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Page 165 Number 4

Page 165 Number 4

Page 165 Number 4. Use the rotation matrix to derive trigonometric
identities for sin 3θ and cos 3θ in terms of sin θ and cos θ.

Solution. Since A =

[
cos θ − sin θ
sin θ cos θ

]
represents a rotation of R2 about

the origin through an angle of θ, then A3 represents a rotation of R2

about the origin through an angle 3θ.

So[
cos 3θ − sin 3θ
sin 3θ cos 3θ

]
=

[
cos θ − sin θ
sin θ cos θ

]3

=

[
cos2 θ − sin2 θ −2 cos θ sin θ
2 cos θ sin θ cos2 θ − sin2 θ

] [
cos θ − sin θ
sin θ cos θ

]
=

»
cos3 θ − cos θ sin2 θ − 2 cos θ sin2 θ − cos2 θ sin θ + sin3 θ − 2 cos2 θ sin θ
2 cos2 θ sin θ + cos2 θ sin θ − sin3 θ −2 cos θ sin2 θ + cos3 θ − cos θ sin2 θ

–
.

Hence cos 3θ = cos3 θ − 3 cos θ sin2 θ and sin 3θ = 3 cos2 θ sin θ − sin3 θ.
�
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Page 165 Number 6

Page 165 Number 6

Page 165 Number 6. Find the general matrix representation for the
reflection of the plane about the line y = mx .

Solution. Let ~b1 = [1,m] be a vector which, in standard position, lies
along the line y = mx . Let ~b2 = [−m, 1] so that ~b2 is orthogonal to ~b1.

In
standard position, ~b1, ~b2, and y = mx are:

So ~b1 and ~b2 form a basis for R2 and by Theorem 2.7, “Bases and Linear
Transformations,” T is completely determined by T (~b1) and T (~b2).
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Page 165 Number 6

Page 165 Number 6 (continued 1)

Solution (continued). Now we want matrix A where the first column of
A is T (ê1) = T ([1, 0]) and the second column of A is T (ê2) = T ([0, 1]).
Next, we need ê1 and ê2 in terms of ~b1 and ~b2. So we consider the system
of equations a1

~b1 + a2
~b2 = ê1 and c1

~b2 + c2
~b2 = ê2. So we have

a1[1,m] + a2[−m, 1] = [a1 − a2m, a1m + a2] = [1, 0] and
c1[1,m] + c2[−m, 1] = [c1 − c2m, c1m + c2] = [0, 1], so we consider the
augmented matrices:[

1 −m 1
m 1 0

] R2→R2−mR1

˜
[

1 −m 1
0 1 + m2 −m

] R2→R2/(1+m2)

˜

[
1 −m 1
0 1 −m/(1 + m2)

] R1→R1+mR2

˜
[

1 0 1−m2/(1 + m2)
0 1 −m/(1 + m2)

]
,

so a1 = 1/(1 + m2) and a2 = −m/(1 + m2); and
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Page 165 Number 6

Page 165 Number 6 (continued 2)

Solution (continued).[
1 −m 0
m 1 1

] R2→R2−mR1

˜
[

1 −m 0
0 1 + m2 1

] R2→R2/(1+m2)

˜

[
1 −m 0
0 1 1/(1 + m2)

] R1→R1+mR2

˜
[

1 0 m/(1 + m2)
0 1 1/(1 + m2)

]
,

so c1 = m/(1 + m2) and c2 = 1/(1 + m2). Therefore,

T (ê1) = T

(
1

1 + m2
~b1 −

m

1 + m2
~b2

)
=

1

1 + m2
T (~b1)−

m

1 + m2
T (~b2)

=
1

1 + m2
~b1 −

m

1 + m2
(−~b2) =

1

1 + m2
[1,m] +

m

1 + m2
[−m, 1]

=

[
1−m2

1 + m2
,

2m

1 + m2

]
, . . .

() Linear Algebra April 30, 2018 6 / 17



Page 165 Number 6

Page 165 Number 6 (continued 2)

Solution (continued).[
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Page 165 Number 6

Page 165 Number 6 (continued 3)

Solution (continued). . . . and

T (ê2) = T

(
m

1 + m2
~b1 +

1

1 + m2
~b2

)
=

m

1 + m2
T (~b1) +

1

1 + m2
T (~b2)

=
m

1 + m2
~b1 +

1

1 + m2
(−~b2) =

m

1 + m2
[1,m]− 1

1 + m2
[−m, 1]

=

[
2m

1 + m2
,
m2 − 1

1 + m2

]
.

So the matrix A representing T is

A =

[
1−m2

1+m2
2m

1+m2

2m
1+m2

m2−1
1+m2

]
= 1

1+m2

[
1−m2 2m

2m m2 − 1

]
.

�
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Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let T

([
x
y

])
=

[
1 0
0 r

] [
x
y

]
.

(iii) Show that T is a vertical expansion followed by a reflection about the
x-axis if r < −1.
(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if −1 < r < 0.

Solution. (iii) If r < −1 then |r | > 1 and so A1 =

[
1 0
0 |r |

]
is the

standard matrix representation of a linear transformation T , which is a

vertical expansion. Next, X =

[
1 0
0 −1

]
is the standard matrix

representation of a linear transformation T1 which is a reflection about the
x-axis.

Now

XA1 =

[
1 0
0 −1

] [
1 0
0 |r |

]
=

[
1 0
0 −|r |

]
=

[
1 0
0 r

]
and so T is a vertical expansion followed by a reflection about the x-axis.
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Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let T

([
x
y

])
=

[
1 0
0 r

] [
x
y

]
.

(iv) Show that T is a vertical contraction followed by a reflection about
the x-axis if −1 < r < 0.

Solution (continued). (iv) If −1 < r < 0 then 0 < |r | < 1 and so
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[
1 0
0 |r |

]
is the standard matrix representation of a linear

transformation T2, which is a vertical contraction. With X as in part (iii),
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[
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] [
1 0
0 |r |

]
=

[
1 0
0 −|r |

]
=

[
1 0
0 r

]
and so T is a vertical contraction followed by a reflection about the
x-axis.
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Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2

Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2.
A linear transformation T of the plane R2 into itself is invertible if and
only if T consists of a finite sequence of:
• Reflections in the x-axis, the y -axis, or the line y = x ;
• Vertical or horizontal expansions or contractions; and
• Vertical or horizontal shears.

Proof. The three elementary row operations correspond to 2× 2 matrices
as follows:

(1) Row Interchange: A =

[
0 1
1 0

]
,

(2) Row Scaling: B1 =

[
r 0
0 1

]
and B2 =

[
1 0
0 r

]
,

(3) Row Addition: C1 =

[
1 r
0 1

]
and C2 =

[
1 0
r 1

]
.
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Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2

Theorem 2.4.A (continued 1)

Proof (continued). Now A corresponds to reflection about the line
y = x , B1 with r = −1 corresponds to reflection about the y -axis, B1

corresponds to a horizontal expansion if r > 1, B1 corresponds to a
horizontal contraction if 0 < r < 1, B1 corresponds to a horizontal
expansion followed by a reflection about the y -axis if r < −1 (similar to
Exercise 8(iii)), B1 corresponds to a horizontal contraction followed by a
reflection about the y -axis if −1 < r < 0 (similar to Exercise 8(iv)), B2

with r = −1 corresponds to reflection about the x-axis, B2 corresponds to
a vertical expansion if r > 1, B2 corresponds to a vertical contraction if
0 < r < 1, B2 corresponds to a vertical expansion followed by a reflection
about the x-axis if r < −1 (as shown in Exercise 8(iii)), B2 corresponds to
a vertical contraction followed by a reflection about the x-axis if
−1 < r < 0 (as shown in Exercise 8(iv)),

C1 corresponds to a vertical
shear, and C2 corresponds to a horizontal shear.
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Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2

Theorem 2.4.A (continued 2)

Theorem 2.4.A. Geometric Description of Invertible Transformations
of R2.
A linear transformation T of the plane R2 into itself is invertible if and
only if T consists of a finite sequence of:
• Reflections in the x-axis, the y -axis, or the line y = x ;
• Vertical or horizontal expansions or contractions; and
• Vertical or horizontal shears.

Proof (continued). Notice that this is an exhaustive list of all 2× 2
elementary matrices and of reflections, expansions, contractions, and
shears as listed in the statement of the theorem. The claim now
follows.
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Page 165 Number 14

Page 165 Number 14

Page 165 Number 14. Consider T ([x , y ]) = [x + y , 2x − y ]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution. First, T ([1, 0]) = [1, 2] and T ([0, 1]) = [1,−1], so the standard

matrix representation of T is A =

[
1 1
2 −1

]
. We use the technique of

Section 1.5 to write A as a product of elementary matrices.

We have

A =

[
1 1
2 −1

] R2→R2−2R1

˜
[

1 1
0 −3

]
,

[
1 0
0 1

] R2→R2+2R1

˜
[

1 0
2 1

]
= E−1

1 ,

[
1 1
0 −3

] R2→R2/(−3)

˜
[

1 1
0 1

]
,

[
1 0
0 1

] R2→−3R2

˜
[

1 0
0 −3

]
= E−1

2 ,[
1 1
0 1

] R1→R1−R2

˜
[

1 0
0 1

]
,

[
1 0
0 1

] R1→R1+R2

˜
[

1 1
0 1

]
= E−1

3 ,
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˜
[

1 1
0 −3

]
,

[
1 0
0 1

] R2→R2+2R1

˜
[

1 0
2 1

]
= E−1

1 ,

[
1 1
0 −3

] R2→R2/(−3)

˜
[

1 1
0 1

]
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[
1 0
0 1

] R2→−3R2
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1 0
0 −3

]
= E−1

2 ,[
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0 1

] R1→R1−R2

˜
[

1 0
0 1

]
,

[
1 0
0 1

] R1→R1+R2

˜
[

1 1
0 1

]
= E−1

3 ,
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Page 165 Number 14

Page 165 Number 14 (continued)

Page 165 Number 14. Consider T ([x , y ]) = [x + y , 2x − y ]. Find the
standard matrix representation and write it as a product of elementary
matrices. Then describe T as a sequence of reflections, expansions,
contractions, and shears.

Solution (continued). So

A = E−1
1 E−1

2 E−1
3 =

[
1 0
2 1

] [
1 0
0 −3

] [
1 1
0 1

]
.

So T consist of in order (reading from right to left) a horizontal shear, a
vertical expansion and a reflection about the x-axis (see Exercise 8), and a
vertical shear. �
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Page 166 Number 18

Page 166 Number 18

Page 166 Number 18. Use algebraic properties of the dot product to
compute ‖~u − ~v‖2 = (~u − ~v) · (~u − ~v), and prove from the resulting
equation that a linear transformation T : R2 → R2 that preserves length
also preserves the dot product.

Solution. Let ~u and ~v be any vectors in R2. Then

‖~u − ~v‖2 = (~u − ~v) · (~u − ~v) = ~u · ~u − ~v · ~u − ~u · ~v + ~v · ~v

= ~u · ~u − 2~u · ~v + ~v · ~v = ‖~u‖2 − 2~u · ~v + ‖~v‖2.

Solving for ~u · ~v gives

~u · ~v =
−1

2
(‖~u − ~v‖2 − ‖~u‖2 − ‖~v‖2)

=
1

2
(‖~u‖2 + ‖~v‖2 − ‖~u − ~v‖2).

Similarly, T (~u) · T (~v) =
1

2
(‖T (~u)‖2 + ‖T (~v)‖2 − ‖T (~u)− T (~v)‖2).
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Page 166 Number 18

Page 166 Number 18 (continued)

Page 166 Number 18. Use algebraic properties of the dot product to
compute ‖~u − ~v‖2 = (~u − ~v) · · · (~u − ~v), and prove from the resulting
equation that a linear transformation T : R2 → R2 that preserves length
also preserves the dot product.

Solution (continued). Now if T preserves lengths then ‖~u‖ = ‖T (~u)‖,
‖~v‖ = ‖T (~v)‖, and ‖T (~u − ~v)‖ = ‖~u − ~v‖. Hence

T (~u) · T (~v) =
1

2
(‖T (~u)‖2 + ‖T (~v)‖2 − ‖T (~u)− T (~v)‖2)

=
1

2
(‖T (~u)‖2 + ||T (~v)‖2 − ‖T (~u − ~v)‖) since T is linear

=
1

2
(‖~u‖2 + ‖~v‖2 − ‖~u − ~v‖2) = ~u · ~v .

So T preserves dot products as claimed.
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Page 166 Number 20

Page 166 Number 20

Page 166 Number 20. Suppose that TA : R2 → R2 preserves both
length and angle. Prove that the two column vectors of the matrix A are
orthogonal unit vectors.

Proof. Since A is the standard matrix representation of T , the columns of
A are T (ê1) = T ([1, 0]) and T (ê2) = T ([0, 1]) by Corollary 2.3.A,
“Standard Matrix Representation of Linear Transformations.”

Since TA

preserves lengths then ‖T (ê1)‖ = ‖ê1‖ = 1 and ‖T (ê2)‖ = ‖ê2‖ = 1, so
the columns of A are unit vectors. Since T preserves angles and ê1 ⊥ ê2

then T (ê1) ⊥ T (ê2); that is, the columns of A are orthogonal, as
claimed.
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A are T (ê1) = T ([1, 0]) and T (ê2) = T ([0, 1]) by Corollary 2.3.A,
“Standard Matrix Representation of Linear Transformations.” Since TA
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