$

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line y = x, B_1 with r = -1 corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if r > 1, B_1 corresponds to a horizontal contraction if 0 < r < 1, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if r < -1 (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if -1 < r < 0 (similar to Exercise 8(iv)), B_2 with r = -1 corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if r > 1, B_2 corresponds to a vertical contraction if 0 < r < 1, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if r < -1 (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if -1 < r < 0 (as shown in Exercise 8(iv)),

of R

of \mathbb{R}^2

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line y = x, B_1 with r = -1 corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if r > 1, B_1 corresponds to a horizontal contraction if 0 < r < 1, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if r < -1 (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if -1 < r < 0 (similar to Exercise 8(iv)), B_2 with r = -1 corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if r > 1, B_2 corresponds to a vertical contraction if 0 < r < 1, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if r < -1 (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if -1 < r < 0 (as shown in Exercise 8(iv)), C_1 corresponds to a vertical shear, and C_2 corresponds to a horizontal shear.

of \mathbb{R}^2

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line y = x, B_1 with r = -1 corresponds to reflection about the y-axis, B_1 corresponds to a horizontal expansion if r > 1, B_1 corresponds to a horizontal contraction if 0 < r < 1, B_1 corresponds to a horizontal expansion followed by a reflection about the y-axis if r < -1 (similar to Exercise 8(iii)), B_1 corresponds to a horizontal contraction followed by a reflection about the y-axis if -1 < r < 0 (similar to Exercise 8(iv)), B_2 with r = -1 corresponds to reflection about the x-axis, B_2 corresponds to a vertical expansion if r > 1, B_2 corresponds to a vertical contraction if 0 < r < 1, B_2 corresponds to a vertical expansion followed by a reflection about the x-axis if r < -1 (as shown in Exercise 8(iii)), B_2 corresponds to a vertical contraction followed by a reflection about the x-axis if -1 < r < 0 (as shown in Exercise 8(iv)), C_1 corresponds to a vertical shear, and C_2 corresponds to a horizontal shear.

Theorem 2.4.A (continued 2)

Theorem 2.4.A. Geometric Description of Invertible Transformations of \mathbb{R}^2 .

- A linear transformation T of the plane \mathbb{R}^2 into itself is invertible if and only if T consists of a finite sequence of:
- Reflections in the *x*-axis, the *y*-axis, or the line y = x;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof (continued). Notice that this is an exhaustive list of all 2×2 elementary matrices and of reflections, expansions, contractions, and shears as listed in the statement of the theorem. The claim now follows.

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First, T([1,0]) = [1,2] and T([0,1]) = [1,-1], so the standard matrix representation of T is $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$. We use the technique of

Section 1.5 to write A as a product of elementary matrices.

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First, T([1,0]) = [1,2] and T([0,1]) = [1,-1], so the standard matrix representation of T is $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$. We use the technique of Section 1.5 to write A as a product of elementary matrices. We have

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}^{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to R_2 + 2R_1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = E_1^{-1},$$

$$\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}^{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to -3R_2} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} = E_2^{-1},$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = E_3^{-1},$$

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution. First,
$$T([1,0]) = [1,2]$$
 and $T([0,1]) = [1,-1]$, so the standard matrix representation of T is $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$. We use the technique of Section 1.5 to write A as a product of elementary matrices. We have

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}^{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to R_2 + 2R_1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = E_1^{-1},$$

$$\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix}^{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_2 \to -3R_2} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} = E_2^{-1},$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = E_3^{-1},$$

Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

So T consist of in order (reading from right to left) a horizontal shear, a vertical expansion and a reflection about the x-axis (see Exercise 8), and a vertical shear. \Box

Page 165 Number 14 (continued)

Page 165 Number 14. Consider T([x, y]) = [x + y, 2x - y]. Find the standard matrix representation and write it as a product of elementary matrices. Then describe T as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

$$A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

So T consist of in order (reading from right to left) a horizontal shear, a vertical expansion and a reflection about the x-axis (see Exercise 8), and a vertical shear. \Box

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$, and prove from the resulting equation that a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$\|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

= $\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^{2} - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^{2}.$

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$, and prove from the resulting equation that a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$\|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

= $\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^{2} - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^{2}.$

Solving for $\vec{u} \cdot \vec{v}$ gives

$$\vec{u} \cdot \vec{v} = \frac{-1}{2} (\|\vec{u} - \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$
$$= \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2).$$
$$\vec{v}, \ T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u}) - T(\vec{v})\|^2)$$

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$, and prove from the resulting equation that a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves length also preserves the dot product.

Solution. Let \vec{u} and \vec{v} be any vectors in \mathbb{R}^2 . Then

$$\|\vec{u} - \vec{v}\|^{2} = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}$$

= $\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^{2} - 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^{2}.$

Solving for $\vec{u} \cdot \vec{v}$ gives

$$\vec{u} \cdot \vec{v} = \frac{-1}{2} (\|\vec{u} - \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$
$$= \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2).$$
Similarly, $T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u}) - T(\vec{v})\|^2).$

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdots (\vec{u} - \vec{v})$, and prove from the resulting equation that a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves length also preserves the dot product.

Solution (continued). Now if T preserves lengths then $\|\vec{u}\| = \|T(\vec{u})\|$, $\|\vec{v}\| = \|T(\vec{v})\|$, and $\|T(\vec{u} - \vec{v})\| = \|\vec{u} - \vec{v}\|$. Hence

$$T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u}) - T(\vec{v})\|^2)$$

= $\frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u} - \vec{v})\|)$ since T is linear
= $\frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \vec{u} \cdot \vec{v}.$

So T preserves dot products as claimed.

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to compute $\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdots (\vec{u} - \vec{v})$, and prove from the resulting equation that a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that preserves length also preserves the dot product.

Solution (continued). Now if T preserves lengths then $\|\vec{u}\| = \|T(\vec{u})\|$, $\|\vec{v}\| = \|T(\vec{v})\|$, and $\|T(\vec{u} - \vec{v})\| = \|\vec{u} - \vec{v}\|$. Hence

$$T(\vec{u}) \cdot T(\vec{v}) = \frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u}) - T(\vec{v})\|^2)$$

= $\frac{1}{2} (\|T(\vec{u})\|^2 + \|T(\vec{v})\|^2 - \|T(\vec{u} - \vec{v})\|)$ since T is linear
= $\frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = \vec{u} \cdot \vec{v}.$

So T preserves dot products as claimed.

Page 166 Number 20. Suppose that $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of A are $T(\hat{e}_1) = T([1,0])$ and $T(\hat{e}_2) = T([0,1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations."

Page 166 Number 20. Suppose that $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of A are $T(\hat{e}_1) = T([1,0])$ and $T(\hat{e}_2) = T([0,1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors.

()

Page 166 Number 20. Suppose that $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of A are $T(\hat{e}_1) = T([1,0])$ and $T(\hat{e}_2) = T([0,1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors. Since T preserves angles and $\hat{e}_1 \perp \hat{e}_2$ then $T(\hat{e}_1) \perp T(\hat{e}_2)$; that is, the columns of A are orthogonal, as claimed.

Page 166 Number 20. Suppose that $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ preserves both length and angle. Prove that the two column vectors of the matrix A are orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T, the columns of A are $T(\hat{e}_1) = T([1,0])$ and $T(\hat{e}_2) = T([0,1])$ by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations." Since T_A preserves lengths then $||T(\hat{e}_1)|| = ||\hat{e}_1|| = 1$ and $||T(\hat{e}_2)|| = ||\hat{e}_2|| = 1$, so the columns of A are unit vectors. Since T preserves angles and $\hat{e}_1 \perp \hat{e}_2$ then $T(\hat{e}_1) \perp T(\hat{e}_2)$; that is, the columns of A are orthogonal, as claimed.