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LINEAR
ALGEBRA

5!11'!!7‘Hh ON

FRALEIGH
BEAUREGARD

Linear Algebra October 9, 2018 1/ 24



R —
Table of contents

@ Theorem 3.2. Test for Subspace

© Page 202 Number 4

© Page 202 Number 8

@ Page 202 Number 16

© Page 202 Number 20

@ Page 202 Number 22

@ Theorem 3.3. Unique Combination Criterion for a Basis
© Page 203 Number 32

© Page 203 Number 36

@ Page 204 Number 40

Linear Algebra October 9, 2018 2 /24



Theorem 3.2. Test for Subspace

Theorem 3.2

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
N vweW=v+weW,

(2) for all r € R and for all vV € W, we have rv € W.
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Theorem 3.2

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

N vweW=v+weW,

(2) for all r € R and for all vV € W, we have rv € W.

Proof. Let W be a subspace of V. W must be nonempty since 0 must be
in W by Definition 3.1, “Vector Space.” Also by Definition 3.1, we see

that W must have a rule for adding two vectors v and w in W to produce
a vector V + w.
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Theorem 3.2

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
N vweW=v+weW,

(2) for all r € R and for all vV € W, we have rv € W.

Proof. Let W be a subspace of V. W must be nonempty since 0 must be
in W by Definition 3.1, “Vector Space.” Also by Definition 3.1, we see
that W must have a rule for adding two vectors v and w in W to produce
a vector V + w. Addition in W is the same as in V/, so it is necessary that
W is closed under vector addition. Similarly, we must have a rule for
multiplying any vector w in W by any scalar r € R to produce a vector rw
in W. Scalar multiplication in W is the same as in V, so it is necessary
that W be closed under scalar multiplication.
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Theorem 3.2

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
N vweW=v+weW,

(2) for all r € R and for all vV € W, we have rv € W.

Proof. Let W be a subspace of V. W must be nonempty since 0 must be
in W by Definition 3.1, “Vector Space.” Also by Definition 3.1, we see
that W must have a rule for adding two vectors v and w in W to produce
a vector V + w. Addition in W is the same as in V/, so it is necessary that
W is closed under vector addition. Similarly, we must have a rule for
multiplying any vector w in W by any scalar r € R to produce a vector rw
in W. Scalar multiplication in W is the same as in V, so it is necessary
that W be closed under scalar multiplication. So if W is a subspace of V,
then (1) and (2) are necessary.
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Theorem 3.2. Test for Subspace

Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
QNvweW=v+weW,

(2) for all r € R and for all v.€ W we have rv € W.
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Theorem 3.2. Test for Subspace

Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
QNvweW=v+weW,

(2) for all r € R and for all v.€ W we have rv € W.

Proof (continued). Now suppose that W is nonempty and closed under
vector addition and scalar multiplication (that is, (1) and (2) hold).
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Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
QNvweW=v+weW,

(2) for all r € R and for all v.€ W we have rv € W.

Proof (continued). Now suppose that W is nonempty and closed under
vector addition and scalar multiplication (that is, (1) and (2) hold). If 0 is
the only vector in W, then properties A1-A4 and S1-S4 are easily seen to
hold since vV, w € W implies ¥ = w = 0. Then W = {0} is itself a vector
space and so is a subspace of V.
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Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
QNvweW=v+weW,

(2) for all r € R and for all v.€ W we have rv € W.

Proof (continued). Now suppose that W is nonempty and closed under
vector addition and scalar multiplication (that is, (1) and (2) hold). If 0 is
the only vector in W, then properties A1-A4 and S1-S4 are easily seen to
hold since vV, w € W implies ¥ = w = 0. Then W = {0} is itself a vector
space and so is a subspace of V. If nonzero vector vV is in W then by
closure under scalar multiplication, (—1)v = (—v) € W. By closure under
vector addition, v + (—v) =0 € W. So 0 € W and for any vV € W we
have —vV € W, as required of all vector spaces.
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Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if
QNvweW=v+weW,

(2) for all r € R and for all v.€ W we have rv € W.

Proof (continued). Now suppose that W is nonempty and closed under
vector addition and scalar multiplication (that is, (1) and (2) hold). If 0 is
the only vector in W, then properties A1-A4 and S1-S4 are easily seen to
hold since vV, w € W implies ¥ = w = 0. Then W = {0} is itself a vector
space and so is a subspace of V. If nonzero vector vV is in W then by
closure under scalar multiplication, (—1)v = (—v) € W. By closure under
vector addition, v + (—v) =0 € W. So 0 € W and for any vV € W we
have —vV € W, as required of all vector spaces. Now Al-A4 and S1-54
hold for all V,w € V and r,s € R, so they hold for all V,w € W and

r,s € R. Thatis, W is itself a vector space and so is a subspace of V. [
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Page 202 Number 4

Page 202 Number 4

Page 202 Number 4. Determine whether the set F; of all functions f

such that f(1) = 0 is a subspace of the vector space F of all functions
mapping R into R (see Example 3.1.3).
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Page 202 Number 4

Page 202 Number 4. Determine whether the set F; of all functions f
such that f(1) = 0 is a subspace of the vector space F of all functions

mapping R into R (see Example 3.1.3).

Solution. We apply Theorem 3.2, “Test for a Subspace.” Let f,g € F;
and let r € R be a scalar.
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Page 202 Number 4

Page 202 Number 4. Determine whether the set F; of all functions f
such that f(1) = 0 is a subspace of the vector space F of all functions
mapping R into R (see Example 3.1.3).

Solution. We apply Theorem 3.2, “Test for a Subspace.” Let f,g € F;
and let r € R be a scalar. Then (f + g)(x) = f(x) + g(x), so

(F+g)(1)=1f(1)+g(l)=04+0=0andso f + g € F; and F; is closed

under vector addition.
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Page 202 Number 4

Page 202 Number 4. Determine whether the set F; of all functions f
such that f(1) = 0 is a subspace of the vector space F of all functions
mapping R into R (see Example 3.1.3).

Solution. We apply Theorem 3.2, “Test for a Subspace.” Let f,g € F;
and let r € R be a scalar. Then (f + g)(x) = f(x) + g(x), so
(F+g)(1)=f(1)+g(l)=0+0=0andso f+ g € F; and F; is closed
under vector addition. Next, (rf)(x) = rf(x), so (rf)(1) =rf(1)=r0=0
and so rf € F; and F; is closed under scalar multiplication. So by
Theorem 3.2, F; is a subspace of F. [J
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Page 202 Number 8

Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real

coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x, x).
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Page 202 Number 8

Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real

coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x, x).

Proof. We show that each set of vectors is a subset of the other in order
to deduce that the sets are the same.
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Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real
coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x, x).

Proof. We show that each set of vectors is a subset of the other in order

to deduce that the sets are the same.

Let p(x) € sp(1,x). Then p(x) = (r1)1 + (r2)x = r + rax for some scalars
ri,rp € R. Now p(x) = ri + rox = (r1)(1 4 2x) 4+ (r» — 2r1)x and so

p(x) € sp(1 + 2x, x) (since p(x) is a linear combination of 1 + 2x and x).

Therefore every element of sp(1, x) is in sp(1 + 2x, x) and so

sp(1,x) C sp(1 + 2x, x).
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Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real
coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x, x).

Proof. We show that each set of vectors is a subset of the other in order

to deduce that the sets are the same.

Let p(x) € sp(1,x). Then p(x) = (r1)1 + (r2)x = r + rax for some scalars
ri,rp € R. Now p(x) = ri + rox = (r1)(1 4 2x) 4+ (r» — 2r1)x and so

p(x) € sp(1 + 2x, x) (since p(x) is a linear combination of 1 + 2x and x).

Therefore every element of sp(1, x) is in sp(1 + 2x, x) and so

sp(1,x) C sp(1 + 2x, x).

Now let g(x) € sp(1 + 2x, x). Then g(x) = (s1)(1 4 2x) + (s2)x for some
scalars 51,5 € R. Now

q(x) = (s1)(1 4 2x) + (s2)x = 51 + 2s1x + sox = (s1)1 + (251 + s2)x and

so q(x) € sp(1,x). Therefore every element of sp(1 + 2x, x) is in sp(1, x)

and so sp(1 + 2x, x) C sp(1, x).
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Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real
coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x, x).

Proof. We show that each set of vectors is a subset of the other in order

to deduce that the sets are the same.

Let p(x) € sp(1,x). Then p(x) = (r1)1 + (r2)x = r + rax for some scalars
ri,rp € R. Now p(x) = ri + rox = (r1)(1 4 2x) 4+ (r» — 2r1)x and so

p(x) € sp(1 + 2x, x) (since p(x) is a linear combination of 1 + 2x and x).

Therefore every element of sp(1, x) is in sp(1 + 2x, x) and so

sp(1,x) C sp(1 + 2x, x).

Now let g(x) € sp(1 + 2x, x). Then g(x) = (s1)(1 4 2x) + (s2)x for some
scalars 51,5 € R. Now

q(x) = (s1)(1 4 2x) + (s2)x = 51 + 2s1x + sox = (s1)1 + (251 + s2)x and

so q(x) € sp(1,x). Therefore every element of sp(1 + 2x, x) is in sp(1, x)

and so sp(1 + 2x,x) C sp(1,x). Hence, sp(1,x) = sp(1 + 2x, x). O
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Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions

{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).
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Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions

{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

rnsinx+ rnsin2x+r3sin3x =0 (*)

for some scalars ri, r2, 3 € R. Then this equation must hold for all x € R.
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Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions

{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose
rnsinx+ rnsin2x+r3sin3x =0 (*)

for some scalars ri, r2, 3 € R. Then this equation must hold for all x € R.
In particular, for x = /2 we have

risin(m/2) + rasin(2(m/2)) + r3sin(3(7/2)) = 0, or

ri(1) + r(0) + 3(—1) =0 or

rn—nm =0. (1)

Linear Algebra
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Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions
{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

risinx + rpsin2x + r3sin3x =0 (*)
for some scalars ri, r2, 3 € R. Then this equation must hold for all x € R.
In particular, for x = /2 we have
risin(m/2) + rpsin(2(7/2)) 4+ r3sin(3(w/2)) = 0, or
ri(1) + r(0) + r3(—1) =0 or

rn—rn= 0. (1)

Differentiating both sides of (*) with respect to x implies that

ricosx + 2r» cos 2x + 3r3 cos 3x = 0 and with x = 0 we must have
r1 cos(0) + 2r> cos(0) + 3r> cos(0) = 0 or

rn—+2mn+3rn=0. (2)
Linear Algebra October 9, 2018 7/ 24



Page 202 Number 16

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of () with respect to
x implies —ry sinx — 4rysin2x — 9r3sin 3x = 0 and with x = 7/2 we must
have —ry sin(7/2) — 4rysin(2(mw/2)) — 9r3sin(3(7/2)) = 0 or

—r+9r3 =0. (3)
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Page 202 Number 16

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of () with respect to
x implies —ry sinx — 4rysin2x — 9r3sin 3x = 0 and with x = 7/2 we must
have —ry sin(7/2) — 4rysin(2(mw/2)) — 9r3sin(3(7/2)) = 0 or

—rn+93=0. (3)
So () implies (1), (2), and (3) so that if (x) holds then we must have
n -  nn =0
n 4+ 2n 4+ 3y = 0.
—n + 9f3 = 0
Linear Algebra
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Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of () with respect to
x implies —ry sinx — 4rysin2x — 9r3sin 3x = 0 and with x = 7/2 we must
have —ry sin(7/2) — 4rysin(2(mw/2)) — 9r3sin(3(7/2)) = 0 or

—r+9r3 =0. (3)

So () implies (1), (2), and (3) so that if (x) holds then we must have
n -  nn =0
rn + 2rn + 3r3 = 0. This system of equations has associated
—n + 9f3 =0
10 -1|0
augmented matrix 1 2 3|0 |. Since this is a homogeneous
-1 0 9]0
system of equations then any solution [r1, r2, 3] T is a vector in the
nullspace of the coefficient matrix A.
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Page 202 Number 16 (continued 2)

Page 202 Number 16. Determine whether the set of functions
{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution (continued). So we now reduce the coefficient matrix:

1 0 -1 Ry—Ry—Ry 1 0 -1
A= 12 3|rRIm+rm |0 2 4|=H.
-1 0 9 00 8
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Page 202 Number 16 (continued 2)

Page 202 Number 16. Determine whether the set of functions
{sin x, sin 2x, sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution (continued). So we now reduce the coefficient matrix:

1 0 -1 Ry—Ry—Ry 1 0 -1
A= 12 3|rRIm+rm |0 2 4|=H.
-1 0 9 00 8

Now H has 3 pivots and 0 pivot-free columns. So by Theorem 2.5(1),
“The Rank Equation,” the nullity of A is 0 and so the only solution to the
system of equations is the trivial solution 1 = r», = 3 = 0. That is, the
set of vectors is | linearly independent. | [J

Linear Algebra October 9, 2018 9 /24



Page 202 Number 20

Page 202 Number 20

Page 202 Number 20. Determine whether or not the set

{x,x?+1,(x — 1)?} is a basis for the vector space P, of all polynomials
with real coefficients of degree 2 or less.
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Page 202 Number 20

Page 202 Number 20

Page 202 Number 20. Determine whether or not the set

{x,x?+1,(x — 1)?} is a basis for the vector space P, of all polynomials
with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, “Basis for a Vector Space,” to see if the
set is a linearly independent spanning set. For linear independence we

consider the equation (r1)x + ra(x? +1) + r3(x — 1) = 0x? + 0x + 0. This
gives (r2 + r3)x% 4+ (rn — 2r3)x + (r2 + r3) = 0x? 4+ 0x + 0 and so we need

rn —+ s = 0
r 2/’3 = 0.
rn —+ s = 0
Linear Algebra October 9, 2018 10 / 24



Page 202 Number 20

Page 202 Number 20. Determine whether or not the set
{x,x?+1,(x — 1)?} is a basis for the vector space P, of all polynomials
with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, “Basis for a Vector Space,” to see if the
set is a linearly independent spanning set. For linear independence we

consider the equation (r1)x + ra(x? +1) + r3(x — 1) = 0x? + 0x + 0. This
gives (r2 + r3)x% 4+ (rn — 2r3)x + (r2 + r3) = 0x? 4+ 0x + 0 and so we need

rn —+ s = 0
n — 2r3 = 0 . We consider the augmented matrix for this
rn —+ s = 0
system of equations:
01 10| Reor, [ 1 0 =210
A=|10 —2(0| |01 1]0
01 1]0 01 1]0
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Page 202 Number 20

Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set

{x,x?+1,(x — 1)?} is a basis for the vector space P, of all polynomials
with real coefficients of degree 2 or less.

Solution (continued).

10 -2|0|rR~rR-R |1 0 =2]0

01 1]0 - 01 1]0

01 1/0 00 0/0
Wizt Al

October 9, 2018 11 /24



Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set
{x,x?+1,(x — 1)?} is a basis for the vector space P, of all polynomials
with real coefficients of degree 2 or less.

Solution (continued).

1 0 2|0 | msrs—mRo [ 1 0 =210

o1 1/0| ~ 7 |01 10

01 110 0 0 o0f0
We see that the system of equations has a free variable, say t = r3, and
then the general solution is B = 2t, n = —t, r3 = t. In particular, = 2,
rn = —1, 3 =1 gives the dependence relation

(2)x + (=1)(x®> + 1) + (1)(x — 1)2 = 0x® + 0x + 0 and so, by Definition
3.5, “Linear Dependence and Independence,” we see that the set
{x,x?+1,(x — 1)?} is not linearly independent and so it

’ is not a basis for P5. ‘ ]
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Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x?> — 1,x? 4+ 1,4,2x — 3) in

the vector space P> of all polynomials with real coefficients of degree 2 or

less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Linear Algebra October 9, 2018 12 /24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x?> — 1,x? 4+ 1,4,2x — 3) in
the vector space P> of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P,) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r)(x®> = 1)+ (n)(x®> + 1) + (r3)4 + () (2x — 3) = 0x®> + 0x + 0 or

(r1 4 r)x? + (2r3)x + (= + r +4r3 — 3r3) = 0x? + Ox + 0.

Linear Algebra October 9, 2018 12 /24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x?> — 1,x? 4+ 1,4,2x — 3) in
the vector space P> of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P,) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r)(x®> = 1)+ (n)(x®> + 1) + (r3)4 + () (2x — 3) = 0x®> + 0x + 0 or

(rn 4 r)x? + (2r3)x + (—rn + r +4r3 — 3r3) = 0x? + 0x + 0. So we need

n + n =0
2I’4 = 0.
-n + n + 4 — 3 = 0

Linear Algebra October 9, 2018 12 /24



Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x?> — 1,x? 4+ 1,4,2x — 3) in
the vector space P> of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P,) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r)(x®> = 1)+ (n)(x®> + 1) + (r3)4 + () (2x — 3) = 0x®> + 0x + 0 or

(rn 4 r)x? + (2r3)x + (—rn + r +4r3 — 3r3) = 0x? + 0x + 0. So we need

n + n =0
2I’4 = 0.
-n + n + 4 — 3 = 0

This system of equations yields the augmented matrix

110 0/0]lRmRorsr [1 10 0]0
000 20 “— o oo 20
-1 1 4 =310 0 2 4 —3/0

Linear Algebra October 9, 2018 12 /24



Page 202 Number 22 (continued 1)

Solution (continued).

(1 10 0[0] mRer [1 1 0 0|07 R—R-Ry2
000 210 02 4 —-3]0 -
|0 2 4 -3]|0 000 210
(10 -2 3/2[0] R—R-@/4R [1 0 -2 0|0
O 2 4 —3 0 R, — R, + (3/2)R3 0 2 4 0 0
(00 0 20 (00 0 2|0

Ro—Ry /2 1 0 -2 010

Rs—R/2 | 0 1 2 010

00 0110

Linear Algebra October 9, 2018 13 /24



Page 202 Number 22 (continued 1)

Solution (continued).

1 1 0 0|0 | morys | 11 0 010 | RBRI—Ry/2
000 20 0 2 4 -3/0 -
| 0 2 4 3|0 0 0O 210
1 0 -2 3/2|0 Ri—R-G3/0Rs [ 1 0 =2 0]0
02 4 —3|0|R-mR+G2R|0 2 4 0|0
|00 0 2|0 | 00 0 2|0

Ry—Ry/2 1 0 -2 010

R—R/p2| 01 2 00

00 O01/0
With t = r3 as a free variable we have rp = 2t, n = —2t, 3 =t, r; = 0.

With t = 1 we see that (2)(x? — 1) + (=2)(x> +1) + (1)4 =0 or
4 = (=2)(x> = 1)+ (2)(x2 +1). So 4 is a linear combination of x? — 1
and x2 + 1. We remove it from the collection and consider the set
B={x?-1,x>+1,2x — 3}
Linear Algebra October 9, 2018 13 / 24



Page 202 Number 22

Page 202 Number 22 (continued 2)

Solution (continued). Set B = {x? — 1,x? + 1,2x — 3} is a linearly

independent set since r1(x? — 1) + ra(x? + 1) 4+ r3(2x —3) = 0x% + 0x + 0
implies (r1 + r2)x? + (2r3)x + (—r1 + 2 — 3r3) = 0x®> + 0x + 0, or

n + =0
2I’3 = 0.
-n + n — 3 = 0

Linear Algebra October 9, 2018 14 / 24



Page 202 Number 22 (continued 2)
Solution (continued). Set B = {x? — 1,x? + 1,2x — 3} is a linearly

independent set since r1(x? — 1) + ra(x? + 1) 4+ r3(2x —3) = 0x% + 0x + 0
implies (r1 + r2)x? + (2r3)x + (—r1 + 2 — 3r3) = 0x®> + 0x + 0, or

n + n =0
2r3 = 0 . This leads us to the augmented matrix
-n + n — 3 = 0
11 010 | RemRs+R, | 1 1 010 | ReRs 11 0|0
00 2/0| ~— o0 2/0| |02 =3]|0
11 310 0 2 3|0 00 210
R1—>R1—(1/2)R2 1 0 3/2 0 Ri—Ri— 3/4)R3 1 0 0|0
- 02 —3|0|R-Ri@B2R |0 2 0]0
00 210 0 0 20
Ry—Ry/2 1 0 0|0
RR—R3/2| 0 1 010
0 0 10

Linear Algebra October 9, 2018 14 / 24



Page 202 Number 22 (continued 3)

Page 202 Number 22. Find a basis for sp(x?> — 1,x% 4+ 1,4,2x — 3) in
the vector space P, of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.

Solution (continued). So we must have r; = r, = r3 = 0 and hence the
set B = {x? —1,x? +1,2x — 3} is linearly independent. We know set B
to be a spanning set of sp(x?> — 1,x? + 1,4,2x — 3) since every linear
combination of x> — 1,x? 4+ 1,4,2x — 3 is also a linear combination of the
elements of B (just replace the multiple of 4 with the same multiple of
(=2)(x2 = 1) + (2)(x + 1)).
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Page 202 Number 22 (continued 3)

Page 202 Number 22. Find a basis for sp(x?> — 1,x% 4+ 1,4,2x — 3) in
the vector space P, of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.

Solution (continued). So we must have r; = r, = r3 = 0 and hence the
set B = {x? —1,x? +1,2x — 3} is linearly independent. We know set B
to be a spanning set of sp(x?> — 1,x? + 1,4,2x — 3) since every linear
combination of x> — 1,x? 4+ 1,4,2x — 3 is also a linear combination of the
elements of B (just replace the multiple of 4 with the same multiple of
(—2)(x%2 — 1) + (2)(x? + 1)). Therefore, by Definition 3.6, “Basis for a
Vector Space,”

B = {x?> —1,x?> 4+ 1,2x — 3} is a basis for sp(x® — 1,x? + 1,4, 2x — 3).
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Theorem 3.3. Unique Combination Criterion for a Basis

Theorem 3.3

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for

V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.
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Theorem 3.3
Theorem 3.3. Unique Combination Criterion for a Basis.
Let B be a set of nonzero vectors in vector space V. Then B is a basis for

V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, “Basis for a Vector
Space,” B is a spanning set and so for any given vV € V there are
1, by, ..., b, €Bandrf,r ..., r, €Rsuch that

V=rby+ryby+ -+ r.bp.
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Theorem 3.3

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, “Basis for a Vector
Space,” B is a spanning set and so for any given vV € V there are
1, by, ..., b, €Bandrf,r ..., r, €Rsuch that

V=rby+ryby+ -+ r.bp.

Suppose that v can be expressed as another linear combination of vectors,
say
\7 - Silbi/ + Sé, /2/ + te + 5;(/// Z//

where b{, by, ..., b}, € B and s{,sy ... s, € R.
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Theorem 3.3

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof. Suppose B is a basis for V. By Definition 3.6, “Basis for a Vector
Space,” B is a spanning set and so for any given vV € V there are
1, by, ..., b, €Bandrf,r ..., r, €Rsuch that
V=rib +rsby+ -+ rib.
Suppose that v can be expressed as another linear combination of vectors,
say
\7 - Silbi/ + Sé, /2/ + e + 5;(/// Z//
where B’l’, by, .. .,BZ,, € Band s7,s)...,s., € R. Some of the Bf and B,”
may be the same or they could all be different. Let k be the number of
different b: and b!.
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Theorem 3.3 (continued 1)

Proof (continued). Relabel these vectors as 51, 52, cee Bk and relabel the
coefficients r! and s as r; and s; (introducing 0's as needed) such that
V= r151 + r252 + -+ rkBk = 5151 + 5252 + -+ skBk (this is necessary
because the basis B might be infinite and so we cannot write vV as an
infinite linear combination; such things are not necessarily defined in a
vector space and there are different levels of infinity, which complicates
things further).
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Theorem 3.3 (continued 1)

Proof (continued). Relabel these vectors as 51, 52, cee Bk and relabel the
coefficients r! and s as r; and s; (introducing 0's as needed) such that
V= r151 + r252 + -+ rkBk = 5151 + 5252 + -+ skBk (this is necessary
because the basis B might be infinite and so we cannot write vV as an
infinite linear combination; such things are not necessarily defined in a
vector space and there are different levels of infinity, which complicates
things further). Then we have

— — —

0= Vv—v=(n—-—s1)bi+(rn—s)bx+ -+ (rc — sk)bx

and since B is a basis then B is linearly independent (Definition 3.6) and
SO —S=rnN—5S=:'-"-= k—SkZOOI’ n=s,rn=5,..., k= 5.
Therefore v can only be expressed in one way as a linear combination of
elements of B, as claimed.
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Theorem 3.3 (continued 2)

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof (continued). Now suppose each vector vV of V can be uniquely
expressed as a linear combination of elements of B. Then B is a spanning

set of V and (1 ) of Deﬁnltlon 3.6 hoIds Let b1, b27 .. .,B,, € B and
suppose that r1b1 + r2b2 4+ 4 r,,b,, =0.
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Theorem 3.3 (continued 2)

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof (continued). Now suppose each vector vV of V can be uniquely
expressed as a linear combination of elements of B. Then B is a spanning
set of V and (1) of Definition 3.6 holds. Let 51, 52, .. .,B,, € B and
suppose that 51 + r252 + oo+ r,,l;,, — 0. One choice for the coefficients

My,...,rhisrn=r=---=r,=0. But since Ois a unique linear
combination of by, by, ..., b, then it is necessary that
rp=r=---=r,=0. That is (by Definition 3.5, “Linear Dependence

and Independence”) B is linearly independent and (2) of Definition 3.6
holds.
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Theorem 3.3 (continued 2)

Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V. Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof (continued). Now suppose each vector vV of V can be uniquely
expressed as a linear combination of elements of B. Then B is a spanning
set of V and (1) of Definition 3.6 holds. Let 51, 52, .. .,B,, € B and
suppose that 51 + r252 + oo+ r,,l;,, — 0. One choice for the coefficients

My,...,rhisrn=r=---=r,=0. But since Ois a unique linear
combination of by, by, ..., b, then it is necessary that
rp=r=---=r,=0. That is (by Definition 3.5, “Linear Dependence

and Independence”) B is linearly independent and (2) of Definition 3.6
holds. So Definition 3.6, “Basis for a Vector Space,” is satisfied and B is a
basis for V. ]
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Page 203 Number 32

Page 203 number 32. Let {vi, Vb, 3} be a basis for V. If w & sp(vy, v»)
then {Vi, Vo, w} is a basis for V.
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Page 203 Number 32

Page 203 number 32. Let {vi, Vb, 3} be a basis for V. If w & sp(vy, v»)
then {Vi, Vo, w} is a basis for V.

Proof. By Definition 3.6, “Basis for a Vector Space,” we need to show
that {Vi, Vo, w} is a linearly independent spanning set of V. Since w € V,
then w = i + v + r3v3 and r3 # 0 since w & sp(vi, Vo).

Linear Algebra October 9, 2018 19 / 24



Page 203 Number 32

Page 203 number 32. Let {vi, Vb, 3} be a basis for V. If w & sp(vy, v»)
then {Vi, Vo, w} is a basis for V.

Proof. By Definition 3.6, “Basis for a Vector Space,” we need to show
that {Vi, Vo, w} is a linearly independent spanning set of V. Since w € V,

then w = v + nvho + 33 and r3 # 0 since w ¢ sp(vi, v2). Then

_ 1 . _ . _ oL o
3 = r—(w — nVh — rk). Therefore 3 € sp(vi, Vo, w). So
3

sp(vi, va, v3) C sp(vi, Vo, W)

and so {vi, vo, w} generates V.
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Page 203 Number 32

Page 203 number 32. Let {vi, Vb, 3} be a basis for V. If w & sp(vy, v»)
then {Vi, Vo, w} is a basis for V.

Proof. By Definition 3.6, “Basis for a Vector Space,” we need to show
that {Vi, Vo, w} is a linearly independent spanning set of V. Since w € V,

then w = v + nvho + 33 and r3 # 0 since w ¢ sp(vi, v2). Then
. 1, . . . N
V3 = —(W — nvi — n). Therefore V3 € sp(vy, vo, w). So

r3

sp(Vi, V2, V3) C sp(vi, V2, W)
and so {vi, vo, w} generates V.

Next suppose, sivi + Spvo + s3w = 0. Then s3 =0 or else w € sp(vi, V2).
So 511 + sib = 0 and so s; = sp = 0. Therefore s; = s, = s3 =0 and so
{V1, Vo, w} is a basis for V. O
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Page 203 Number 36

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.
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Page 203 Number 36

Page 203 Number 36

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.

Proof. Let {wy,ws,...,w,} be a basis of subspace W.
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Page 203 Number 36

Page 203 Number 36

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.

Proof. Let {wy,ws,...,w,} be a basis of subspace W. ASSUME there is
some V € V such that vV & sp(wy, wa, ..., w,). Consider the equation

rlvT/lJrrsz}g+~~-+r,,vT/,,+r,,+1\7:O. (*)
o n . no N
If rpy1 # 0 then v =— wy — Wy — -+ — ——w, and
'n+1 'n+1 n+1
V € sp(wy, Wa, ..., W), in contradiction to the choice of V. So r,41 =0
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Page 203 Number 36

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.

Proof. Let {wy,ws,...,w,} be a basis of subspace W. ASSUME there is

some V € V such that vV & sp(wy, wa, ..., w,). Consider the equation

WL+ W+« + W, + rpy1vV = 0. (%)

— r: — r. — I —
If rpy1 # 0 then v =— ! wy — 2 Wy — -+ — ——w, and
rn+1 rn+1 rnt+1

V € sp(wy, Wa, ..., W), in contradiction to the choice of V. So r,4; =0
But then (x) implies that rrwy + rws + - - - + r,w, = 0 and since
{W1,Wa, ..., Wy} is a basis for W then by Definition 3.6, “Basis for a

Vector Space,” the vectors are linearly independent and so by Definition
3.5, “Linear Dependence and Independence,”

rn=r=--=r,=rpr1 =0 and so (by Definition 3.5) the vectors
Wi, W, ..., Wy, V are n+ 1 linearly independent vectors.
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Page 203 Number 36 (continued)

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.

Proof (continued). Then, since V is spanned by a set of n vectors

(because it is dimension n), by Theorem 3.4, “Relative Size of Spanning
and Independent Sets,” n > n+ 1, a CONTRADICTION.
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Page 203 Number 36 (continued)

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W) = n, then W = V.

Proof (continued). Then, since V is spanned by a set of n vectors
(because it is dimension n), by Theorem 3.4, “Relative Size of Spanning
and Independent Sets,” n > n+ 1, a CONTRADICTION. So the

assumption that there is Vv € V such that vV & sp(wy, wa, ..., w,) is false.
Hence W = sp(wq, wh, ..., w,) includes all vectors in V and so V C W.
Since W is a subspace of V then W C V and therefore V = W, as
claimed. ]
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Page 204 Number 40

Page 202 Number 40

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form

()Y + £ ()Y - H(x)y” + A(x)y + f(x)y = 0.

Prove that the set S of all solutions of this equation that lie in the vector

space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F.
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Page 202 Number 40

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form

)Y+ Fom1 (Y 4 B+ A(x)Y + fo(x)y = 0.
Prove that the set S of all solutions of this equation that lie in the vector

space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F.

Proof. We use Theorem 3.2, “Test for a Subspace.” Let y; and y» be
solutions of the differential equation and let r € R be a scalar.
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Page 202 Number 40

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form
a0y + Fo1 Oy 4 R(Y" + AX)Y + (x)y = 0.

Prove that the set S of all solutions of this equation that lie in the vector
space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F.

Proof. We use Theorem 3.2, “Test for a Subspace.” Let y; and y» be
solutions of the differential equation and let r € R be a scalar. Then
consider y = y; + y» in the differential equation:

fa() (1 + y2) + o1 () (y1 + y2) " -
R0+ 52)" + A0+ 2) + H)0 + 1)

= fo(x) (yl(”) +y2(")) + fa1(x) (yl("_l) +y2("_1)) +e

+h(x) (' +y5) + A0x) (Vi +y5) + o) +y2). -
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Page 202 Number 40 (continued 1)

Proof (continued).

since the derivative of a sum is the sum of the derivatives
= (0" + Fac1 GO - B+ A+ X))

HECE” + 1 (G 4+ B0+ A + (X))
= 0+ 0 since y; and y» are solutions to the differential equation

= 0.
Therefore y; + y» is a solution to the differential equation and y; + y» € S
and S is closed under vector addition.
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Page 202 Number 40 (continued 1)

Proof (continued).

since the derivative of a sum is the sum of the derivatives
= (0" + Fac1 GO - B+ A+ X))

(A" + ot GO 4 BV + RS+ fo(x)y2)
= 0+ 0 since y; and y» are solutions to the differential equation

= 0.
Therefore y; + y» is a solution to the differential equation and y; + y» € S
and S is closed under vector addition.
Consider y = ry; in the differential equation:

() (1) + Fa—1 () (1) "D -+ B (1) + A0 () + o (x) (1)

= 00" + fa (GO - B+ A + H)m
since the derivative of a constant times a function is
the constant times the derivative of the function
Linear Algebra October 9, 2018 23 / 24



Page 202 Number 40 (continued 2)

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form

f,,(x)y(”) + fn,l(x)y(”_l) + -+ h(x)y" + A(x)y + fo(x)y = 0.

Prove that the set S of all solutions of this equation that lie in the vector
space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F.

Proof (continued).

= 1 (Fl” + a GIA™ Y -+ RO + ALY + )

= 0 since y; is a solution to the differential equation.

So ry; € S and S is closed under scalar multiplication.
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Page 202 Number 40 (continued 2)

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form

f,,(x)y(”) + fn,l(x)y(”_l) + -+ h(x)y" + A(x)y + fo(x)y = 0.

Prove that the set S of all solutions of this equation that lie in the vector
space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F.

Proof (continued).

= 1 (Fl” + a GIA™ Y -+ RO + ALY + )

= 0 since y; is a solution to the differential equation.

So ry; € S and S is closed under scalar multiplication. Hence, by Theorem
3.2, S is a subspace of F. O
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