Linear Algebra

Chapter 3. Vector Spaces Section 3.2. Basic Concepts of Vector Spaces—Proofs of Theorems

Table of contents

- [Theorem 3.2. Test for Subspace](#page-2-0)
	- [Page 202 Number 4](#page-11-0)
- [Page 202 Number 8](#page-15-0)
	- [Page 202 Number 16](#page-20-0)
- [Page 202 Number 20](#page-29-0)
- [Page 202 Number 22](#page-34-0)
- [Theorem 3.3. Unique Combination Criterion for a Basis](#page-44-0)
- [Page 203 Number 32](#page-53-0)
- [Page 203 Number 36](#page-57-0)
- [Page 204 Number 40](#page-63-0)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if (1) $\vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W$, (2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$, we have $r\vec{v} \in W$.

Proof. Let W be a subspace of V. W must be nonempty since $\vec{0}$ must be in W by Definition 3.1, "Vector Space." Also by Definition 3.1, we see that W must have a rule for adding two vectors \vec{v} and \vec{w} in W to produce a vector $\vec{v} + \vec{w}$.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

$$
(1) \ \vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W,
$$

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$, we have $r\vec{v} \in W$.

Proof. Let W be a subspace of V. W must be nonempty since $\vec{0}$ must be in W by Definition 3.1, "Vector Space." Also by Definition 3.1, we see that W must have a rule for adding two vectors \vec{v} and \vec{w} in W to produce **a vector** $\vec{v} + \vec{w}$ **.** Addition in W is the same as in V, so it is necessary that W is closed under vector addition. Similarly, we must have a rule for multiplying any vector \vec{w} in W by any scalar $r \in \mathbb{R}$ to produce a vector r \vec{w} in W. Scalar multiplication in W is the same as in V , so it is necessary that W be closed under scalar multiplication.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

$$
(1) \ \vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W,
$$

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$, we have $r\vec{v} \in W$.

Proof. Let W be a subspace of V. W must be nonempty since $\vec{0}$ must be in W by Definition 3.1, "Vector Space." Also by Definition 3.1, we see that W must have a rule for adding two vectors \vec{v} and \vec{w} in W to produce a vector $\vec{v} + \vec{w}$. Addition in W is the same as in V, so it is necessary that W is closed under vector addition. Similarly, we must have a rule for multiplying any vector \vec{w} in W by any scalar $r \in \mathbb{R}$ to produce a vector r \vec{w} in W. Scalar multiplication in W is the same as in V , so it is necessary that W be closed under scalar multiplication. So if W is a subspace of V , then (1) and (2) are necessary.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

$$
(1) \ \vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W,
$$

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$, we have $r\vec{v} \in W$.

Proof. Let W be a subspace of V. W must be nonempty since $\vec{0}$ must be in W by Definition 3.1, "Vector Space." Also by Definition 3.1, we see that W must have a rule for adding two vectors \vec{v} and \vec{w} in W to produce a vector $\vec{v} + \vec{w}$. Addition in W is the same as in V, so it is necessary that W is closed under vector addition. Similarly, we must have a rule for multiplying any vector \vec{w} in W by any scalar $r \in \mathbb{R}$ to produce a vector r \vec{w} in W. Scalar multiplication in W is the same as in V , so it is necessary that W be closed under scalar multiplication. So if W is a subspace of V , then (1) and (2) are necessary.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if (1) $\vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W$, (2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$ we have $r\vec{v} \in W$.

Proof (continued). Now suppose that W is nonempty and closed under vector addition and scalar multiplication (that is, (1) and (2) hold).

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if (1) $\vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W$,

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$ we have $r\vec{v} \in W$.

Proof (continued). Now suppose that W is nonempty and closed under vector addition and scalar multiplication (that is, (1) and (2) hold). If $\vec{0}$ is the only vector in W , then properties A1–A4 and S1–S4 are easily seen to hold since $\vec{v}, \vec{w} \in W$ implies $\vec{v} = \vec{w} = \vec{0}$. Then $W = {\vec{0}}$ is itself a vector space and so is a subspace of V.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if (1) $\vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W$,

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$ we have $r\vec{v} \in W$.

Proof (continued). Now suppose that W is nonempty and closed under vector addition and scalar multiplication (that is, (1) and (2) hold). If $\vec{0}$ is the only vector in W , then properties A1–A4 and S1–S4 are easily seen to hold since $\vec{v}, \vec{w} \in W$ implies $\vec{v} = \vec{w} = \vec{0}$. Then $W = {\vec{0}}$ is itself a vector space and so is a subspace of V. If nonzero vector \vec{v} is in W then by closure under scalar multiplication, $(-1)\vec{v} = (-\vec{v}) \in W$. By closure under vector addition, $\vec{v} + (-\vec{v}) = \vec{0} \in W$. So $\vec{0} \in W$ and for any $\vec{v} \in W$ we have $-\vec{v} \in W$, as required of all vector spaces.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if (1) $\vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W$,

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$ we have $r\vec{v} \in W$.

Proof (continued). Now suppose that W is nonempty and closed under vector addition and scalar multiplication (that is, (1) and (2) hold). If $\vec{0}$ is the only vector in W , then properties A1–A4 and S1–S4 are easily seen to hold since $\vec{v}, \vec{w} \in W$ implies $\vec{v} = \vec{w} = \vec{0}$. Then $W = {\vec{0}}$ is itself a vector space and so is a subspace of V. If nonzero vector \vec{v} is in W then by closure under scalar multiplication, $(-1)\vec{v} = (-\vec{v}) \in W$. By closure under vector addition, $\vec{v} + (-\vec{v}) = \vec{0} \in W$. So $\vec{0} \in W$ and for any $\vec{v} \in W$ we have $-\vec{v} \in W$, as required of all vector spaces. Now A1–A4 and S1–S4 hold for all $\vec{v}, \vec{w} \in V$ and $r, s \in \mathbb{R}$, so they hold for all $\vec{v}, \vec{w} \in W$ and $r, s \in \mathbb{R}$. That is, W is itself a vector space and so is a subspace of V.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

$$
(1) \ \vec{v}, \vec{w} \in W \Rightarrow \vec{v} + \vec{w} \in W,
$$

(2) for all $r \in \mathbb{R}$ and for all $\vec{v} \in W$ we have $r\vec{v} \in W$.

Proof (continued). Now suppose that W is nonempty and closed under vector addition and scalar multiplication (that is, (1) and (2) hold). If $\vec{0}$ is the only vector in W , then properties A1–A4 and S1–S4 are easily seen to hold since $\vec{v}, \vec{w} \in W$ implies $\vec{v} = \vec{w} = \vec{0}$. Then $W = {\vec{0}}$ is itself a vector space and so is a subspace of V. If nonzero vector \vec{v} is in W then by closure under scalar multiplication, $(-1)\vec{v} = (-\vec{v}) \in W$. By closure under vector addition, $\vec{v} + (-\vec{v}) = \vec{0} \in W$. So $\vec{0} \in W$ and for any $\vec{v} \in W$ we have $-\vec{v} \in W$, as required of all vector spaces. Now A1–A4 and S1–S4 hold for all $\vec{v},\vec{w} \in V$ and $r,s \in \mathbb{R}$, so they hold for all $\vec{v},\vec{w} \in W$ and $r, s \in \mathbb{R}$. That is, W is itself a vector space and so is a subspace of V.

Page 202 Number 4. Determine whether the set F_1 of all functions f such that $f(1) = 0$ is a subspace of the vector space $\mathcal F$ of all functions mapping $\mathbb R$ into $\mathbb R$ (see Example 3.1.3).

Solution. We apply Theorem 3.2, "Test for a Subspace." Let $f, g \in F_1$ and let $r \in \mathbb{R}$ be a scalar.

Page 202 Number 4. Determine whether the set F_1 of all functions f such that $f(1) = 0$ is a subspace of the vector space $\mathcal F$ of all functions mapping $\mathbb R$ into $\mathbb R$ (see Example 3.1.3).

Solution. We apply Theorem 3.2, "Test for a Subspace." Let $f, g \in F_1$ and let $r \in \mathbb{R}$ be a scalar. Then $(f + g)(x) = f(x) + g(x)$, so $(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$ and so $f + g \in F_1$ and F_1 is closed under vector addition.

Page 202 Number 4. Determine whether the set F_1 of all functions f such that $f(1) = 0$ is a subspace of the vector space $\mathcal F$ of all functions mapping $\mathbb R$ into $\mathbb R$ (see Example 3.1.3).

Solution. We apply Theorem 3.2, "Test for a Subspace." Let $f, g \in F_1$ and let $r \in \mathbb{R}$ be a scalar. Then $(f + g)(x) = f(x) + g(x)$, so $(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$ and so $f+g \in F_1$ and F_1 is closed under vector addition. Next, $(rf)(x) = rf(x)$, so $(rf)(1) = rf(1) = r0 = 0$ and so $rf \in F_1$ and F_1 is closed under scalar multiplication. So by Theorem 3.2, F_1 is a subspace of \mathcal{F} . \Box

Page 202 Number 4. Determine whether the set F_1 of all functions f such that $f(1) = 0$ is a subspace of the vector space $\mathcal F$ of all functions mapping $\mathbb R$ into $\mathbb R$ (see Example 3.1.3).

Solution. We apply Theorem 3.2, "Test for a Subspace." Let $f, g \in F_1$ and let $r \in \mathbb{R}$ be a scalar. Then $(f + g)(x) = f(x) + g(x)$, so $(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$ and so $f+g \in F_1$ and F_1 is closed under vector addition. Next, $(rf)(x) = rf(x)$, so $(rf)(1) = rf(1) = r0 = 0$ and so $rf \in F_1$ and F_1 is closed under scalar multiplication. So by Theorem 3.2, F_1 is a subspace of \mathcal{F} . \Box

Page 202 Number 8. Let P be the vector space of polynomials with real coefficients along with the zero function (see Example 3.1.2). Prove that $sp(1, x) = sp(1 + 2x, x).$

Proof. We show that each set of vectors is a subset of the other in order to deduce that the sets are the same.

Page 202 Number 8. Let \mathcal{P} be the vector space of polynomials with real coefficients along with the zero function (see Example 3.1.2). Prove that $sp(1, x) = sp(1 + 2x, x).$

Proof. We show that each set of vectors is a subset of the other in order to deduce that the sets are the same.

Let $p(x) \in sp(1, x)$. Then $p(x) = (r_1)1 + (r_2)x = r_1 + r_2x$ for some scalars $r_1, r_2 \in \mathbb{R}$. Now $p(x) = r_1 + r_2x = (r_1)(1 + 2x) + (r_2 - 2r_1)x$ and so $p(x) \in sp(1 + 2x, x)$ (since $p(x)$ is a linear combination of $1 + 2x$ and x). Therefore every element of $sp(1, x)$ is in $sp(1 + 2x, x)$ and so $\text{sp}(1, x) \subset \text{sp}(1 + 2x, x).$

Page 202 Number 8. Let \mathcal{P} be the vector space of polynomials with real coefficients along with the zero function (see Example 3.1.2). Prove that $sp(1, x) = sp(1 + 2x, x).$

Proof. We show that each set of vectors is a subset of the other in order to deduce that the sets are the same.

Let $p(x) \in sp(1, x)$. Then $p(x) = (r_1)1 + (r_2)x = r_1 + r_2x$ for some scalars $r_1, r_2 \in \mathbb{R}$. Now $p(x) = r_1 + r_2x = (r_1)(1 + 2x) + (r_2 - 2r_1)x$ and so $p(x) \in sp(1 + 2x, x)$ (since $p(x)$ is a linear combination of $1 + 2x$ and x). Therefore every element of $sp(1, x)$ is in $sp(1 + 2x, x)$ and so $sp(1, x) \subset sp(1 + 2x, x)$. Now let $q(x) \in sp(1 + 2x, x)$. Then $q(x) = (s_1)(1 + 2x) + (s_2)x$ for some scalars $s_1, s_2 \in \mathbb{R}$. Now $q(x) = (s_1)(1+2x) + (s_2)x = s_1 + 2s_1x + s_2x = (s_1)1 + (2s_1 + s_2)x$ and so $q(x) \in sp(1, x)$. Therefore every element of $sp(1 + 2x, x)$ is in $sp(1, x)$ and so $sp(1 + 2x, x) \subset sp(1, x)$.

Page 202 Number 8. Let \mathcal{P} be the vector space of polynomials with real coefficients along with the zero function (see Example 3.1.2). Prove that $sp(1, x) = sp(1 + 2x, x).$

Proof. We show that each set of vectors is a subset of the other in order to deduce that the sets are the same.

Let $p(x) \in sp(1, x)$. Then $p(x) = (r_1)1 + (r_2)x = r_1 + r_2x$ for some scalars $r_1, r_2 \in \mathbb{R}$. Now $p(x) = r_1 + r_2x = (r_1)(1 + 2x) + (r_2 - 2r_1)x$ and so $p(x) \in sp(1 + 2x, x)$ (since $p(x)$ is a linear combination of $1 + 2x$ and x). Therefore every element of $sp(1, x)$ is in $sp(1 + 2x, x)$ and so $sp(1, x) \subset sp(1 + 2x, x)$. Now let $q(x)$ ∈ sp(1 + 2x, x). Then $q(x) = (s_1)(1+2x) + (s_2)x$ for some scalars $s_1, s_2 \in \mathbb{R}$. Now $q(x) = (s_1)(1+2x) + (s_2)x = s_1 + 2s_1x + s_2x = (s_1)1 + (2s_1 + s_2)x$ and so $q(x) \in sp(1, x)$. Therefore every element of $sp(1 + 2x, x)$ is in $sp(1, x)$ and so sp(1 + 2x, x) ⊂ sp(1, x). Hence, sp(1, x) = sp(1 + 2x, x).

Page 202 Number 8. Let \mathcal{P} be the vector space of polynomials with real coefficients along with the zero function (see Example 3.1.2). Prove that $sp(1, x) = sp(1 + 2x, x).$

Proof. We show that each set of vectors is a subset of the other in order to deduce that the sets are the same.

Let $p(x) \in sp(1, x)$. Then $p(x) = (r_1)1 + (r_2)x = r_1 + r_2x$ for some scalars $r_1, r_2 \in \mathbb{R}$. Now $p(x) = r_1 + r_2x = (r_1)(1 + 2x) + (r_2 - 2r_1)x$ and so $p(x) \in sp(1 + 2x, x)$ (since $p(x)$ is a linear combination of $1 + 2x$ and x). Therefore every element of $sp(1, x)$ is in $sp(1 + 2x, x)$ and so $sp(1, x) \subset sp(1 + 2x, x)$. Now let $q(x)$ ∈ sp(1 + 2x, x). Then $q(x) = (s_1)(1+2x) + (s_2)x$ for some scalars $s_1, s_2 \in \mathbb{R}$. Now $q(x) = (s_1)(1+2x) + (s_2)x = s_1 + 2s_1x + s_2x = (s_1)1 + (2s_1 + s_2)x$ and so $q(x) \in sp(1, x)$. Therefore every element of $sp(1 + 2x, x)$ is in $sp(1, x)$ and so $sp(1 + 2x, x) \subset sp(1, x)$. Hence, $sp(1, x) = sp(1 + 2x, x)$. \mathbf{I}

Page 202 Number 16. Determine whether the set of functions $\{\sin x,\sin 2x,\sin 3x\}$ is dependent or independent in the vector space F of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution. Suppose

```
r_1 \sin x + r_2 \sin 2x + r_3 \sin 3x = 0 (*)
```
for some scalars $r_1, r_2, r_3 \in \mathbb{R}$. Then this equation must hold for all $x \in \mathbb{R}$.

Page 202 Number 16. Determine whether the set of functions $\{\sin x,\sin 2x,\sin 3x\}$ is dependent or independent in the vector space $\mathcal F$ of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution. Suppose

$$
r_1 \sin x + r_2 \sin 2x + r_3 \sin 3x = 0 \qquad (*)
$$

for some scalars $r_1, r_2, r_3 \in \mathbb{R}$. Then this equation must hold for all $x \in \mathbb{R}$. In particular, for $x = \pi/2$ we have $r_1 \sin(\pi/2) + r_2 \sin(2(\pi/2)) + r_3 \sin(3(\pi/2)) = 0$, or $r_1(1) + r_2(0) + r_3(-1) = 0$ or

$$
r_1 - r_3 = 0. \tag{1}
$$

Page 202 Number 16. Determine whether the set of functions $\{\sin x, \sin 2x, \sin 3x\}$ is dependent or independent in the vector space F of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution. Suppose

$$
r_1 \sin x + r_2 \sin 2x + r_3 \sin 3x = 0 \qquad (*)
$$

for some scalars $r_1, r_2, r_3 \in \mathbb{R}$. Then this equation must hold for all $x \in \mathbb{R}$. In particular, for $x = \pi/2$ we have $r_1 \sin(\pi/2) + r_2 \sin(2(\pi/2)) + r_3 \sin(3(\pi/2)) = 0$, or $r_1(1) + r_2(0) + r_3(-1) = 0$ or

$$
r_1-r_3=0.\hspace{1cm} (1)
$$

Differentiating both sides of $(*)$ with respect to x implies that r_1 cos $x + 2r_2$ cos $2x + 3r_3$ cos $3x = 0$ and with $x = 0$ we must have $r_1 \cos(0) + 2r_2 \cos(0) + 3r_2 \cos(0) = 0$ or

$$
r_1 + 2r_2 + 3r_3 = 0. \t\t(2)
$$

Page 202 Number 16. Determine whether the set of functions $\{\sin x,\sin 2x,\sin 3x\}$ is dependent or independent in the vector space F of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution. Suppose

$$
r_1 \sin x + r_2 \sin 2x + r_3 \sin 3x = 0 \qquad (*)
$$

for some scalars $r_1, r_2, r_3 \in \mathbb{R}$. Then this equation must hold for all $x \in \mathbb{R}$. In particular, for $x = \pi/2$ we have $r_1 \sin(\pi/2) + r_2 \sin(2(\pi/2)) + r_3 \sin(3(\pi/2)) = 0$, or $r_1(1) + r_2(0) + r_3(-1) = 0$ or

$$
r_1-r_3=0.\hspace{1cm} (1)
$$

Differentiating both sides of $(*)$ with respect to x implies that r_1 cos $x + 2r_2$ cos $2x + 3r_3$ cos $3x = 0$ and with $x = 0$ we must have $r_1 \cos(0) + 2r_2 \cos(0) + 3r_2 \cos(0) = 0$ or

$$
r_1 + 2r_2 + 3r_3 = 0. \t\t(2)
$$

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of $(*)$ with respect to x implies $-r_1 \sin x - 4r_2 \sin 2x - 9r_3 \sin 3x = 0$ and with $x = \pi/2$ we must have $-r_1 \sin(\pi/2) - 4r_2 \sin(2(\pi/2)) - 9r_3 \sin(3(\pi/2)) = 0$ or

$$
-r_1 + 9r_3 = 0. \t\t(3)
$$

So $(*)$ implies (1) , (2) , and (3) so that if $(*)$ holds then we must have r_1 − r_3 = 0 $r_1 + 2r_2 + 3r_3 = 0$. $-r_1$ + $9r_3$ = 0

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of (∗) with respect to x implies $-r_1 \sin x - 4r_2 \sin 2x - 9r_3 \sin 3x = 0$ and with $x = \pi/2$ we must have $-r_1 \sin(\pi/2) - 4r_2 \sin(2(\pi/2)) - 9r_3 \sin(3(\pi/2)) = 0$ or

$$
-r_1 + 9r_3 = 0. \t\t(3)
$$

So $(*)$ implies (1) , (2) , and (3) so that if $(*)$ holds then we must have r_1 − r_3 = 0 r_1 + $2r_2$ + $3r_3$ = 0. This system of equations has associated $-r_1$ + 9 r_3 = 0 augmented matrix Т $\overline{}$ $1 \t0 \t -1 \t0$ $1 \t2 \t3 \t0$ −1 0 9 0 ı . Since this is a homogeneous system of equations then any solution $[r_1,r_2,r_3]^{\mathcal{T}}$ is a vector in the nullspace of the coefficient matrix A.

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of $(*)$ with respect to x implies $-r_1 \sin x - 4r_2 \sin 2x - 9r_3 \sin 3x = 0$ and with $x = \pi/2$ we must have $-r_1 \sin(\pi/2) - 4r_2 \sin(2(\pi/2)) - 9r_3 \sin(3(\pi/2)) = 0$ or

$$
-r_1 + 9r_3 = 0. \t\t(3)
$$

So $(*)$ implies (1) , (2) , and (3) so that if $(*)$ holds then we must have r_1 − r_3 = 0 r_1 + 2 r_2 + 3 r_3 = 0. This system of equations has associated $-r_1$ + $9r_3$ = 0 augmented matrix $\sqrt{ }$ $\overline{1}$ $1 \quad 0 \quad -1 \mid 0$ $1 \quad 2 \quad 3 \mid 0$ -1 0 9 0 1 . Since this is a homogeneous system of equations then any solution $[r_1,r_2,r_3]^{\mathcal{T}}$ is a vector in the nullspace of the coefficient matrix A.

Page 202 Number 16 (continued 2)

Page 202 Number 16. Determine whether the set of functions $\{\sin x,\sin 2x,\sin 3x\}$ is dependent or independent in the vector space F of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution (continued). So we now reduce the coefficient matrix:

$$
A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 2 & 3 \\ -1 & 0 & 9 \end{array} \right] \xrightarrow{R_2 \rightarrow R_2 - R_1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 8 \end{bmatrix} = H.
$$

Now H has 3 pivots and 0 pivot-free columns. So by Theorem 2.5(1), "The Rank Equation," the nullity of A is 0 and so the only solution to the system of equations is the trivial solution $r_1 = r_2 = r_3 = 0$. That is, the set of vectors is linearly independent. \Box

Page 202 Number 16 (continued 2)

Page 202 Number 16. Determine whether the set of functions $\{\sin x,\sin 2x,\sin 3x\}$ is dependent or independent in the vector space F of all real-valued functions defined on $\mathbb R$ (see Example 3.1.3).

Solution (continued). So we now reduce the coefficient matrix:

$$
A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 2 & 3 \\ -1 & 0 & 9 \end{array} \right] \xrightarrow{R_2 \rightarrow R_2 - R_1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 4 \\ 0 & 0 & 8 \end{bmatrix} = H.
$$

Now H has 3 pivots and 0 pivot-free columns. So by Theorem 2.5(1), "The Rank Equation," the nullity of A is 0 and so the only solution to the system of equations is the trivial solution $r_1 = r_2 = r_3 = 0$. That is, the set of vectors is linearly independent. \Box

Page 202 Number 20. Determine whether or not the set $\{x, x^2+1, (x-1)^2\}$ is a basis for the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, "Basis for a Vector Space," to see if the set is a linearly independent spanning set. For linear independence we consider the equation $(r_1)x + r_2(x^2 + 1) + r_3(x - 1)^2 = 0x^2 + 0x + 0$. This gives $(r_2 + r_3)x^2 + (r_1 - 2r_3)x + (r_2 + r_3) = 0x^2 + 0x + 0$ and so we need $r_2 + r_3 = 0$ r_1 – $2r_3$ = 0. $r_2 + r_3 = 0$

Page 202 Number 20. Determine whether or not the set $\{x, x^2+1, (x-1)^2\}$ is a basis for the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, "Basis for a Vector Space," to see if the set is a linearly independent spanning set. For linear independence we consider the equation $(r_1)x + r_2(x^2 + 1) + r_3(x - 1)^2 = 0x^2 + 0x + 0$. This gives $(r_2 + r_3)x^2 + (r_1 - 2r_3)x + (r_2 + r_3) = 0x^2 + 0x + 0$ and so we need $r_2 + r_3 = 0$

 r_1 $2r_3$ $=$ 0 . We consider the augmented matrix for this $r_2 + r_3 = 0$

system of equations:

$$
A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}
$$

Page 202 Number 20. Determine whether or not the set $\{x, x^2+1, (x-1)^2\}$ is a basis for the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, "Basis for a Vector Space," to see if the set is a linearly independent spanning set. For linear independence we consider the equation $(r_1)x + r_2(x^2 + 1) + r_3(x - 1)^2 = 0x^2 + 0x + 0$. This gives $(r_2 + r_3)x^2 + (r_1 - 2r_3)x + (r_2 + r_3) = 0x^2 + 0x + 0$ and so we need $r_2 + r_3 = 0$

 r_1 $2r_3$ $=$ 0 . We consider the augmented matrix for this $r_2 + r_3 = 0$

system of equations:

$$
A = \left[\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right] \xrightarrow{R_1 \leftrightarrow R_2} \left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right]
$$

Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set $\{x, x^2+1, (x-1)^2\}$ is a basis for the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less.

Solution (continued).

$$
\left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right] \xrightarrow{R_3 \rightarrow R_3 - R_2} \left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].
$$

We see that the system of equations has a free variable, say $t = r_3$, and then the general solution is $r_1 = 2t$, $r_2 = -t$, $r_3 = t$. In particular, $r_1 = 2$, $r_2 = -1$, $r_3 = 1$ gives the dependence relation $(2)x + (-1)(x^2 + 1) + (1)(x - 1)^2 = 0x^2 + 0x + 0$ and so, by Definition 3.5, "Linear Dependence and Independence," we see that the set $\{x, x^2 + 1, (x - 1)^2\}$ is not linearly independent and so it is not a basis for P_2 .

Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set $\{x, x^2+1, (x-1)^2\}$ is a basis for the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less.

Solution (continued).

$$
\left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right]\n\xrightarrow{R_3 \rightarrow R_3 - R_2} \left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].
$$

We see that the system of equations has a free variable, say $t = r_3$, and then the general solution is $r_1 = 2t$, $r_2 = -t$, $r_3 = t$. In particular, $r_1 = 2$, $r_2 = -1$, $r_3 = 1$ gives the dependence relation $(2)x + (-1)(x^2 + 1) + (1)(x - 1)^2 = 0x^2 + 0x + 0$ and so, by Definition 3.5, "Linear Dependence and Independence," we see that the set $\{x, x^2 + 1, (x - 1)^2\}$ is not linearly independent and so it is not a basis for \mathcal{P}_2 .

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in $\mathcal P$ of all polynomials, but this does not affect our computations.)

Solution. Notice that $dim(\mathcal{P}_2) = 3$ (see Note 3.2.C) and so there must be a dependence relation on the set of the 4 given vectors. So we consider $(r_1)(x^2-1)+(r_2)(x^2+1)+(r_3)4+(r_4)(2x-3)=0x^2+0x+0$ or $(r_1 + r_2)x^2 + (2r_4)x + (-r_1 + r_2 + 4r_3 - 3r_4) = 0x^2 + 0x + 0.$

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in $\mathcal P$ of all polynomials, but this does not affect our computations.)

Solution. Notice that dim(\mathcal{P}_2) = 3 (see Note 3.2.C) and so there must be a dependence relation on the set of the 4 given vectors. So we consider $(r_{1})(x^{2}-1)+(r_{2})(x^{2}+1)+(r_{3})4+(r_{4})(2x-3)=0x^{2}+0x+0$ or $(r_1 + r_2)x^2 + (2r_4)x + (-r_1 + r_2 + 4r_3 - 3r_4) = 0x^2 + 0x + 0$. So we need

$$
r_1 + r_2 = 0
$$

-r₁ + r₂ + 4r₃ - 3r₄ = 0.

 $\overline{}$

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in P of all polynomials, but this does not affect our computations.)

Solution. Notice that dim(\mathcal{P}_2) = 3 (see Note 3.2.C) and so there must be a dependence relation on the set of the 4 given vectors. So we consider $(r_{1})(x^{2}-1)+(r_{2})(x^{2}+1)+(r_{3})4+(r_{4})(2x-3)=0x^{2}+0x+0$ or $(r_1 + r_2)x^2 + (2r_4)x + (-r_1 + r_2 + 4r_3 - 3r_4) = 0x^2 + 0x + 0$. So we need $r_1 + r_2 = 0$ $2r_4 = 0$ $-r_1$ + r_2 + $4r_3$ – $3r_4$ = 0 $2r_4 = 0$. This system of equations yields the augmented matrix Т

$$
\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ -1 & 1 & 4 & -3 & 0 \ \end{bmatrix} \xrightarrow{R_3 \rightarrow R_3 + R_1} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 2 & 4 & -3 & 0 \ \end{bmatrix}
$$

 $\overline{}$

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in P of all polynomials, but this does not affect our computations.)

Solution. Notice that dim(\mathcal{P}_2) = 3 (see Note 3.2.C) and so there must be a dependence relation on the set of the 4 given vectors. So we consider $(r_{1})(x^{2}-1)+(r_{2})(x^{2}+1)+(r_{3})4+(r_{4})(2x-3)=0x^{2}+0x+0$ or $(r_1 + r_2)x^2 + (2r_4)x + (-r_1 + r_2 + 4r_3 - 3r_4) = 0x^2 + 0x + 0$. So we need $r_1 + r_2 = 0$ $2r_4 = 0$. $-r_1$ + r_2 + $4r_3$ – $3r_4$ = 0

This system of equations yields the augmented matrix

$$
\left[\begin{array}{rrr} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ -1 & 1 & 4 & -3 & 0 \end{array}\right] \xrightarrow{R_3 \rightarrow R_3 + R_1} \left[\begin{array}{rrr} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 2 & 4 & -3 & 0 \end{array}\right]
$$

Page 202 Number 22 (continued 1)

Solution (continued).

$$
\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 2 & 4 & -3 & 0 \ \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 2 & 4 & -3 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - R_2/2}
$$

$$
\begin{bmatrix} 1 & 0 & -2 & 3/2 & 0 \ 0 & 2 & 4 & -3 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - (3/4)R_3} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 \ 0 & 2 & 4 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix}
$$

$$
\xrightarrow{R_2 \rightarrow R_2/2} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 \ 0 & 1 & 2 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}.
$$

With $t = r_3$ as a free variable we have $r_1 = 2t$, $r_2 = -2t$, $r_3 = t$, $r_4 = 0$. With $t=1$ we see that $(2)(x^2-1)+(-2)(x^2+1)+(1)4=0$ or $4 = (-2)(x^2-1)+(2)(x^2+1)$. So 4 is a linear combination of x^2-1 and $x^2 + 1$. We remove it from the collection and consider the set $B = \{x^2 - 1, x^2 + 1, 2x - 3\}.$

Page 202 Number 22 (continued 1)

Solution (continued).

$$
\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 2 & 4 & -3 & 0 \ \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \ 0 & 2 & 4 & -3 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - R_2/2}
$$

$$
\begin{bmatrix} 1 & 0 & -2 & 3/2 & 0 \ 0 & 2 & 4 & -3 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - (3/4)R_3} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 \ 0 & 2 & 4 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ \end{bmatrix}
$$

$$
\xrightarrow{R_2 \rightarrow R_2/2} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 \ 0 & 1 & 2 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}.
$$

With $t = r_3$ as a free variable we have $r_1 = 2t$, $r_2 = -2t$, $r_3 = t$, $r_4 = 0$. With $t=1$ we see that $(2)(x^2-1)+(-2)(x^2+1)+(1)4=0$ or $\mathcal{A} = (-2)(\mathsf{x}^2-1) + (2)(\mathsf{x}^2+1)$. So 4 is a linear combination of x^2-1 and $x^2 + 1$. We remove it from the collection and consider the set $B = \{x^2 - 1, x^2 + 1, 2x - 3\}.$

Page 202 Number 22 (continued 2)

Solution (continued). Set $B = \{x^2 - 1, x^2 + 1, 2x - 3\}$ is a linearly independent set since $r_1({\sf x}^2-1)+r_2({\sf x}^2+1)+r_3(2{\sf x}-3)=0{\sf x}^2+0{\sf x}+0$ implies $(r_1 + r_2)x^2 + (2r_3)x + (-r_1 + r_2 - 3r_3) = 0x^2 + 0x + 0$, or $r_1 + r_2$ $2r_3 = 0$. This leads us to the augmented matrix $-r_1$ + r_2 – $3r_3$ = 0 Г $\overline{}$ $1 \quad 1 \quad 0 \mid 0$ $0 \quad 0 \quad 2 \mid 0$ -1 1 -3 0 1 $R_3\rightarrow R_3+R_1$ $\overline{}$ $1 \quad 1 \quad 0 \mid 0$ $0 \quad 0 \qquad 2 \mid 0$ $0 \quad 2 \quad -3 \mid 0$ ı $R_2 \leftrightarrow R_3$ $\overline{}$ $1 \quad 1 \quad 0 \mid 0$ $0 \quad 2 \quad -3 \mid 0$ $0 \quad 0 \quad 2 \mid 0$ ı T $R_1\rightarrow R_1-(1/2)R_2$ $\overline{}$ $1 \t0 \t3/2 \t0$ $0 \quad 2 \quad -3 \mid 0$ $0 \quad 0 \quad 2 \mid 0$ 1 \mathbb{I} $R_1 \rightarrow R_1 - (3/4)R_3$
 $R_2 \rightarrow R_2 + (3/2)R_3$ Т $\overline{}$ 1 0 0 0 $0 2 0 0$ $0 \t 0 \t 2 \t 0$ ı T $R_2 \rightarrow R_2/2$ $R_3 \rightarrow R_3/2$ Г $\overline{}$ $1 0 0 0$ $0 1 0 0$ $0 \t0 \t10$ 1 $\vert \cdot$ (1) Contract Co

Page 202 Number 22 (continued 2)

Solution (continued). Set $B = \{x^2 - 1, x^2 + 1, 2x - 3\}$ is a linearly independent set since $r_1({\sf x}^2-1)+r_2({\sf x}^2+1)+r_3(2{\sf x}-3)=0{\sf x}^2+0{\sf x}+0$ implies $(r_1 + r_2)x^2 + (2r_3)x + (-r_1 + r_2 - 3r_3) = 0x^2 + 0x + 0$, or $r_1 + r_2$ $2r_3 = 0$. This leads us to the augmented matrix $-r_1$ + r_2 – $3r_3$ = 0 $\sqrt{ }$ $\overline{1}$ $1 \quad 1 \quad 0 \mid 0$ 0 0 2 0 -1 1 -3 0 1 $R_3\rightarrow R_3+R_1$ $\overline{1}$ $1 \quad 1 \quad 0 \mid 0$ 0 0 2 0 0 2 −3 0 1 $\left[\begin{array}{c} R_2 \leftrightarrow R_3 \\ \hline \end{array}\right]$ $\overline{}$ $1 \quad 1 \quad 0 \mid 0$ 0 2 −3 0 $0 \quad 0 \quad 2 \mid 0$ 1 $\overline{1}$ $R_1\rightarrow R_1-(1/2)R_2$ $\overline{1}$ $1 \t0 \t3/2 \t0$ 0 2 −3 0 $0 \quad 0 \quad 2 \mid 0$ 1 $\overline{1}$ $R_1 \rightarrow R_1 - (3/4)R_3$
 $R_2 \rightarrow R_2 + (3/2)R_3$ $\sqrt{ }$ $\overline{1}$ $1 \quad 0 \quad 0 \mid 0$ $0 2 0 0$ $0 \t0 \t2$ 0 1 $\overline{1}$ $R_2 \rightarrow R_2/2$ $R_3 \rightarrow R_3/2$ $\sqrt{ }$ $\overline{}$ $1 \quad 0 \quad 0 \mid 0$ $0 \quad 1 \quad 0 \mid 0$ $0 \t0 \t1$ 0 1 $\vert \cdot$ (1) Contract Co

Page 202 Number 22 (continued 3)

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space \mathcal{P}_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in P of all polynomials, but this does not affect our computations.

Solution (continued). So we must have $r_1 = r_2 = r_3 = 0$ and hence the set $B=\{x^2-1,x^2+1,2x-3\}$ is linearly independent. We know set B to be a spanning set of sp $(x^2-1,x^2+1,4,2x-3)$ since every linear combination of $x^2-1,x^2+1,4,2x-3$ is also a linear combination of the elements of B (just replace the multiple of 4 with the same multiple of $(-2)(x^2-1)+(2)(x^2+1)$). Therefore, by Definition 3.6, "Basis for a Vector Space,"

 $B = \{x^2 - 1, x^2 + 1, 2x - 3\}$ is a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$. \Box

Page 202 Number 22 (continued 3)

Page 202 Number 22. Find a basis for $sp(x^2 - 1, x^2 + 1, 4, 2x - 3)$ in the vector space P_2 of all polynomials with real coefficients of degree 2 or less. (Notice that the text states this as a problem in P of all polynomials, but this does not affect our computations.

Solution (continued). So we must have $r_1 = r_2 = r_3 = 0$ and hence the set $B=\{x^2-1,x^2+1,2x-3\}$ is linearly independent. We know set B to be a spanning set of sp $(x^2-1,x^2+1,4,2x-3)$ since every linear combination of $x^2-1,x^2+1,4,2x-3$ is also a linear combination of the elements of B (just replace the multiple of 4 with the same multiple of $(-2)(x^2 - 1) + (2)(x^2 + 1)$). Therefore, by Definition 3.6, "Basis for a Vector Space,"

$$
B = \{x^2 - 1, x^2 + 1, 2x - 3\}
$$
 is a basis for $\text{sp}(x^2 - 1, x^2 + 1, 4, 2x - 3)$.

Theorem 3.3. Unique Combination Criterion for a Basis. Let B be a set of nonzero vectors in vector space V. Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, "Basis for a Vector Space," B is a spanning set and so for any given $\vec{v} \in V$ there are $\vec{b}_1', \vec{b}_2', \ldots, \vec{b}_{k'}' \in B$ and $r_1', r_2', \ldots, r_{k'}' \in \mathbb{R}$ such that

$$
\vec{v} = r'_1 \vec{b}'_1 + r'_2 \vec{b}'_2 + \cdots + r'_{k'} \vec{b}'_{k'}.
$$

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, "Basis for a Vector Space," B is a spanning set and so for any given $\vec{v} \in V$ there are $\vec{b}_1',\vec{b}_2',\ldots,\vec{b}_{k'}'\in B$ and $r_1',r_2',\ldots,r_{k'}'\in \mathbb{R}$ such that

$$
\vec{v} = r'_1 \vec{b}'_1 + r'_2 \vec{b}'_2 + \cdots + r'_{k'} \vec{b}'_{k'}.
$$

Suppose that \vec{v} can be expressed as another linear combination of vectors, say

$$
\vec{v} = s_1'' \vec{b}_1'' + s_2'' \vec{b}_2'' + \cdots + s_{k''}'' \vec{b}_{k''}''
$$

where $\vec{b}''_1, \vec{b}''_2, \ldots, \vec{b}''_{k''} \in B$ and $s''_1, s''_2 \ldots, s''_{k''} \in \mathbb{R}$.

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, "Basis for a Vector Space," B is a spanning set and so for any given $\vec{v} \in V$ there are $\vec{b}_1',\vec{b}_2',\ldots,\vec{b}_{k'}'\in B$ and $r_1',r_2',\ldots,r_{k'}'\in \mathbb{R}$ such that

$$
\vec{v} = r'_1 \vec{b}'_1 + r'_2 \vec{b}'_2 + \cdots + r'_{k'} \vec{b}'_{k'}.
$$

Suppose that \vec{v} can be expressed as another linear combination of vectors, say

$$
\vec{v} = s_1'' \vec{b}_1'' + s_2'' \vec{b}_2'' + \cdots + s_{k''}'' \vec{b}_{k''}''
$$

where $\vec{b}''_1, \vec{b}''_2, \ldots, \vec{b}''_{k''} \in B$ and $s''_1, s''_2 \ldots, s''_{k''} \in \mathbb{R}$. Some of the \vec{b}'_i and \vec{b}''_i may be the same or they could all be different. Let k be the number of different \vec{b}'_i and \vec{b}''_i .

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, "Basis for a Vector Space," B is a spanning set and so for any given $\vec{v} \in V$ there are $\vec{b}_1',\vec{b}_2',\ldots,\vec{b}_{k'}'\in B$ and $r_1',r_2',\ldots,r_{k'}'\in \mathbb{R}$ such that

$$
\vec{v} = r'_1 \vec{b}'_1 + r'_2 \vec{b}'_2 + \cdots + r'_{k'} \vec{b}'_{k'}.
$$

Suppose that \vec{v} can be expressed as another linear combination of vectors, say

$$
\vec{v} = s_1'' \vec{b}_1'' + s_2'' \vec{b}_2'' + \cdots + s_{k''}'' \vec{b}_{k''}''
$$

where $\vec{b}''_1, \vec{b}''_2, \ldots, \vec{b}''_{k''} \in B$ and $s''_1, s''_2 \ldots, s''_{k''} \in \mathbb{R}.$ Some of the \vec{b}'_i and \vec{b}''_i may be the same or they could all be different. Let k be the number of different \vec{b}'_i and \vec{b}''_i .

Proof (continued). Relabel these vectors as $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_k$ and relabel the coefficients r'_i and s''_i as r_i and s_i (introducing 0's as needed) such that $\vec{v}=r_1\vec{b}_1+r_2\vec{b}_2+\cdots+r_k\vec{b}_k=s_1\vec{b}_1+s_2\vec{b}_2+\cdots+s_k\vec{b}_k$ (this is necessary because the basis B might be infinite and so we cannot write \vec{v} as an infinite linear combination; such things are not necessarily defined in a vector space and there are different levels of infinity, which complicates things further). Then we have

$$
\vec{0} = \vec{v} - \vec{v} = (r_1 - s_1)\vec{b}_1 + (r_2 - s_2)\vec{b}_2 + \cdots + (r_k - s_k)\vec{b}_k
$$

and since B is a basis then B is linearly independent (Definition 3.6) and so $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ or $r_1 = s_1$, $r_2 = s_2$, ..., $r_k = s_k$. Therefore \vec{v} can only be expressed in one way as a linear combination of elements of B, as claimed.

Proof (continued). Relabel these vectors as $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_k$ and relabel the coefficients r'_i and s''_i as r_i and s_i (introducing 0's as needed) such that $\vec{v}=r_1\vec{b}_1+r_2\vec{b}_2+\cdots+r_k\vec{b}_k=s_1\vec{b}_1+s_2\vec{b}_2+\cdots+s_k\vec{b}_k$ (this is necessary because the basis B might be infinite and so we cannot write \vec{v} as an infinite linear combination; such things are not necessarily defined in a vector space and there are different levels of infinity, which complicates things further). Then we have

$$
\vec{0} = \vec{v} - \vec{v} = (r_1 - s_1)\vec{b}_1 + (r_2 - s_2)\vec{b}_2 + \cdots + (r_k - s_k)\vec{b}_k
$$

and since B is a basis then B is linearly independent (Definition 3.6) and so $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ or $r_1 = s_1$, $r_2 = s_2$, ..., $r_k = s_k$. Therefore \vec{v} can only be expressed in one way as a linear combination of elements of B , as claimed.

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof (continued). Now suppose each vector \vec{v} of V can be uniquely expressed as a linear combination of elements of B . Then B is a spanning set of V and (1) of Definition 3.6 holds. Let $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n \in B$ and $\textsf{suppose that} \ r_1 \vec{b}_1 + r_2 \vec{b}_2 + \cdots + r_n \vec{b}_n = \vec{0}.$ One choice for the coefficients r_1, r_2, \ldots, r_n is $r_1 = r_2 = \cdots = r_n = 0$. But since $\vec{0}$ is a unique linear combination of $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n$ then it is necessary that $r_1 = r_2 = \cdots = r_n = 0$. That is (by Definition 3.5, "Linear Dependence and Independence") B is linearly independent and (2) of Definition 3.6 holds.

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof (continued). Now suppose each vector \vec{v} of V can be uniquely expressed as a linear combination of elements of B . Then B is a spanning set of V and (1) of Definition 3.6 holds. Let $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n \in B$ and suppose that $r_1\vec{b}_1+r_2\vec{b}_2+\cdots+r_n\vec{b}_n=\vec{0}.$ One choice for the coefficients r_1, r_2, \ldots, r_n is $r_1 = r_2 = \cdots = r_n = 0$. But since $\vec{0}$ is a unique linear combination of $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n$ then it is necessary that $r_1 = r_2 = \cdots = r_n = 0$. That is (by Definition 3.5, "Linear Dependence and Independence") B is linearly independent and (2) of Definition 3.6 holds. So Definition 3.6, "Basis for a Vector Space," is satisfied and B is a basis for V.

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if and only if each vector V can by uniquely expressed as a linear combination of the vectors in set B.

Proof (continued). Now suppose each vector \vec{v} of V can be uniquely expressed as a linear combination of elements of B . Then B is a spanning set of V and (1) of Definition 3.6 holds. Let $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n \in B$ and suppose that $r_1\vec{b}_1+r_2\vec{b}_2+\cdots+r_n\vec{b}_n=\vec{0}.$ One choice for the coefficients r_1, r_2, \ldots, r_n is $r_1 = r_2 = \cdots = r_n = 0$. But since $\vec{0}$ is a unique linear combination of $\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n$ then it is necessary that $r_1 = r_2 = \cdots = r_n = 0$. That is (by Definition 3.5, "Linear Dependence and Independence") B is linearly independent and (2) of Definition 3.6 holds. So Definition 3.6, "Basis for a Vector Space," is satisfied and B is a basis for V.

Page 203 number 32. Let $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ be a basis for V. If $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$ then $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a basis for V.

Proof. By Definition 3.6, "Basis for a Vector Space," we need to show that $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a linearly independent spanning set of V. Since $\vec{w} \in V$, then $\vec{w} = r_1\vec{v}_1 + r_2\vec{v}_2 + r_3\vec{v}_3$ and $r_3 \neq 0$ since $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$.

Page 203 number 32. Let $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ be a basis for V. If $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$ then $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a basis for V.

Proof. By Definition 3.6, "Basis for a Vector Space," we need to show that $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a linearly independent spanning set of V. Since $\vec{w} \in V$, then $\vec{w} = r_1\vec{v}_1 + r_2\vec{v}_2 + r_3\vec{v}_3$ and $r_3 \neq 0$ since $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$. Then $\vec{v}_3 = \frac{1}{r_2}$ $\frac{\pi}{r_3}(\vec{w}-r_1\vec{v}_1-r_2\vec{v}_2)$. Therefore $\vec{v}_3 \in sp(\vec{v}_1,\vec{v}_2,\vec{w})$. So

 $\text{sp}(\vec{v}_1,\vec{v}_2,\vec{v}_3) \subset \text{sp}(\vec{v}_1,\vec{v}_2,\vec{w})$

and so ${\vec{v}_1,\vec{v}_2,\vec{w}}$ generates V.

Page 203 number 32. Let $\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ be a basis for V. If $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$ then $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a basis for V.

Proof. By Definition 3.6, "Basis for a Vector Space," we need to show that $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a linearly independent spanning set of V. Since $\vec{w} \in V$, then $\vec{w} = r_1\vec{v}_1 + r_2\vec{v}_2 + r_3\vec{v}_3$ and $r_3 \neq 0$ since $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$. Then $\vec{v}_3 = \frac{1}{r_3}$ $\frac{1}{r_3}(\vec{w}-r_1\vec{v}_1-r_2\vec{v}_2)$. Therefore $\vec{v}_3 \in sp(\vec{v}_1,\vec{v}_2,\vec{w})$. So $\text{sp}(\vec{v}_1,\vec{v}_2,\vec{v}_3) \subset \text{sp}(\vec{v}_1,\vec{v}_2,\vec{w})$

and so ${\vec{v}_1,\vec{v}_2,\vec{w}}$ generates V.

Next suppose, $s_1\vec{v}_1 + s_2\vec{v}_2 + s_3\vec{w} = \vec{0}$. Then $s_3 = 0$ or else $\vec{w} \in sp(\vec{v}_1, \vec{v}_2)$. So $s_1\vec{v}_1 + s_2\vec{v}_2 = 0$ and so $s_1 = s_2 = 0$. Therefore $s_1 = s_2 = s_3 = 0$ and so $\{\vec{v}_1,\vec{v}_2,\vec{w}\}\$ is a basis for V.

Page 203 number 32. Let ${\vec{v}_1, \vec{v}_2, \vec{v}_3}$ be a basis for V. If $\vec{w} \notin sp(\vec{v}_1, \vec{v}_2)$ then $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a basis for V.

Proof. By Definition 3.6, "Basis for a Vector Space," we need to show that $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ is a linearly independent spanning set of V. Since $\vec{w} \in V$, then $\vec{w} = r_1\vec{v}_1 + r_2\vec{v}_2 + r_3\vec{v}_3$ and $r_3 \neq 0$ since $\vec{w} \notin sp(\vec{v}_1,\vec{v}_2)$. Then $\vec{v}_3 = \frac{1}{r_3}$ $\frac{1}{r_3}(\vec{w}-r_1\vec{v}_1-r_2\vec{v}_2)$. Therefore $\vec{v}_3 \in sp(\vec{v}_1,\vec{v}_2,\vec{w})$. So $\text{sp}(\vec{v}_1,\vec{v}_2,\vec{v}_3) \subset \text{sp}(\vec{v}_1,\vec{v}_2,\vec{w})$

and so $\{\vec{v}_1,\vec{v}_2,\vec{w}\}$ generates V.

Next suppose, $s_1\vec{v}_1 + s_2\vec{v}_2 + s_3\vec{w} = \vec{0}$. Then $s_3 = 0$ or else $\vec{w} \in sp(\vec{v}_1, \vec{v}_2)$. So $s_1\vec{v}_1 + s_2\vec{v}_2 = \vec{0}$ and so $s_1 = s_2 = 0$. Therefore $s_1 = s_2 = s_3 = 0$ and so $\{\vec{v}_1,\vec{v}_2,\vec{w}\}\$ is a basis for V.

Page 203 Number 36. Prove that if W is a subspace of an *n*-dimensional vector space V and dim(W) = *n*, then $W = V$.

Proof. Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n\}$ be a basis of subspace W.

Page 203 Number 36. Prove that if W is a subspace of an n-dimensional vector space V and dim(W) = n, then $W = V$.

Proof. Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n\}$ be a basis of subspace W. ASSUME there is some $\vec{v} \in V$ such that $\vec{v} \notin sp(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n)$. Consider the equation

$$
r_1 \vec{w}_1 + r_2 \vec{w}_2 + \dots + r_n \vec{w}_n + r_{n+1} \vec{v} = \vec{0}.
$$
 (*)

If $r_{n+1} \neq 0$ then $\vec{v} = -\frac{r_1}{r_1}$ $\frac{r_1}{r_{n+1}} \vec{w}_1 - \frac{r_2}{r_{n+1}}$ $\frac{r_2}{r_{n+1}}\vec{w}_2 - \cdots - \frac{r_n}{r_{n+1}}$ $\frac{n}{r_{n+1}}\vec{w}_n$ and $\vec{v} \in sp(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n)$, in contradiction to the choice of \vec{v} . So $r_{n+1} = 0$

Page 203 Number 36. Prove that if W is a subspace of an *n*-dimensional vector space V and dim(W) = *n*, then $W = V$.

Proof. Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n\}$ be a basis of subspace W. ASSUME there is some $\vec{v} \in V$ such that $\vec{v} \notin sp(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n)$. Consider the equation

$$
r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_n\vec{w}_n + r_{n+1}\vec{v} = \vec{0}.\qquad (*)
$$

If $r_{n+1} \neq 0$ then $\vec{v} = -\frac{r_1}{r_2}$ $\frac{r_1}{r_{n+1}}\vec{w}_1 - \frac{r_2}{r_{n+1}}$ $\frac{r_2}{r_{n+1}}\vec{w}_2 - \cdots - \frac{r_n}{r_{n+1}}$ $\frac{n}{r_{n+1}}\vec{w}_n$ and $\vec{v} \in sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$, in contradiction to the choice of \vec{v} . So $r_{n+1} = 0$ But then (*) implies that $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_n\vec{w}_n = 0$ and since $\{\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_n\}$ is a basis for W then by Definition 3.6, "Basis for a Vector Space," the vectors are linearly independent and so by Definition 3.5, "Linear Dependence and Independence," $r_1 = r_2 = \cdots = r_n = r_{n+1} = 0$ and so (by Definition 3.5) the vectors

 $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n, \vec{v}$ are $n+1$ linearly independent vectors.

Page 203 Number 36. Prove that if W is a subspace of an *n*-dimensional vector space V and dim(W) = *n*, then $W = V$.

Proof. Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n\}$ be a basis of subspace W. ASSUME there is some $\vec{v} \in V$ such that $\vec{v} \notin sp(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n)$. Consider the equation

$$
r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_n\vec{w}_n + r_{n+1}\vec{v} = \vec{0}.\qquad (*)
$$

If $r_{n+1} \neq 0$ then $\vec{v} = -\frac{r_1}{r_2}$ $\frac{r_1}{r_{n+1}}\vec{w}_1 - \frac{r_2}{r_{n+1}}$ $\frac{r_2}{r_{n+1}}\vec{w}_2 - \cdots - \frac{r_n}{r_{n+1}}$ $\frac{n}{r_{n+1}}\vec{w}_n$ and $\vec{v} \in sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$, in contradiction to the choice of \vec{v} . So $r_{n+1} = 0$ But then (*) implies that $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_n\vec{w}_n = \vec{0}$ and since $\{\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_n\}$ is a basis for W then by Definition 3.6, "Basis for a Vector Space," the vectors are linearly independent and so by Definition 3.5, "Linear Dependence and Independence,"

 $r_1 = r_2 = \cdots = r_n = r_{n+1} = 0$ and so (by Definition 3.5) the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n, \vec{v}$ are $n+1$ linearly independent vectors.

Page 203 Number 36 (continued)

Page 203 Number 36. Prove that if W is a subspace of an *n*-dimensional vector space V and dim(W) = *n*, then $W = V$.

Proof (continued). Then, since V is spanned by a set of n vectors (because it is dimension n), by Theorem 3.4, "Relative Size of Spanning and Independent Sets," $n \ge n + 1$, a CONTRADICTION. So the assumption that there is $\vec{v} \in V$ such that $\vec{v} \notin sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$ is false. Hence $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$ includes all vectors in V and so $V \subset W$. Since W is a subspace of V then $W \subset V$ and therefore $V = W$, as claimed.

Page 203 Number 36 (continued)

Page 203 Number 36. Prove that if W is a subspace of an *n*-dimensional vector space V and dim(W) = *n*, then $W = V$.

Proof (continued). Then, since V is spanned by a set of n vectors (because it is dimension n), by Theorem 3.4, "Relative Size of Spanning and Independent Sets," $n > n + 1$, a CONTRADICTION. So the assumption that there is $\vec{v} \in V$ such that $\vec{v} \notin sp(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_n)$ is false. Hence $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n)$ includes all vectors in V and so $V \subset W$. Since W is a subspace of V then $W \subset V$ and therefore $V = W$, as claimed.

Page 202 Number 40. A homogeneous linear nth-order differential equation has the form

$$
f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \cdots + f_2(x)y'' + f_1(x)y' + f_0(x)y = 0.
$$

Prove that the set S of all solutions of this equation that lie in the vector space F of all functions mapping R into R (see Example 3.1.3) is a subspace of \mathcal{F} .

Proof. We use Theorem 3.2, "Test for a Subspace." Let y_1 and y_2 be solutions of the differential equation and let $r \in \mathbb{R}$ be a scalar.

Page 202 Number 40. A homogeneous linear nth-order differential equation has the form

$$
f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \cdots + f_2(x)y'' + f_1(x)y' + f_0(x)y = 0.
$$

Prove that the set S of all solutions of this equation that lie in the vector space F of all functions mapping R into R (see Example 3.1.3) is a subspace of \mathcal{F} .

Proof. We use Theorem 3.2, "Test for a Subspace." Let y_1 and y_2 be solutions of the differential equation and let $r \in \mathbb{R}$ be a scalar. Then consider $y = y_1 + y_2$ in the differential equation:

$$
f_n(x)(y_1 + y_2)^{(n)} + f_{n-1}(x)(y_1 + y_2)^{(n-1)} + \cdots
$$

+ $f_2(x)(y_1 + y_2)^{n} + f_1(x)(y_1 + y_2)^{n} + f_0(x)(y_1 + y_2)$

$$
= f_n(x) \left(y_1^{(n)} + y_2^{(n)} \right) + f_{n-1}(x) \left(y_1^{(n-1)} + y_2^{(n-1)} \right) + \cdots
$$

+ $f_2(x) \left(y_1'' + y_2'' \right) + f_1(x) \left(y_1' + y_2' \right) + f_0(x) \left(y_1 + y_2 \right) \cdots$

Page 202 Number 40. A homogeneous linear nth-order differential equation has the form

$$
f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \cdots + f_2(x)y'' + f_1(x)y' + f_0(x)y = 0.
$$

Prove that the set S of all solutions of this equation that lie in the vector space F of all functions mapping R into R (see Example 3.1.3) is a subspace of \mathcal{F} .

Proof. We use Theorem 3.2, "Test for a Subspace." Let y_1 and y_2 be solutions of the differential equation and let $r \in \mathbb{R}$ be a scalar. Then consider $y = y_1 + y_2$ in the differential equation:

$$
f_n(x)(y_1 + y_2)^{(n)} + f_{n-1}(x)(y_1 + y_2)^{(n-1)} + \cdots
$$

+
$$
f_2(x)(y_1 + y_2)^{n} + f_1(x)(y_1 + y_2)^{n} + f_0(x)(y_1 + y_2)
$$

=
$$
f_n(x)\left(y_1^{(n)} + y_2^{(n)}\right) + f_{n-1}(x)\left(y_1^{(n-1)} + y_2^{(n-1)}\right) + \cdots
$$

+
$$
f_2(x)\left(y_1^{n'} + y_2^{n'}\right) + f_1(x)\left(y_1' + y_2'\right) + f_0(x)(y_1 + y_2) \cdots
$$

Page 202 Number 40 (continued 1)

Proof (continued).

since the derivative of a sum is the sum of the derivatives $=$ $(f_n(x)y_1^{(n)} + f_{n-1}(x)y_1^{(n-1)} + \cdots + f_2(x)y_1'' + f_1(x)y_1' + f_0(x)y_1)$ $+(f_n(x)y_2^{(n)}+f_{n-1}(x)y_2^{(n-1)}+\cdots+f_2(x)y_2''+f_1(x)y_2'+f_0(x)y_2)$

 $= 0 + 0$ since y_1 and y_2 are solutions to the differential equation

 $=$ 0. Therefore $y_1 + y_2$ is a solution to the differential equation and $y_1 + y_2 \in S$ and S is closed under vector addition.

Consider $y = ry_1$ in the differential equation:

 $f_n(x)(ry_1)^{(n)} + f_{n-1}(x)(ry_1)^{(n-1)} + \cdots + f_2(x)(ry_1)^{n} + f_1(x)(ry_1)^{n} + f_0(x)(ry_1)$

 $= f_n(x) r y_1^{(n)} + f_{n-1}(x) r y_1^{(n-1)} + \cdots + f_2(x) r y_1'' + f_1(x) r y_1' + f_0(x) r y_1$ since the derivative of a constant times a function is the constant times the derivative of the function

Page 202 Number 40 (continued 1)

Proof (continued).

since the derivative of a sum is the sum of the derivatives $=$ $(f_n(x)y_1^{(n)} + f_{n-1}(x)y_1^{(n-1)} + \cdots + f_2(x)y_1'' + f_1(x)y_1' + f_0(x)y_1)$ $+(f_n(x)y_2^{(n)}+f_{n-1}(x)y_2^{(n-1)}+\cdots+f_2(x)y_2''+f_1(x)y_2'+f_0(x)y_2)$

 $= 0 + 0$ since y_1 and y_2 are solutions to the differential equation

 $=$ 0. Therefore $y_1 + y_2$ is a solution to the differential equation and $y_1 + y_2 \in S$ and S is closed under vector addition.

Consider $y = ry_1$ in the differential equation:

 $f_n(x)(ry_1)^{(n)} + f_{n-1}(x)(ry_1)^{(n-1)} + \cdots + f_2(x)(ry_1)^{\prime\prime} + f_1(x)(ry_1)^{\prime} + f_0(x)(ry_1)$

 $= f_n(x) r y_1^{(n)} + f_{n-1}(x) r y_1^{(n-1)} + \cdots + f_2(x) r y_1'' + f_1(x) r y_1' + f_0(x) r y_1$ since the derivative of a constant times a function is the constant times the derivative of the function

Page 202 Number 40 (continued 2)

Page 202 Number 40. A homogeneous linear nth-order differential equation has the form

$$
f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \cdots + f_2(x)y'' + f_1(x)y' + f_0(x)y = 0.
$$

Prove that the set S of all solutions of this equation that lie in the vector space F of all functions mapping R into R (see Example 3.1.3) is a subspace of \mathcal{F} .

Proof (continued).

$$
= r \left(f_n(x) y_1^{(n)} + f_{n-1}(x) y_1^{(n-1)} + \cdots + f_2(x) y_1'' + f_1(x) y_1' + f_0(x) y_1 \right)
$$

 $=$ 0 since y_1 is a solution to the differential equation.

So $ry_1 \in S$ and S is closed under scalar multiplication. Hence, by Theorem 3.2, S is a subspace of \mathcal{F} .

Page 202 Number 40 (continued 2)

Page 202 Number 40. A homogeneous linear nth-order differential equation has the form

$$
f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \cdots + f_2(x)y'' + f_1(x)y' + f_0(x)y = 0.
$$

Prove that the set S of all solutions of this equation that lie in the vector space F of all functions mapping R into R (see Example 3.1.3) is a subspace of \mathcal{F} .

Proof (continued).

$$
= r \left(f_n(x) y_1^{(n)} + f_{n-1}(x) y_1^{(n-1)} + \cdots + f_2(x) y_1'' + f_1(x) y_1' + f_0(x) y_1 \right)
$$

 $=$ 0 since y_1 is a solution to the differential equation.

So $r_{Y1} \in S$ and S is closed under scalar multiplication. Hence, by Theorem 3.2, S is a subspace of \mathcal{F} .