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Theorem 3.2. Test for Subspace

Theorem 3.2

Theorem 3.2. Test for Subspace.
A subset W of vector space V is a subspace if and only if
(1) ~v , ~w ∈ W ⇒ ~v + ~w ∈ W ,
(2) for all r ∈ R and for all ~v ∈ W , we have r~v ∈ W .

Proof. Let W be a subspace of V . W must be nonempty since ~0 must be
in W by Definition 3.1, “Vector Space.” Also by Definition 3.1, we see
that W must have a rule for adding two vectors ~v and ~w in W to produce
a vector ~v + ~w .

Addition in W is the same as in V , so it is necessary that
W is closed under vector addition. Similarly, we must have a rule for
multiplying any vector ~w in W by any scalar r ∈ R to produce a vector r ~w
in W . Scalar multiplication in W is the same as in V , so it is necessary
that W be closed under scalar multiplication. So if W is a subspace of V ,
then (1) and (2) are necessary.
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Theorem 3.2. Test for Subspace

Theorem 3.2 (continued)

Theorem 3.2. Test for Subspace.
A subset W of vector space V is a subspace if and only if
(1) ~v , ~w ∈ W ⇒ ~v + ~w ∈ W ,
(2) for all r ∈ R and for all ~v ∈ W we have r~v ∈ W .

Proof (continued). Now suppose that W is nonempty and closed under
vector addition and scalar multiplication (that is, (1) and (2) hold).

If ~0 is
the only vector in W , then properties A1–A4 and S1–S4 are easily seen to
hold since ~v , ~w ∈ W implies ~v = ~w = ~0. Then W = {~0} is itself a vector
space and so is a subspace of V . If nonzero vector ~v is in W then by
closure under scalar multiplication, (−1)~v = (−~v) ∈ W . By closure under
vector addition, ~v + (−~v) = ~0 ∈ W . So ~0 ∈ W and for any ~v ∈ W we
have −~v ∈ W , as required of all vector spaces. Now A1–A4 and S1–S4
hold for all ~v , ~w ∈ V and r , s ∈ R, so they hold for all ~v , ~w ∈ W and
r , s ∈ R. That is, W is itself a vector space and so is a subspace of V .
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Page 202 Number 4

Page 202 Number 4

Page 202 Number 4. Determine whether the set F1 of all functions f
such that f (1) = 0 is a subspace of the vector space F of all functions
mapping R into R (see Example 3.1.3).

Solution. We apply Theorem 3.2, “Test for a Subspace.” Let f , g ∈ F1

and let r ∈ R be a scalar.

Then (f + g)(x) = f (x) + g(x), so
(f + g)(1) = f (1) + g(1) = 0 + 0 = 0 and so f + g ∈ F1 and F1 is closed
under vector addition. Next, (rf )(x) = rf (x), so (rf )(1) = rf (1) = r0 = 0
and so rf ∈ F1 and F1 is closed under scalar multiplication. So by
Theorem 3.2, F1 is a subspace of F . �
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Page 202 Number 8

Page 202 Number 8

Page 202 Number 8. Let P be the vector space of polynomials with real
coefficients along with the zero function (see Example 3.1.2). Prove that
sp(1, x) = sp(1 + 2x , x).

Proof. We show that each set of vectors is a subset of the other in order
to deduce that the sets are the same.

Let p(x) ∈ sp(1, x). Then p(x) = (r1)1 + (r2)x = r1 + r2x for some scalars
r1, r2 ∈ R. Now p(x) = r1 + r2x = (r1)(1 + 2x) + (r2 − 2r1)x and so
p(x) ∈ sp(1 + 2x , x) (since p(x) is a linear combination of 1 + 2x and x).
Therefore every element of sp(1, x) is in sp(1 + 2x , x) and so
sp(1, x) ⊂ sp(1 + 2x , x).
Now let q(x) ∈ sp(1 + 2x , x). Then q(x) = (s1)(1 + 2x) + (s2)x for some
scalars s1, s2 ∈ R. Now
q(x) = (s1)(1 + 2x) + (s2)x = s1 + 2s1x + s2x = (s1)1 + (2s1 + s2)x and
so q(x) ∈ sp(1, x). Therefore every element of sp(1 + 2x , x) is in sp(1, x)
and so sp(1 + 2x , x) ⊂ sp(1, x). Hence, sp(1, x) = sp(1 + 2x , x).
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Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions
{sin x , sin 2x , sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

r1 sin x + r2 sin 2x + r3 sin 3x = 0 (∗)
for some scalars r1, r2, r3 ∈ R. Then this equation must hold for all x ∈ R.

In particular, for x = π/2 we have
r1 sin(π/2) + r2 sin(2(π/2)) + r3 sin(3(π/2)) = 0, or
r1(1) + r2(0) + r3(−1) = 0 or

r1 − r3 = 0. (1)

Differentiating both sides of (∗) with respect to x implies that
r1 cos x + 2r2 cos 2x + 3r3 cos 3x = 0 and with x = 0 we must have
r1 cos(0) + 2r2 cos(0) + 3r2 cos(0) = 0 or

r1 + 2r2 + 3r3 = 0. (2)

() Linear Algebra October 9, 2018 7 / 24



Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions
{sin x , sin 2x , sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

r1 sin x + r2 sin 2x + r3 sin 3x = 0 (∗)
for some scalars r1, r2, r3 ∈ R. Then this equation must hold for all x ∈ R.
In particular, for x = π/2 we have
r1 sin(π/2) + r2 sin(2(π/2)) + r3 sin(3(π/2)) = 0, or
r1(1) + r2(0) + r3(−1) = 0 or

r1 − r3 = 0. (1)

Differentiating both sides of (∗) with respect to x implies that
r1 cos x + 2r2 cos 2x + 3r3 cos 3x = 0 and with x = 0 we must have
r1 cos(0) + 2r2 cos(0) + 3r2 cos(0) = 0 or

r1 + 2r2 + 3r3 = 0. (2)

() Linear Algebra October 9, 2018 7 / 24



Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions
{sin x , sin 2x , sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

r1 sin x + r2 sin 2x + r3 sin 3x = 0 (∗)
for some scalars r1, r2, r3 ∈ R. Then this equation must hold for all x ∈ R.
In particular, for x = π/2 we have
r1 sin(π/2) + r2 sin(2(π/2)) + r3 sin(3(π/2)) = 0, or
r1(1) + r2(0) + r3(−1) = 0 or

r1 − r3 = 0. (1)

Differentiating both sides of (∗) with respect to x implies that
r1 cos x + 2r2 cos 2x + 3r3 cos 3x = 0 and with x = 0 we must have
r1 cos(0) + 2r2 cos(0) + 3r2 cos(0) = 0 or

r1 + 2r2 + 3r3 = 0. (2)
() Linear Algebra October 9, 2018 7 / 24



Page 202 Number 16

Page 202 Number 16

Page 202 Number 16. Determine whether the set of functions
{sin x , sin 2x , sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution. Suppose

r1 sin x + r2 sin 2x + r3 sin 3x = 0 (∗)
for some scalars r1, r2, r3 ∈ R. Then this equation must hold for all x ∈ R.
In particular, for x = π/2 we have
r1 sin(π/2) + r2 sin(2(π/2)) + r3 sin(3(π/2)) = 0, or
r1(1) + r2(0) + r3(−1) = 0 or

r1 − r3 = 0. (1)

Differentiating both sides of (∗) with respect to x implies that
r1 cos x + 2r2 cos 2x + 3r3 cos 3x = 0 and with x = 0 we must have
r1 cos(0) + 2r2 cos(0) + 3r2 cos(0) = 0 or

r1 + 2r2 + 3r3 = 0. (2)
() Linear Algebra October 9, 2018 7 / 24



Page 202 Number 16

Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of (∗) with respect to
x implies −r1 sin x − 4r2 sin 2x − 9r3 sin 3x = 0 and with x = π/2 we must
have −r1 sin(π/2)− 4r2 sin(2(π/2))− 9r3 sin(3(π/2)) = 0 or

−r1 + 9r3 = 0. (3)

So (∗) implies (1), (2), and (3) so that if (∗) holds then we must have
r1 − r3 = 0
r1 + 2r2 + 3r3 = 0

−r1 + 9r3 = 0
.

This system of equations has associated

augmented matrix

 1 0 −1 0
1 2 3 0

−1 0 9 0

. Since this is a homogeneous

system of equations then any solution [r1, r2, r3]
T is a vector in the

nullspace of the coefficient matrix A.
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T is a vector in the

nullspace of the coefficient matrix A.
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Page 202 Number 16 (continued 1)

Solution (continued). Taking a second derivative of (∗) with respect to
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. Since this is a homogeneous
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T is a vector in the

nullspace of the coefficient matrix A.
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Page 202 Number 16

Page 202 Number 16 (continued 2)

Page 202 Number 16. Determine whether the set of functions
{sin x , sin 2x , sin 3x} is dependent or independent in the vector space F of
all real-valued functions defined on R (see Example 3.1.3).

Solution (continued). So we now reduce the coefficient matrix:

A =

 1 0 −1
1 2 3

−1 0 9

 R2→R2−R1

˜R3 → R3 + R1

 1 0 −1
0 2 4
0 0 8

 = H.

Now H has 3 pivots and 0 pivot-free columns. So by Theorem 2.5(1),
“The Rank Equation,” the nullity of A is 0 and so the only solution to the
system of equations is the trivial solution r1 = r2 = r3 = 0. That is, the
set of vectors is linearly independent. �
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Page 202 Number 20

Page 202 Number 20

Page 202 Number 20. Determine whether or not the set
{x , x2 + 1, (x − 1)2} is a basis for the vector space P2 of all polynomials
with real coefficients of degree 2 or less.

Solution. We use Definition 3.6, “Basis for a Vector Space,” to see if the
set is a linearly independent spanning set. For linear independence we
consider the equation (r1)x + r2(x

2 + 1) + r3(x − 1)2 = 0x2 + 0x + 0. This
gives (r2 + r3)x

2 + (r1 − 2r3)x + (r2 + r3) = 0x2 + 0x + 0 and so we need
r2 + r3 = 0

r1 − 2r3 = 0
r2 + r3 = 0

.

We consider the augmented matrix for this

system of equations:

A =

 0 1 1 0
1 0 −2 0
0 1 1 0

 R1↔R2

˜

 1 0 −2 0
0 1 1 0
0 1 1 0
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Page 202 Number 20

Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set
{x , x2 + 1, (x − 1)2} is a basis for the vector space P2 of all polynomials
with real coefficients of degree 2 or less.

Solution (continued). 1 0 −2 0
0 1 1 0
0 1 1 0

 R3→R3−R2

˜

 1 0 −2 0
0 1 1 0
0 0 0 0

 .

We see that the system of equations has a free variable, say t = r3, and
then the general solution is r1 = 2t, r2 = −t, r3 = t. In particular, r1 = 2,
r2 = −1, r3 = 1 gives the dependence relation
(2)x + (−1)(x2 + 1) + (1)(x − 1)2 = 0x2 + 0x + 0 and so, by Definition
3.5, “Linear Dependence and Independence,” we see that the set
{x , x2 + 1, (x − 1)2} is not linearly independent and so it

is not a basis for P2.

() Linear Algebra October 9, 2018 11 / 24



Page 202 Number 20

Page 202 Number 20 (continued)

Page 202 Number 20. Determine whether or not the set
{x , x2 + 1, (x − 1)2} is a basis for the vector space P2 of all polynomials
with real coefficients of degree 2 or less.

Solution (continued). 1 0 −2 0
0 1 1 0
0 1 1 0

 R3→R3−R2

˜

 1 0 −2 0
0 1 1 0
0 0 0 0

 .

We see that the system of equations has a free variable, say t = r3, and
then the general solution is r1 = 2t, r2 = −t, r3 = t. In particular, r1 = 2,
r2 = −1, r3 = 1 gives the dependence relation
(2)x + (−1)(x2 + 1) + (1)(x − 1)2 = 0x2 + 0x + 0 and so, by Definition
3.5, “Linear Dependence and Independence,” we see that the set
{x , x2 + 1, (x − 1)2} is not linearly independent and so it

is not a basis for P2.

() Linear Algebra October 9, 2018 11 / 24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3) in
the vector space P2 of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P2) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r1)(x

2 − 1) + (r2)(x
2 + 1) + (r3)4 + (r4)(2x − 3) = 0x2 + 0x + 0 or

(r1 + r2)x
2 + (2r4)x + (−r1 + r2 + 4r3 − 3r4) = 0x2 + 0x + 0.

So we need

r1 + r2 = 0
2r4 = 0

−r1 + r2 + 4r3 − 3r4 = 0
.

This system of equations yields the augmented matrix 1 1 0 0 0
0 0 0 2 0

−1 1 4 −3 0

 R3→R3+R1

˜

 1 1 0 0 0
0 0 0 2 0
0 2 4 −3 0



() Linear Algebra October 9, 2018 12 / 24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3) in
the vector space P2 of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P2) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r1)(x

2 − 1) + (r2)(x
2 + 1) + (r3)4 + (r4)(2x − 3) = 0x2 + 0x + 0 or

(r1 + r2)x
2 + (2r4)x + (−r1 + r2 + 4r3 − 3r4) = 0x2 + 0x + 0. So we need

r1 + r2 = 0
2r4 = 0

−r1 + r2 + 4r3 − 3r4 = 0
.

This system of equations yields the augmented matrix 1 1 0 0 0
0 0 0 2 0

−1 1 4 −3 0

 R3→R3+R1

˜

 1 1 0 0 0
0 0 0 2 0
0 2 4 −3 0



() Linear Algebra October 9, 2018 12 / 24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3) in
the vector space P2 of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P2) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r1)(x

2 − 1) + (r2)(x
2 + 1) + (r3)4 + (r4)(2x − 3) = 0x2 + 0x + 0 or

(r1 + r2)x
2 + (2r4)x + (−r1 + r2 + 4r3 − 3r4) = 0x2 + 0x + 0. So we need

r1 + r2 = 0
2r4 = 0

−r1 + r2 + 4r3 − 3r4 = 0
.

This system of equations yields the augmented matrix 1 1 0 0 0
0 0 0 2 0

−1 1 4 −3 0

 R3→R3+R1

˜

 1 1 0 0 0
0 0 0 2 0
0 2 4 −3 0


() Linear Algebra October 9, 2018 12 / 24



Page 202 Number 22

Page 202 Number 22

Page 202 Number 22. Find a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3) in
the vector space P2 of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.)

Solution. Notice that dim(P2) = 3 (see Note 3.2.C) and so there must be
a dependence relation on the set of the 4 given vectors. So we consider
(r1)(x

2 − 1) + (r2)(x
2 + 1) + (r3)4 + (r4)(2x − 3) = 0x2 + 0x + 0 or

(r1 + r2)x
2 + (2r4)x + (−r1 + r2 + 4r3 − 3r4) = 0x2 + 0x + 0. So we need

r1 + r2 = 0
2r4 = 0

−r1 + r2 + 4r3 − 3r4 = 0
.

This system of equations yields the augmented matrix 1 1 0 0 0
0 0 0 2 0

−1 1 4 −3 0

 R3→R3+R1

˜

 1 1 0 0 0
0 0 0 2 0
0 2 4 −3 0


() Linear Algebra October 9, 2018 12 / 24



Page 202 Number 22

Page 202 Number 22 (continued 1)

Solution (continued). 1 1 0 0 0
0 0 0 2 0
0 2 4 −3 0

 R2↔R3

˜

 1 1 0 0 0
0 2 4 −3 0
0 0 0 2 0

 R1→R1−R2/2

˜

 1 0 −2 3/2 0
0 2 4 −3 0
0 0 0 2 0

 R1→R1−(3/4)R3

˜R2 → R2 + (3/2)R3

 1 0 −2 0 0
0 2 4 0 0
0 0 0 2 0


R2→R2/2

˜R3 → R1/2

 1 0 −2 0 0
0 1 2 0 0
0 0 0 1 0

 .

With t = r3 as a free variable we have r1 = 2t, r2 = −2t, r3 = t, r4 = 0.
With t = 1 we see that (2)(x2 − 1) + (−2)(x2 + 1) + (1)4 = 0 or
4 = (−2)(x2 − 1) + (2)(x2 + 1). So 4 is a linear combination of x2 − 1
and x2 + 1. We remove it from the collection and consider the set
B = {x2 − 1, x2 + 1, 2x − 3}.
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Page 202 Number 22

Page 202 Number 22 (continued 2)

Solution (continued). Set B = {x2 − 1, x2 + 1, 2x − 3} is a linearly
independent set since r1(x

2 − 1) + r2(x
2 + 1) + r3(2x − 3) = 0x2 + 0x + 0

implies (r1 + r2)x
2 + (2r3)x + (−r1 + r2 − 3r3) = 0x2 + 0x + 0, or

r1 + r2 = 0
2r3 = 0

−r1 + r2 − 3r3 = 0
. This leads us to the augmented matrix

 1 1 0 0
0 0 2 0

−1 1 −3 0

 R3→R3+R1

˜

 1 1 0 0
0 0 2 0
0 2 −3 0

 R2↔R3

˜

 1 1 0 0
0 2 −3 0
0 0 2 0


R1→R1−(1/2)R2

˜

 1 0 3/2 0
0 2 −3 0
0 0 2 0

 R1→R1−(3/4)R3

˜R2 → R2 + (3/2)R3

 1 0 0 0
0 2 0 0
0 0 2 0


R2→R2/2

˜R3 → R3/2

 1 0 0 0
0 1 0 0
0 0 1 0

 .
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Page 202 Number 22

Page 202 Number 22 (continued 3)

Page 202 Number 22. Find a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3) in
the vector space P2 of all polynomials with real coefficients of degree 2 or
less. (Notice that the text states this as a problem in P of all polynomials,
but this does not affect our computations.

Solution (continued). So we must have r1 = r2 = r3 = 0 and hence the
set B = {x2 − 1, x2 + 1, 2x − 3} is linearly independent. We know set B
to be a spanning set of sp(x2 − 1, x2 + 1, 4, 2x − 3) since every linear
combination of x2 − 1, x2 + 1, 4, 2x − 3 is also a linear combination of the
elements of B (just replace the multiple of 4 with the same multiple of
(−2)(x2 − 1) + (2)(x2 + 1)). Therefore, by Definition 3.6, “Basis for a
Vector Space,”

B = {x2 − 1, x2 + 1, 2x − 3} is a basis for sp(x2 − 1, x2 + 1, 4, 2x − 3).
�
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Theorem 3.3. Unique Combination Criterion for a Basis

Theorem 3.3

Theorem 3.3. Unique Combination Criterion for a Basis.
Let B be a set of nonzero vectors in vector space V . Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof. Suppose B is a basis for V . By Definition 3.6, “Basis for a Vector
Space,” B is a spanning set and so for any given ~v ∈ V there are
~b′1,

~b′2, . . . ,
~b′k ′ ∈ B and r ′1, r

′
2, . . . , r

′
k ′ ∈ R such that

~v = r ′1
~b′1 + r ′2

~b′2 + · · ·+ r ′k ′~b′k ′ .

Suppose that ~v can be expressed as another linear combination of vectors,
say

~v = s ′′1
~b′′1 + s ′′2

~b′′2 + · · ·+ s ′′k ′′~b′′k ′′

where ~b′′1 ,~b′′2 , . . . ,~b′′k ′′ ∈ B and s ′′1 , s ′′2 . . . , s ′′k ′′ ∈ R. Some of the ~b′i and ~b′′i
may be the same or they could all be different. Let k be the number of
different ~b′i and ~b′′i .
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Theorem 3.3. Unique Combination Criterion for a Basis

Theorem 3.3 (continued 1)

Proof (continued). Relabel these vectors as ~b1,~b2, . . . ,~bk and relabel the
coefficients r ′i and s ′′i as ri and si (introducing 0’s as needed) such that

~v = r1~b1 + r2~b2 + · · ·+ rk~bk = s1~b1 + s2~b2 + · · ·+ sk~bk (this is necessary
because the basis B might be infinite and so we cannot write ~v as an
infinite linear combination; such things are not necessarily defined in a
vector space and there are different levels of infinity, which complicates
things further). Then we have

~0 = ~v − ~v = (r1 − s1)~b1 + (r2 − s2)~b2 + · · ·+ (rk − sk)~bk

and since B is a basis then B is linearly independent (Definition 3.6) and
so r1 − s1 = r2 − s2 = · · · = rk − sk = 0 or r1 = s1, r2 = s2, . . . , rk = sk .
Therefore ~v can only be expressed in one way as a linear combination of
elements of B, as claimed.
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Theorem 3.3. Unique Combination Criterion for a Basis

Theorem 3.3 (continued 2)

Theorem 3.3. Unique Combination Criterion for a Basis.
Let B be a set of nonzero vectors in vector space V . Then B is a basis for
V if and only if each vector V can by uniquely expressed as a linear
combination of the vectors in set B.

Proof (continued). Now suppose each vector ~v of V can be uniquely
expressed as a linear combination of elements of B. Then B is a spanning
set of V and (1) of Definition 3.6 holds. Let ~b1,~b2, . . . ,~bn ∈ B and
suppose that r1~b1 + r2~b2 + · · ·+ rn~bn = ~0. One choice for the coefficients
r1, r2, . . . , rn is r1 = r2 = · · · = rn = 0. But since ~0 is a unique linear
combination of ~b1,~b2, . . . ,~bn then it is necessary that
r1 = r2 = · · · = rn = 0. That is (by Definition 3.5, “Linear Dependence
and Independence”) B is linearly independent and (2) of Definition 3.6
holds.

So Definition 3.6, “Basis for a Vector Space,” is satisfied and B is a
basis for V .
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Page 203 Number 32

Page 203 Number 32

Page 203 number 32. Let {~v1, ~v2, ~v3} be a basis for V . If ~w 6∈ sp(~v1, ~v2)
then {~v1, ~v2, ~w} is a basis for V .

Proof. By Definition 3.6, “Basis for a Vector Space,” we need to show
that {~v1, ~v2, ~w} is a linearly independent spanning set of V . Since ~w ∈ V ,
then ~w = r1~v1 + r2~v2 + r3~v3 and r3 6= 0 since ~w 6∈ sp(~v1, ~v2).

Then

~v3 =
1

r3
(~w − r1~v1 − r2~v2). Therefore ~v3 ∈ sp(~v1, ~v2, ~w). So

sp(~v1, ~v2, ~v3) ⊂ sp(~v1, ~v2, ~w)

and so {~v1, ~v2, ~w} generates V .

Next suppose, s1~v1 + s2~v2 + s3~w = ~0. Then s3 = 0 or else ~w ∈ sp(~v1, ~v2).
So s1~v1 + s2~v2 = ~0 and so s1 = s2 = 0. Therefore s1 = s2 = s3 = 0 and so
{~v1, ~v2, ~w} is a basis for V .
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Page 203 Number 36

Page 203 Number 36

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W ) = n, then W = V .

Proof. Let {~w1, ~w2, . . . , ~wn} be a basis of subspace W .

ASSUME there is
some ~v ∈ V such that ~v 6∈ sp(~w1, ~w2, . . . , ~wn). Consider the equation

r1~w1 + r2~w2 + · · ·+ rn~wn + rn+1~v = ~0. (∗)

If rn+1 6= 0 then ~v = − r1
rn+1

~w1 −
r2

rn+1
~w2 − · · · − rn

rn+1
~wn and

~v ∈ sp(~w1, ~w2, . . . , ~wn), in contradiction to the choice of ~v . So rn+1 = 0
But then (∗) implies that r1~w1 + r2~w2 + · · ·+ rn~wn = ~0 and since
{~w1, ~w2, . . . , ~wn} is a basis for W then by Definition 3.6, “Basis for a
Vector Space,” the vectors are linearly independent and so by Definition
3.5, “Linear Dependence and Independence,”
r1 = r2 = · · · = rn = rn+1 = 0 and so (by Definition 3.5) the vectors
~w1, ~w2, . . . , ~wn, ~v are n + 1 linearly independent vectors.
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Page 203 Number 36

Page 203 Number 36 (continued)

Page 203 Number 36. Prove that if W is a subspace of an
n-dimensional vector space V and dim(W ) = n, then W = V .

Proof (continued). Then, since V is spanned by a set of n vectors
(because it is dimension n), by Theorem 3.4, “Relative Size of Spanning
and Independent Sets,” n ≥ n + 1, a CONTRADICTION. So the
assumption that there is ~v ∈ V such that ~v 6∈ sp(~w1, ~w2, . . . , ~wn) is false.
Hence W = sp(~w1, ~w2, . . . , ~wn) includes all vectors in V and so V ⊂ W .
Since W is a subspace of V then W ⊂ V and therefore V = W , as
claimed.
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Page 204 Number 40

Page 202 Number 40

Page 202 Number 40. A homogeneous linear nth-order differential
equation has the form

fn(x)y (n) + fn−1(x)y (n−1) + · · ·+ f2(x)y ′′ + f1(x)y ′ + f0(x)y = 0.

Prove that the set S of all solutions of this equation that lie in the vector
space F of all functions mapping R into R (see Example 3.1.3) is a
subspace of F .

Proof. We use Theorem 3.2, “Test for a Subspace.” Let y1 and y2 be
solutions of the differential equation and let r ∈ R be a scalar.

Then
consider y = y1 + y2 in the differential equation:

fn(x)(y1 + y2)
(n) + fn−1(x)(y1 + y2)

(n−1) + · · ·
+f2(x)(y1 + y2)

′′ + f1(x)(y1 + y2)
′ + f0(x)(y1 + y2)

= fn(x)
(
y

(n)
1 + y

(n)
2

)
+ fn−1(x)

(
y

(n−1)
1 + y

(n−1)
2

)
+ · · ·

+f2(x)
(
y ′′1 + y ′′2

)
+ f1(x)

(
y ′1 + y ′2

)
+ f0(x)(y1 + y2) . . .
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Page 204 Number 40

Page 202 Number 40 (continued 1)

Proof (continued).

since the derivative of a sum is the sum of the derivatives

= (fn(x)y
(n)
1 + fn−1(x)y

(n−1)
1 + · · ·+ f2(x)y ′′1 + f1(x)y ′1 + f0(x)y1)

+(fn(x)y
(n)
2 + fn−1(x)y

(n−1)
2 + · · ·+ f2(x)y ′′2 + f1(x)y ′2 + f0(x)y2)

= 0 + 0 since y1 and y2 are solutions to the differential equation

= 0.
Therefore y1 + y2 is a solution to the differential equation and y1 + y2 ∈ S
and S is closed under vector addition.
Consider y = ry1 in the differential equation:

fn(x)(ry1)
(n)+fn−1(x)(ry1)

(n−1)+ · · ·+f2(x)(ry1)
′′+f1(x)(ry1)

′+f0(x)(ry1)

= fn(x)ry
(n)
1 + fn−1(x)ry

(n−1)
1 + · · ·+ f2(x)ry ′′1 + f1(x)ry ′1 + f0(x)ry1

since the derivative of a constant times a function is

the constant times the derivative of the function
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Page 202 Number 40 (continued 2)
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= r
(
fn(x)y

(n)
1 + fn−1(x)y

(n−1)
1 + · · ·+ f2(x)y ′′1 + f1(x)y ′1 + f0(x)y1

)
= 0 since y1 is a solution to the differential equation.

So ry1 ∈ S and S is closed under scalar multiplication. Hence, by Theorem
3.2, S is a subspace of F .
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