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Example 3.4.B

Example 3.4.B. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define

T:F — Fas T(f) = af, as in Example 3.4.A. Describe the kernel of T.

Solution. Let f € ker(T). Then T(f) = 0 (where 0 = 0(x) denotes the
constant function which is 0 for all x € R). So

T(f) = af = af(x) = 0(x) = 0. Since a # 0 then f(x) = 0 for all x € R.
That is, f(x) = 0(x) or f =0. So |ker(T) = {0} = {0(x)}.| O
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Example 3.4.A

Example 3.4.A. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define
T:F— Fas T(f)=af.Is T a linear transformation?

Solution. We use Note 3.4.A. Let f,g € F and let r,s € R. Then

T(rf + sg) a(rf + sg)

= a(rf) + a(sg) by S1

= (ar)f + (as)g by S3

= (ra)f + (sa)g by commutivity in R
= r(af)+ s(ag) by S3

= rT(f)+sT(g).

Therefore, |yes, T is a linear transformation. ‘ O
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Page 214 Example 1

Page 214 Example 1. Let F be the vector space of all functions

f : R — R (see Example 3.1.3), and let D be its subspace of all
differentiable functions. Show that differentiation is a linear transformation
of D into F.

Proof. Let T : D — F be defined as T(f) = f’. Let f,g € D and let
r € R. Since the derivative of a sum is the sum of the derivatives, then

T(f+g)=(f+g) =f+g =T(f)+ T(g).

Since the derivative of a multiple of a function is the multiple times the

derivative, then
T(rf) = (rf) = rf’ = rT(f).

Therefore T is linear. ]
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Page 215 Example 3

Page 215 Example 4

Page 215 Example 3. Let C,;, be the set of all continuous functions
mapping [a, b] — R. Then G, is a vector space (based on an argument
similar to that which justifies that C = {f € F | f is continuous} is a
subspace of F, as mentioned in Note 3.2.B). Prove that T: G, — R
defined by T(f) = fab f(x) dx is a linear transformation. Such a
transformation which maps functions to real numbers is called a /inear
functional.

Page 215 Example 4. Let C be the vector space of all continuous
functions mapping R into R (see Note 3.2.A). Let a € R and let

T,: C — C be defined by T,(f) = [ f(t) dt. Prove that T is a linear
transformation.

Proof. Similar to the previous example, for f, g € C and for scalar r € R
we have

Ta(f-l-g):/X(f(t)-l-g(t))dt:/x f(t)dt+/xg(t)df= Ta(f)+Ta(g)

Proof. Let f,g € C, and let r € R be a scalar. Since the integral of a
sum is the sum of the integrals and the integral of a multiple of a function

is the multiple of the integral of the function, we have d
an

T.(rf) = /X #(¢) dt = r/X F(£) dt = rT.().

So by Definition 3.9, “Linear Transformation,” T, is a linear

b b b
T(F+g) = / (F()+g(x)) dx = / F(x) dx-+ / g(x) dx = T(F)+T(g)

and T(rf) = fab rf(x) dx = rfab f(x)dx = rT(f). So, by Definition 3.9,

transformation. ]
“Linear Transformation,” T is a linear transformation. O]
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Theorem 3.5 Theorem 3.5 (continued)

Theorem 3.5. Preservation of Zero and Subtraction

Let V and V' be vectors spaces, and let T : V — V/ be a linear
transformation. Then

(1) T7(0) =0, and

(2) T(vh — o) = T(v1) — T(v2), for any vectors v; and v» in V.

Proof. First,
T(0) = T(00) by Theorem 3.1(4),
“Elementary Properties of Vector Spaces”
— 0T(0) by Definition 3.9(2),
“Linear Transformations”
— (0’ by Theorem 3.1(4).
Linear Algebra October 24, 2018
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Theorem 3.5. Preservation of Zero and Subtraction

Let V and V' be vectors spaces, and let T : V — V'’ be a linear
transformation. Then

(1) T(0) =0, and

(2) T(vh — o) = T(v1) — T(v2), for any vectors v; and v in V.

Proof (continued). Second,

T (V1 — ) T(vi—(1)v2) by S4
= T(¥1 4+ (—1)¥) by Theorem 3.1(6)
= T(v1) + (=1)T(v») by Note 3.4.A
= T(4) — T(v») by Theorem 3.1(6).
So (1) and (2) hold, as claimed. O
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Theorem 3.6

Theorem 3.6. Bases and Linear Transformations.

Let T : V — V/ be a linear transformation, and let B be a basis for V.
For any vector v in V/, the vector T(V) is uniquely determined by the
vectors T(b) for all b € B.

Proof. Lit T and T be two linear transformations such that
T(b;) = T(b;) for each vector b; € B. Let v € V. Then for some scalars

r,r,...,rn wehave Vv._rby +mnv+---+ I’kBk. Then
T(V) = T(f151+r252-|—---+rk5k)

= n T(Bl) + T(Bz) + -1 T(Ek) by Note 3.4.A
= rlT(El) + QT(BQ) + -4 I’kT(Ek)
= T(rll;l + I’QBQ + -+ rkEk) by Note 3.4.A
= T(V).

Therefore T and T are the same transformations. O
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Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel.
A linear transformation T is one-to-one if and only if ker(T) = {0}.

Proof. Let T : V — V/ where V and V'’ are vector spaces.

Let ker(T) = {0}. Suppose for some V1, V> € V we have T(¥1) = T().
Then T(¥) — T(v») = 0" and so by Theorem 3.5(2), Preservation of Zero
and Subtraction, T (v, — ¥b) = 0'. Thatis, vi — Vs € ker(T) = {0}. So it
must be that ¥4 — v» = 0, or ¥; = b, and hence T is one-to-one.

Next, suppose T is one-to-one. Since T(0) = 0’ by Theorem 3.5(1),
“Preservation of Zero and Subtraction,” then for any nonzero vector
X € V we must have that T(X) # 0’. That is, the only vector in ker(T) is
0. So ker(T) = {0}, as claimed. O
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Theorem 3.4.A (Page 229 number 46)

Theorem 3.4.A

Theorem 3.4.A. (Page 229 number 46) Let T : V — V' be a linear
transformation and let T(p) = b for a particular vector g in V. The
solution set of T(X) = b is the set {p+ h| h € ker(T)}.

Proof. Let p be a solution of T(V) :45' Then T(B) = b. Let h be a
solution of T(X) =0'. Then T(h) = 0’. Therefore, by Definition 3.9(1),
“Linear Transformation,”

T(B+h) =T(B)+ T(h)=b+0 =b,

and so B+ h is indeed a solution. Also, if g is any solution of T(X) = b
then by Theorem 3.5(2), “Preservation of Zero and Subtraction,”

T(G—p)=T(@) - T(F)=b-b=0,

in the kernel of T. Therefore for some h € ker(T), we

and s is
h, for g = p + h. O

0q
have g —

B
5 —
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Theorem 3.8. A linear transformation T : V — V/ is invertible if and
only if it is one-to-one and onto V’. When T 1 exists, it is linear.

Proof. ASSUME T is invertible and is not one-to-one. Then by the
definition of “one-to-one,” for some Vi # v, both in V, we have

T(Vy) = T(h) =V. Butthen vy =Ty = T 1o T(¥h) = T (V) and
Vo =Iva = T 1o T(%)= T YV'), which implies that ¥; = ik, a
CONTRADICTION. Therefore if T is invertible then T is one-to-one.

From Definition 3.10, “Invertible Transformation,” if T is invertible then
for any v/ € V/ we must have T~1(V') = ¥ for some v € V. Therefore the
image of Vis v/ € V' and T is onto.
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Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation T : V — V/ is invertible if and
only if it is one-to-one and onto V. When T~! exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and
onto then it is invertible. Suppose that T is one-to-one and onto V'.
Since T is onto V’, then for each v/ € V/ we can find vV € V such that
T(V) = V' and because T is one-to-one, this vector Vv € V is unique (from
the definition of “one-to-one” and “onto"). Let T~ : V/ — V be defined
by T-1(V') = V. Then

(To TN = T(TH7) = T(7) = 7

and
(T T)@) = THT@) = T () =,

and so T o T~ is the identity map on V/ and T~ ! o T is the identity map
on V.
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Example 3.4.C

Example 3.4.C. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define
T:F — Fas T(f)=af, as in Example 3.4.A. Determine if T is
invertible. If so, find its inverse.

Solution. Since ker(T) = {0} by Example 3.4.B, then T is one-to-one by
Corollary 3.4.A. For any g € F, for f = g/a we have

T(f)=T(g/a) =a(g/a) =g and so T is onto. So by Theorem 3.8, T is
invertible. In fact, T~1(f) = f/a since

T-HT(f)) =T Y(af) = (af)/a=f = a(f/a) = T(f/a) = T(T}(f))
forall f € 7. O
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14/ 33
Theorem 3.10. Matrix Representations of Linear Transformations
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Theorem 3.8

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation T : V — V' is invertible if and
only if it is one-to-one and onto V. When T~! exists, it is linear.

Proof (continued). Now we need only show that T—! is linear. Suppose
T(v1) = V| and T(h) = v}; thatis, vi = T-}(V]) and Vh, = T 1(%).
Then

T + ) =

T YT(n) + T(n))
= T

(

Y(T(Vi + %)) since T is linear

= (T loT) (% + ) =I(Vh + ) = iy + s
= T H)+ T Y(#).

Also (since T is linear)
THri) = THNrT () = THT(r)) =Z(ria) = rin = rT (7).

Therefore T is linear. ]
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Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations.
Let V and V’ be finite-dimensional vector spaces and let

B = (51, b, ..., E,,) and B = (Eﬁ, qé, s Bfn) be ordered bases for V and
V', respectively. Let T : V — V' be a linear transformation, and let

T :R" — R™ be the linear transformation such that for each v € V, we
have T(vg) = T(V)s'. Then the standard matrix representation of T is
the matrix A whose jth column vector is T(EJ)B/, and T(V)g = Avg for
all vectors v € V.

Proof. Since B is a basis for V and B has n elements, then dim(V) = n
and so by Theorem 3.3.A, “Fundamental Theorem of Finite Dimensional
Vector Spaces,” there is isomorphism « : V — R" between V and R”
where a(V) = v, as shown in the proof of Theorem 3.3.A.

We need to show for all vV € V that T(V)g = A(Vg). We are given that
T(vg) = T(V)p, or equivalently

T(a(¥) = T(V)s- (+)
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Page 227 Number 18

Theorem 3.10. Matrix Representations of Linear Transformations

Theorem 3.10 (continued)

Page 227 Number 18. Let V and V' be vector spaces with ordered

Theorem 3.10. Matrix Representations of Linear Transformations. Jumber 1d V' be ve
bases B = (b1, by, b3) and B’ = (b1, b, b5, b)), respectively. Let

Let V and V’ be finite-dimensional vector spaces and let

B = (51, b, ..., En) and B = (E’l7 27 o E;n) be ordered bases for V and T : V — V/ be the linear transformation having matrix representation
Z’, respectively. Let T : V — V’ be a linear transformation, and let 41 -1
T :R" — R™ be the linear transformation such_that for each. Ve \/_,v_ve A= 2.2 0 relative to B, B'. Find T(¥) for v = 3bs — by.
have T(vg) = T(V)ps. Then the standard matrix representation of T is 06 1

21 3

the matrix A whose jth column vector is T(b;)g:, and T(V)g = Avg for

all vectors v € V. Solution. We use Theorem 3.10, “Matrix Representation of Linear

Proof (continued). ... T(a(¥)) = T(V)g. () Transformations.” Notice that vg = [-1,0,3]. So

So we need to show that T(vg) = A(¥g). Since T : R” — R™, then by 4 1 —1 7
Corollary 2.3.A, “Standard Matrix Representation of Linear . . 2 2 0 -1 )
Transformations,” the standard matrix representation of T is the m x n T(V)g = Avg = 06 1 0| = 3
matrix whose jth column is T(&;). By the definition of «, a(b;) = &;, so > 1 3 3 7

T(&) = T(a(b;)) = T(bj)s by (*). That is, the jth column of A is
T(b;)sr, as claimed. (1 So| T(V¥)=—Th, —2b,+3b, +7b,.|O
18/33

Page 227 Number 22 Page 227 Number 22 (continued 1)
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Page 227 Number 22. Let T : P3 — P3 be defined by 3 g 8 8
T(p(x)) = xD(p(x)) = xp’(x) and let the ordered bases B and B’ for P3 Solution. So A =

3 .2 0 010
both be (x°, x%, x, 1). 000 0

(a) Find the matrix representation A of T relative to B, B'.
(b) Working with the matrix A and coordinate vectors, find all solutions

(b) First (x®> —3x2 +4x)g = [1,—3,4,0]T. From Theorem 3.10,
p(x) of T(p(x)) = x3 — 3x2 + 4x.

T(p(x))s = Avg, so we want Vg € R?* such that

~—

Solution. (@) We use Theorem 3.10, “Matrix Representation of Linear

Avg = T(p(x))g = [1,—3,4,0]T. Let Vg = [v1, v2, v3, v4] ", and consider

Transformations,” and see that the columns of A are T(b)g, T(b)s, g g 8 8 ;
T(b3)gr, T(bs)pr. We find the augmented matrix for Avg = [1,—3,4,0]": 00 10 _4
T(h)e = T(Pe = xB)e = () = [30,0,0" . . 000 0] 0
T(Ez)B/ — T = x2))s = () = [0,2,0,0] We see that this is already in row reduced echelon form and so we need
2 o 3vi = 1 vi = 1/3
T(h)g = T(¥)e = (1) = (e = [001,0" 2v; - -3 v; - —?{/2
T(ba)pr T = (x(0)sr = (0)g = [0,0,0,0]". vy = 4% v o= 4
0 = 0 Vs = v

Linear Algebra October 24, 2018
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Page 227 Number 22 (continued 2)

Page 227 Number 22. Let T : P3 — P3 be defined by

T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases B and B’ for P3
both be (x3,x2, x,1).

(a) Find the matrix representation A of T relative to B, B'.

(b) Working with the matrix A and coordinate vectors, find all solutions
p(x) of T(p(x)) = x3 — 3x2 + 4x.

Solution. So we take k = v4 as a free variable. Then
vg = [1/3,—3/2,4, k] for any k € R. So vV € P53 is of the form

%x3—gx2+4x+kfork€R. O

Page 227 Number 24

Page 227 Number 24 (continued 1)

Solution. So the columns of A are T(by), T(b2), T(b3), T(bs):
12 0 00

A={12 4 0 0 |.O
3210

(b) We know from Theorem 3.10, “Matrix Representations of Linear
Transformations,” that T(4x3 — 5x2 4+ 4x — 7)g = Avg. Now
vg = [4,—5,4,—7] so

12 0 0 0 _‘51 48 ]
T4 =53+ 4x—T)gr=| 12 4 0 0 L=
3 210 - 6

and hence
T(4x3 —5x2 +4x — 7) = (48)x® + (28)x + (6)1 = 48x2 + 28x + 6.

Page 227 Number 24

Page 227 Number 24

Page 227 Number 24. Let T : P3 — P be defined by

T(p(x)) = p'(X)|ox+1=p (2x + 1), where p (X) D(p(x)), and let
= (b1, bo, b3, by) = (x3,x%,x,1) and B’ = (x2,x,1) = (b}, b}, b}).

(a) Find the matrix representation A of T relative to B, B'.

(b) Use A from part (a) to compute T (4x3 — 5x? + 4x — 7).

Solution. (a) Again we use Theorem 3.10 and find

T(bl)B’ (b2)B/ (b3)5/, T(E4)B/. FII’St we need the derivatives of

bl, b2, b37 b4 dx[bl] = [X3] = 3X " dx [b2] [X2] = 2X,

X[b3] = X[x] =1, and %[54] = Oi[l] = 0. Slnce T first takes a

derivative and then evaluates it at 2x + 1, we have

T(x3) =3(2x +1)2 =12x% + 12x + 3, T(x?) =2(2x + 1) = 4x + 2,

T(x)=1,and T(1) =0, and so

T(b)g = T(x 3)5/ — (12x% + 12x + 3)p = [12,12,3]”,

T(b)s = T(x®)s = (4x +2)5 = [0,4,2]7,
T(bs)s = T(x)sr = (1)g =[0,0,1]", and
T(by)p = ( )gr = 0 = [0,0, O]T
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Page 227 Number 24 (continued 2)

Page 227 Number 24. Let T : P3 — P> be defined by

T(P(X)) = P(X)xi1 = p'(2x + 1), where p(x) = D(p(x)), and let
= (bl, b2, b3, b4) (x3+x2,x,1) and B’ = (X x,1) = (b',b2, b3)
(b) Use A from part (a) to compute T(4x3 —5x2 + 4x — 7).

Solution. Notice that 2 [4x3 — 5x2 + 4x — 7] = 12x? — 10x + 4 and
evaluating this at 2x + 1 gives

12(2x +1)2 — 10(2x + 1) + 4 = 12(4x® + 4x + 1) — 10(2x + 1) + 4

— 48x% + 48x + 12 — 20x — 10 + 4 = 48x> + 28x + 6,

as expected. [
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Page 228 Number 28

Page 228 Number 28. Let W = sp(e?*, e**, €8%) be a subspace of F
(see Example 3.1.3) and let B = B’ = (%, e**, %¥).

(a) Find the matrix representation A relative to B, B’ of the linear
transformation T : W — W defined by T(f) = [*_f(t)dt.

(b) Find A~! where A is the matrix of part (a) and use it to find

T H(rne® + ne™ + r3e®).

Solution. (a) We use Theorem 3.10 and find T(b1)g, T(b2)s/, T(b3)s'.

We have
o X X 1 X
T(b) = T(ezx) = / et dt = lim (/ e?t dt) — lim ( <_e2f>
S a——00 2 a——00 2 R
_ . 1 2x 1 2a | __ 1 2x _ 1 2x
_a—||>rl]oo (Ee _Ee _Ee _O_Ee
Linear Algebra October 24, 2018

Page 228 Number 28 (continued 2)

Page 228 Number 28. Let W = sp(e?¥, e**, 8%
Example 3.1.3) and let B = B’ = (&2, e**, €%¥).
(b) Find A~! where A is the matrix of part (a) and use it to find
T Y (ne® + ne™ + r3e®).

) a subspace of F (see

0
Solution (continued). (b) It is easy to see that A1 = 0 |. By
8

SO oOoON
o b~ O

Theorem 3.4.B, A~ is the matrix representation of T! relative to B, B.
So by Theorem 3.10, “Matrix Representations of Linear Transformations,”
we have that T71(¥)g = A~V and so

T Y (ne*>+ne™+re®)g = A7 ((ne®+ne*™+re®);) = A7, n, n]"

2 00 r 2/‘1
== 0 40 r == 4r2
0 0 8 r3 8r3

Linear Algebra October 24, 2018
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Page 228 Number 28 (continued 1)

Solution (continued).

X X

- X 1
T(b2) = T(e4x) = / e dt = lim (/ et dt) = |im ( (—e‘”) )
—00 a——0o0 a a——00 4 R
— lim le4x_1e4a 2164)(—0:164)(
a——oco \ 4 4 4 4
. X X 1 X
T(b3) = T(eSX) = / Bt dt = lim (/ eBt dt) = lim < <_et> )
—00 a——0o0 a a——00 8 R
1 1 1 1
=, lim_ (éeBX B §e8a> =g¢ 0=

So T(b)g = [1/2,0,0], T(b2)s = [0,1/4,0], T(b3)s = [0,0,1/8]. So

12 0 0
A=1| 0 1/4 0
o 0 1/8
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Page 228 Number 28 (continued 3)

Page 228 Number 28. Let W = sp(e?*, e*, €8%) a subspace of F (see
Example 3.1.3) and let B = B’ = (&2, %, €%¥).

(b) Find A~! where A is the matrix of part (a) and use it to find

T (ne® + ne™ + r;e®).

Solution (continued). ...

2[‘1
4I’2
8[‘3

T‘l(rlezx + re™ + r3e8X)B

So translating this using basis B we have
T Y ne* + ne®™ + rne®) = 2ne® + 4ne* 4 8r;e®.
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Page 229 Number 44

Page 229 Number 44. Denote the set of all linear transformations from
Vito V'ias L(V,V'). Let T € L(V, V') and let r € R be a scalar. Define
rT:V — V' as (rT)V = r(T(V)) for each v € V. Prove that
T e L(V, V).
Solution. Let vj,v» € V and s,t € R be scalars. Then
(rT)(svi + to) = r(T(svh + tin)) by the definition of rT
r(sT(v1) + tT(v2)) by Note 3.4.A since T is linear
r(sT(v1)) + r(tT(v2) by S1
(rs)T(v1) + (rt) T(¥») by S3
= (sr)T(vi) + (tr) T(v2) since multiplication
is commutative in R
= s(rT(v1)) + t(rT(¥2)) by S3
= s(rT)(vh) + t(rT)(v2) by definition of rT.

Page 226 Number 12
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Page 226 Number 12. Let D, be the vector space of functions mapping
R into R that have derivatives of all orders. It can be shown that the
kernel of a linear transformation T : Dy, — D4, of the form

T(f) = anf(™ 4 2, 1 F=D 4 .. 4 a1 f' + aof, where a, # 0, is an
n-dimensional subspace of D.,. Use this information to find the solution
set in Dy, of the differential equation y’ — y = x. HINT: a particular
solution to the differential equation is y = —x — 1.

Solution. First, we consider the “homogeneous” linear differential
equation y’ — y = 0; that is, y’ = y. We know from Calculus that if

y' =y then y = ke* for some k € R (y' = y is a separable differential
equation and can be solved by separation of variables and integration).
This is the general solution to y’ — y = 0 and the set of all such solutions
form a subspace of the vector space F of all real valued functions defined
on R (see exercise 3.2.40).
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Page 229 Number 44

Page 229 Number 44 (continued)

Page 229 Number 44. Denote the set of all linear transformations from
Vito V'as L(V,V'). Let T € L(V, V') and let r € R be a scalar. Define
rT:V — V' as (rT)V = r(T(V)) for each v € V. Prove that

rT e L(V,V).

Solution (continued). So rT is a linear transformation by Note 3.4.A. [J

Note. In Exercise 43 it is shown for Ty, Tp € L(V, V') that

T1+ Ty € L(V, V') where we define

(T1+ T2)(Vi + o) = T1(V1) + Ta(¥k). So L(V, V') is closed under vector
addition and scalar multiplication. Therefore, by Theorem 3.2, “Test for a
Subspace,” L(V, V') is a subspace of the vector space of all functions
mapping V into V'’ (see “Summary Item 5 on page 188).
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Page 226 Number 12 (continued)

Page 226 Number 12. Let D, be the vector space of functions mapping
R into R that have derivatives of all orders. It can be shown that the
kernel of a linear transformation T : Do, — D, of the form

T(f) = anf(M 4 a, 1 F("=1) 4.4 a1 + agf, where a, # 0, us an
n-dimensional subspace of D.,. Use this information to find the solution
set in Dy of the differential equation y’ — y = x. HINT: a particular
solution to the differential equation is y = —x — 1.

Solution (continued). By the solution to Exercise 3.2.41, all solutions to
y' —y = x are of the form p(x) + h(x) where p(x) is a particular solution
to y' — y = x and h(x) is some solution to the homogeneous differential
equation y’ —y = 0. We are given that a particular solution to y/ — y = x
is y = —x — 1. So the solution set to the differential equation y’ — y = x
is|{—x—1+4+ke* | k e R}.|O
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