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Chapter 3. Vector Spaces

Section 3.1. Vector Spaces—Proofs of Theorems

LINEAR
ALGEBRA

ALEIGH
BEAUREGARD

L Example3i2 |
Example 3.1.2 (A2)

Solution (continued).

A2,

p(x) + q(x)

bnX™ 4 b1 x™ L 4 by x4 (@, + by)X"
+(an-1 + bp—1)x"" 1 4 - + (a1 + b1)x + (a0 + bo)
(as above)

BnX™ + b 1x™ oo by x4 (b + an)x"”
H(bp_1+ an_1)x" L 4 4 (by + a1)x + (b + a0)
since addition is commutative in R

q(x) + p(x)
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Example 3.1.2

Example 3.1.2. The set P of all polynomials in variable x with real
coefficients is a vector space. Vector addition and scalar multiplication are
the usual addition of polynomials and multiplication of a polynomial by a
scalar.

Solution. Let p(x) = apx" + a,_1x" "1+ -+ a1x + ao,

q(x) = bmx™ + bp_1x™ "1 4+ -+ + byx + b, and

r(x) = cex' + cp1x* 71 + - -+ + c1x + co be polynomials in P (where, say,
¢ < n<m)and let s and t be real scalars. Then

p(x) + q(x) = bx™ + bp_1x" L 4 o 4 bpx™t 4 (an + bp)x" +
(an—1+ bp_1)x"1 + -+ (a1 + b1)x + (ap + bp) € P and so P is closed
under vector addition. Also,

sp(x) = (san)x" + (sap—1)x""1 + -+ + (sa1)x + (sag) € P and so P is
closed under scalar multiplication. We take these computations as the
definitions of vector addition and scalar multiplication in P. We now check
the 8 properties of Definition 3.1.
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Example 3.1.2 (A1)

Solution (continued).
AL (p(x) + q(x)) + r(x)

= ((anx" + an-1x""1 + -+ + a1x + ag) + (bmx™ + bm_1x™"
4+t bix+ b))+ (coxt +coo1x 4 ax + o)

= (bnx™ 4 b1 x™ 4o+ bppax" 4+ (3 + by)x"
+(an—1+ bp_1x™ 1+ -+ + (a1 + b1)x + (a0 + bo))
—F(Cﬁx’E +ox M ax+ o)

= bpX™ 4 by x™ L+ bn+1x"+1 + (an + bp)x"
+(an—1 4 bp—1)x""1 + - + (aps1 + bega )X
+((ag + bg) + CQ)XE + ((af_1 + bg_1) + Cf_]_)Xn
+---+ ((a1 + b1) + c1)x + ((a0 + bo) + @)

1

-1
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Example 3.1.2 (A1) (continued) Example 3.1.2 (A3, A4)
Solution. Al. (continued) (p(x) + q(x)) + r(x) Solution (continued).
™ . A3. We take the zero vector as the polynomial with all coefficients O:
= bpx™ 4+ bp_1x™ "t + -+ + by x™ T + (a3, + by )x" 0(x) = 0. Then
+(an-1 + ba_1)X" " 4 -+ + (app1 + begr )X 0(x)+p(x) = (04 an)x" +(0+ap1)x" 14+ (04 a1)x + (0 + a0)
+(ae + (be + c0))x" + (ae—1 + (be—1 + ce—1))x" ! = apx"+ap1x" P4 +aix+ag
+--+ (a1 + (b + c1))x + (a0 + (bo + ) since 0 is the additive identity in R
since addition in R is associative = p(x).
= (anxX"+an-1x""1 4+ a1+ a0) + (bpx™ + bpo1x™ T 4 A4. For p(x) as given, we define
+bpr1x™ + (b + co)x" + (be—1 + c—1)x" 4 - —p(x) = (—an)X" + (—an_1)x" 1 + -+ 4 (—a1)x + (—ag). Then
+(b1 + c1)x + (bo + ) p(x)+ (—p(x)) = (anX"+ ap_1x"" 1+ -+ ax + ag)
= p(X) + (q"(x) + r(x))' +(—anx” — .:‘1‘].7_1Xﬂ_1 — e —a1X — 30]
-1
Notice that, by A2, we can permute p(x), g(x), and r(x) and the = (an—an)x" + (ap-1—ana X"+
associativity claim then holds in general (this is necessary to cover all cases +(a1 — a1)x + (a0 — ao)
of the relative degrees of the polynomials). = 0(x).
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Example 3.1.2 (S1) Example 3.1.2 (52)
Solution (continued).
S1. We have: Solution (continued).
s(p(x) 4+ q(x)) = s(bnpx™ + b1 x™ 14 oo 4 bprgx™ 4 (bn + an)x" S2. We have:
+(bp-1+ ap-1)X""" 4+ (by + a1)x + (bo + o)) (s+t)p(x) = (s+ t)(anx"+ ap_1x" 1+ + a1x + ao)
= 5(bp)x™ + 5(bp-1)x" 7 4 4 5(bpya )X = (s+t)apx" + (s + t)an-1x""t 4+
+5(bn + an)x" + s(bp-1 + an-1)x" " + - - +(s+ t)arx + (s + t)ao
+s(b1 + a1)x + s(bo + ao) = (sap+ ta,)x" 4 (sap,-1 + tap 1)x" L 4.
= (sbm)X™ + (sbm-1)x""1 4 - + (sbpy1)x" ! +(say + tay)x + (sag + tap)
+(sbp + san)x" + (sbp-1 + sap_1)x" 1 4+ since multiplication distributes over addition in R
+(sby + sa1)x + (shp + sag) since multiplication = sp(x) + tp(x).
distributes over addition in R
— sp(x) + sq(x).
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Example 3.1.2 (S3)

Solution (continued).

S3. We have:

s(tp(x)) = s(t(anx" + ap_1x"" P+ -+ a1x + ag))
= s(tapx" + tap_1x" 1+ 4 tayx + tag)
= s(tan)x" + s(tap—1)x""' + -+ + s(tar)x + s(tap)
= (st)apx" + (st)an_1x" 1+ - + (st)ayx + (st)ag

since multiplication is associative in R
= (st)p(x).
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age 189 Number 6

Page 189 Number 6

Page 189 Number 6. Consider the set F of all functions mapping R into
R, with scalar multiplication defined for scalar r € R and f € F as

(rf)(x) = rf(x), and vector addition }- defined as

(f ¥ g)(x) = max{f(x),g(x)}. Is F a vector space?

Solution. The peculiar way of adding vectors yields some problems. For
example there can be no additive identity and A3 does not hold. To see
this, let k € R be a constant and consider the constant function f(x) = k.
If e(x) is the additive identity in F then

e(x) ¥ f(x) = max{e(x), f(x)} = f(x) = k for all x € R. So it must be
that e(x) < k for all x € R. Since k € R is arbitrary, we have that

e(x) < k for all k € R and for all x € R. But then there is no value that
can be assigned to e(x) for any x € R and so no identity vector exists. So
‘ NO, F is not a vector space. ‘ [
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Example 3.1.2 (S4)

Solution (continued).
S4. We have:

1p(x) = 1(anx"+ ap_1x" 14+ a1x + ag)
= (lag)x" + (1ap—1)x"" 1 +--- + (La1)x + (1ap)
= apx"+ap_1x"+ -+ ax+ a
since 1 is the multiplicative identity in R

= p(x).

So all properties of Definition 3.1 are satisfied and P is a vector space. [J
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Theorem 3.1, Elementary Properties of Vector Spaces

Theorem 3.1

Theorem 3.1. Elementary Properties of Vector Spaces.
Every vector space V satisfies:

1. the vector 0 is the unique additive identity in a vector space,
.ifi+vV=10u+wthenvV=w,

Proof. 1. Suppose that there are two additive identities, 0 and 0’. Then
consider:

(=1}

= 0+ 0 (since 0 is an additive identity)
= (' (since 0 is an additive identity).

Therefore, 0 = (' and the additive identity is unique.
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Theorem 3.1 (continued)

Theorem 3.1. Elementary Properties of Vector Spaces.
Every vector space V satisfies:

1. the vector 0 is the unique additive identity in a vector space,
3. ifi+ VvV =10+ w then Vv = w,

Proof (continued).
3. Suppose 4+ v = 1+ w. Then we add — i to both sides of the
equation and we get:

(d+V)+(—0) = (d+w)+(—0)
(V+ U) +(—td) = (w+ i)+ (—0) by commutivity, A2
+(d— 1) = w+ (d— ) by associativity, Al
v+0 = w+0 by additive inverse, A4
v = w by additive identity, A3.
The conclusion holds. O
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Page 190 Number 24

Page 190 Number 24 (continued)

Page 190 Number 24. Let V be a vector space and let v and w be
nonzero vectors in V. Prove that if V is not a scalar multiple of w, then v
is not a scalar multiple of v 4+ w.

Proof. Then (), (1 — r)v = rw, implies that

1

1, (A=nV)=

(1)

w. That is, V is a scalar

or, by 3, 1V = ——w or, by S4, ¥ = —
1—r 1—r
multiple of w, as claimed. O
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Page 190 Number 24

Page 190 Number 24. Let V be a vector space and let v and w be
nonzero vectors in V. Prove that if V is not a scalar multiple of w, then v
is not a scalar multiple of v + w.

Proof. We consider the (logically equivalent) contrapositive of the claim:
If vV is a scalar multiple of V + w then V is a scalar multiple of w. We
prove this and then the original claim follows.

Suppose V is a scalar multiple of V + w, say v = r(V + 1.71}) where r € R is
ascalar. Then v=rv+rwbySlandso Vv —rv=(rv+rw)—rvor

(1—r)Vv = —rv+(rv+rw) by S2 and A2
= (=rv+rv)+rw by Al
0+ rw by A4
= rw by A3. (%)
If r =1 then OV = 1w or 0 = w (by S4 and Theorem 3.1(4)), but w is a

nonzero vector by hypothesis, so r # 1.

Linear Algebra June 23, 2018 15 /18

190 Number 26

Page 190 Number 26

Page 190 Number 26. Use the universality of function spaces to explain
how we can view the Euclidean vector space R™" and the vector space

M n of all m x n matrices as essentially the same vector space with just a
different notation for the vectors.

Solution. We saw in the previous note that we can use set
S={(1,1),(1,2),....(1,n),(2,1),
(2,2),...,(2,n),(3, 1),( ,2),...,(m—=1,n),(m1),(m,2),...,(m,n)}

and function f : S — R to represent an m X n matrix as

fF(1,1)) £((L.2)) -~ f((1,n))
f((2,1)) f((2,2) - f((2.n)

f((m,1)) f((m,2)) f((m, n))
We can also use function f : S — IR to represent a vector in R™" as

= [f((1,1)),7((2,1)), ..., f((m. 1)), £((1,2)), F((2,2)), ..., f((m, n))].

Linear Algebra June 23, 2018 17 /18



Page 190 Number 26

Page 190 Number 26 (continued)

Solution (continued). For k with 1 < k < mn, we can write k as
k:i+(j—1)mforsomejwith l1<j;<nandsomeiwithl<i<m
(this is the “Division Algorithm™). So the kth component of vector V¢
equals the (i, /) entry of M (and conversely). When matrix My is
multiplied by a scalar r, the (i, /) entry of M is rf((i,j)). When vector V¢
is multiplied by a scalar r, the kth component of rvg is rf((i,j)) where

k =i+ (j —1)m as above. So scalar multiplication "behaves” in the same
way on Mg and V. If matrix M, and vector v are similarly defined using
function g : S — R then the (i, ) entry of matrix Mg + M, is

f((i,j))+ &g((i,j)). The kth component of V¢ + Vg is f((i,/)) + g((7,/))
where k =i + (j — 1)m as above. So vector/matrix addition “behaves”
the same way as well. The two basic properties of a vector space are scalar
multiplication and vector addition. Since these are the same (or “behave”
the same) then the vector spaces R™" and M,, , are essentially the same.
[J Note. We clarify this “essentially the same” idea in the Section 3.3,
“Coordinatization of Vectors,” when we define a vector space isomorphism.
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