Example 3.4.A

Linear Algebra

Chapter 3. Vector Spaces

Section 3.4. Linear Transformations—Proofs of Theorems

Example 3.4.A. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let a be a nonzero scalar and define $T: \mathcal{F} \to \mathcal{F}$ as T(f) = af. Is T a linear transformation?

Solution. We use Note 3.4.A. Let $f, g \in \mathcal{F}$ and let $r, s \in \mathbb{R}$. Then

$$T(rf + sg) = a(rf + sg)$$

$$= a(rf) + a(sg) \text{ by S1}$$

$$= (ar)f + (as)g \text{ by S3}$$

$$= (ra)f + (sa)g \text{ by commutivity in } \mathbb{R}$$

$$= r(af) + s(ag) \text{ by S3}$$

$$= rT(f) + sT(g).$$

Therefore, yes, T is a linear transformation. \square

Example 3.4.A

October 24, 2018

Example 3.4.B

Page 214 Example 1

Example 3.4.B. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let a be a nonzero scalar and define $T: \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Describe the kernel of T.

Solution. Let $f \in \ker(T)$. Then T(f) = 0 (where 0 = 0(x) denotes the constant function which is 0 for all $x \in \mathbb{R}$). So

T(f) = af = af(x) = 0(x) = 0. Since $a \neq 0$ then f(x) = 0 for all $x \in \mathbb{R}$. That is, f(x) = 0(x) or f = 0. So $|\ker(T) = \{0\} = \{0(x)\}$. \square

Page 214 Example 1. Let \mathcal{F} be the vector space of all functions $f: \mathbb{R} \to \mathbb{R}$ (see Example 3.1.3), and let D be its subspace of all differentiable functions. Show that differentiation is a linear transformation of D into F.

Proof. Let $T:D\to F$ be defined as T(f)=f'. Let $f,g\in D$ and let $r \in \mathbb{R}$. Since the derivative of a sum is the sum of the derivatives, then

$$T(f+g) = (f+g)' = f'+g' = T(f) + T(g)$$

Since the derivative of a multiple of a function is the multiple times the derivative, then

$$T(rf) = (rf)' = rf' = rT(f).$$

Therefore T is linear.

October 24, 2018 Linear Algebra October 24, 2018 Linear Algebra

Page 215 Example 3

Page 215 Example 3. Let $C_{a,b}$ be the set of all continuous functions mapping $[a,b] \to \mathbb{R}$. Then $C_{a,b}$ is a vector space (based on an argument similar to that which justifies that $C = \{f \in \mathcal{F} \mid f \text{ is continuous}\}$ is a subspace of \mathcal{F} , as mentioned in Note 3.2.B). Prove that $T: C_{a,b} \to \mathbb{R}$ defined by $T(f) = \int_a^b f(x) \, dx$ is a linear transformation. Such a transformation which maps functions to real numbers is called a *linear functional*.

Proof. Let $f, g \in C_{a,b}$ and let $r \in \mathbb{R}$ be a scalar. Since the integral of a sum is the sum of the integrals and the integral of a multiple of a function is the multiple of the integral of the function, we have

$$T(f+g) = \int_{a}^{b} (f(x)+g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx = T(f) + T(g)$$

and $T(rf) = \int_a^b rf(x) dx = r \int_a^b f(x) dx = rT(f)$. So, by Definition 3.9, "Linear Transformation," T is a linear transformation.

Theorem 3.5. Preservation of Zero and Subtraction

Theorem 3.5

Theorem 3.5. Preservation of Zero and Subtraction

Let V and V' be vectors spaces, and let $T:V\to V'$ be a linear transformation. Then

- (1) $T(\vec{0}) = \vec{0'}$, and
- (2) $T(\vec{v}_1 \vec{v}_2) = T(\vec{v}_1) T(\vec{v}_2)$, for any vectors \vec{v}_1 and \vec{v}_2 in V.

Proof. First,

$$T(\vec{0}) = T(0\vec{0})$$
 by Theorem 3.1(4),

"Elementary Properties of Vector Spaces"

 $= 0T(\vec{0})$ by Definition 3.9(2),

"Linear Transformations"

 $= \vec{0}'$ by Theorem 3.1(4).

Page 215 Example 4

Page 215 Example 4. Let C be the vector space of all continuous functions mapping $\mathbb R$ into $\mathbb R$ (see Note 3.2.A). Let $a \in \mathbb R$ and let $T_a: C \to C$ be defined by $T_a(f) = \int_a^x f(t) \, dt$. Prove that T is a linear transformation.

Proof. Similar to the previous example, for $f,g\in C$ and for scalar $r\in \mathbb{R}$ we have

$$T_a(f+g) = \int_a^x (f(t)+g(t)) dt = \int_a^x f(t) dt + \int_a^x g(t) dt = T_a(f) + T_a(g)$$

and

$$T_a(rf) = \int_a^x rf(t) dt = r \int_a^x f(t) dt = rT_a(f).$$

So by Definition 3.9, "Linear Transformation," T_a is a linear transformation.

Theorem 3.5. Preservation of Zero and Subtract

Theorem 3.5 (continued)

Theorem 3.5. Preservation of Zero and Subtraction

Let V and V' be vectors spaces, and let $T:V\to V'$ be a linear transformation. Then

- (1) $T(\vec{0}) = \vec{0'}$, and
- (2) $T(\vec{v}_1 \vec{v}_2) = T(\vec{v}_1) T(\vec{v}_2)$, for any vectors \vec{v}_1 and \vec{v}_2 in V.

Proof (continued). Second,

$$T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1 - (1)\vec{v}_2)$$
 by S4
= $T(\vec{v}_1 + (-1)\vec{v}_2)$ by Theorem 3.1(6)
= $T(\vec{v}_1) + (-1)T(\vec{v}_2)$ by Note 3.4.A
= $T(\vec{v}_1) - T(\vec{v}_2)$ by Theorem 3.1(6).

So (1) and (2) hold, as claimed.

() Linear Algebra October 24, 2018 8 / 33 () Linear Algebra October 24, 2018 9 / 3

Theorem 3.6

Theorem 3.6. Bases and Linear Transformations.

Let $T:V\to V'$ be a linear transformation, and let B be a basis for V. For any vector \vec{v} in V, the vector $T(\vec{v})$ is uniquely determined by the vectors $T(\vec{b})$ for all $\vec{b}\in B$.

Proof. Let T and \overline{T} be two linear transformations such that $T(\vec{b}_i) = \overline{T}(\vec{b}_i)$ for each vector $\vec{b}_i \in B$. Let $\vec{v} \in V$. Then for some scalars r_1, r_2, \ldots, r_k we have $\vec{v} = r_1 \vec{b}_1 + r_2 \vec{v}_2 + \cdots + r_k \vec{b}_k$. Then

$$T(\vec{v}) = T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k)$$

$$= r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_kT(\vec{b}_k) \text{ by Note 3.4.A}$$

$$= r_1\overline{T}(\vec{b}_1) + r_2\overline{T}(\vec{b}_2) + \dots + r_k\overline{T}(\vec{b}_k)$$

$$= \overline{T}(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k) \text{ by Note 3.4.A}$$

$$= \overline{T}(\vec{v}).$$

Therefore T and \overline{T} are the same transformations.

Lilical A

October 24, 2018 10 /

, 2018 10 / 33

П

Linear Alg

October 24, 2018

11 / 3

Corollary 3.4.A. One-to-One and Kerne

Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel.

A linear transformation T is one-to-one if and only if $\ker(T) = \{\vec{0}\}.$

Proof. Let $T: V \to V'$ where V and V' are vector spaces.

Let $\ker(T)=\{\vec{0}\}$. Suppose for some $\vec{v}_1, \vec{v}_2 \in V$ we have $T(\vec{v}_1)=T(\vec{v}_2)$. Then $T(\vec{v}_1)-T(\vec{v}_2)=\vec{0}'$ and so by Theorem 3.5(2), Preservation of Zero and Subtraction, $T(\vec{v}_1-\vec{v}_2)=\vec{0}'$. That is, $\vec{v}_1-\vec{v}_2\in\ker(T)=\{\vec{0}\}$. So it must be that $\vec{v}_1-\vec{v}_2=\vec{0}$, or $\vec{v}_1=\vec{v}_2$, and hence T is one-to-one.

Next, suppose T is one-to-one. Since $T(\vec{0}) = \vec{0}'$ by Theorem 3.5(1), "Preservation of Zero and Subtraction," then for any nonzero vector $\vec{x} \in V$ we must have that $T(\vec{x}) \neq \vec{0}'$. That is, the only vector in $\ker(T)$ is $\vec{0}$. So $\ker(T) = \{\vec{0}\}$, as claimed.

Theorem 3.4.A

Theorem 3.4.A. (Page 229 number 46) Let $T: V \to V'$ be a linear transformation and let $T(\vec{p}) = \vec{b}$ for a particular vector \vec{p} in V. The solution set of $T(\vec{x}) = \vec{b}$ is the set $\{\vec{p} + \vec{h} \mid \vec{h} \in \ker(T)\}$.

Proof. Let \vec{p} be a solution of $T(\vec{v}) = \vec{b}$. Then $T(\vec{p}) = \vec{b}$. Let \vec{h} be a solution of $T(\vec{x}) = \vec{0'}$. Then $T(\vec{h}) = \vec{0'}$. Therefore, by Definition 3.9(1), "Linear Transformation,"

$$T(\vec{p} + \vec{h}) = T(\vec{p}) + T(\vec{h}) = \vec{b} + \vec{0'} = \vec{b},$$

and so $\vec{p} + \vec{h}$ is indeed a solution. Also, if \vec{q} is any solution of $T(\vec{x}) = \vec{b}$ then by Theorem 3.5(2), "Preservation of Zero and Subtraction,"

$$T(\vec{q} - \vec{p}) = T(\vec{q}) - T(\vec{p}) = \vec{b} - \vec{b} = \vec{0'},$$

and so $\vec{q} - \vec{p}$ is in the kernel of T. Therefore for some $\vec{h} \in \ker(T)$, we have $\vec{q} - \vec{p} = \vec{h}$, for $\vec{q} = \vec{p} + \vec{h}$.

Theorem

Theorem 3.8

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof. ASSUME T is invertible and is not one-to-one. Then by the definition of "one-to-one," for some $\vec{v}_1 \neq \vec{v}_2$ both in V, we have $T(\vec{v}_1) = T(\vec{v}_2) = \vec{v}'$. But then $\vec{v}_1 = T\vec{v}_1 = T^{-1} \circ T(\vec{v}_1) = T^{-1}(\vec{v}')$ and $\vec{v}_2 = T\vec{v}_2 = T^{-1} \circ T(\vec{v}_2) = T^{-1}(\vec{v}')$, which implies that $\vec{v}_1 = \vec{v}_2$, a CONTRADICTION. Therefore if T is invertible then T is one-to-one.

From Definition 3.10, "Invertible Transformation," if T is invertible then for any $\vec{v}' \in V'$ we must have $T^{-1}(\vec{v}') = \vec{v}$ for some $\vec{v} \in V$. Therefore the image of \vec{v} is $\vec{v}' \in V'$ and T is onto.

() Linear Algebra October 24, 2018 12 / 33 () Linear Algebra October 24, 2018 13 / 33

Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and onto then it is invertible. Suppose that T is one-to-one and onto V'. Since T is onto V', then for each $\vec{v}' \in V'$ we can find $\vec{v} \in V$ such that $T(\vec{v}) = \vec{v}'$ and because T is one-to-one, this vector $\vec{v} \in V$ is unique (from the definition of "one-to-one" and "onto"). Let $T^{-1}: V' \to V$ be defined by $T^{-1}(\vec{v}') = \vec{v}$. Then

$$(T \circ T^{-1})(\vec{v}') = T(T^{-1}(\vec{v}')) = T(\vec{v}) = \vec{v}'$$

and

$$(T^{-1} \circ T)(\vec{v}) = T^{-1}(T(\vec{v})) = T^{-1}(\vec{v}') = \vec{v},$$

and so $T \circ T^{-1}$ is the identity map on V' and $T^{-1} \circ T$ is the identity map on V.

Linear Algebra October 24, 2018 14 / 33

Lillear Algebra October 24, 2016 14 / 3.

Example 3.4.C

Example 3.4.C

Example 3.4.C. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let a be a nonzero scalar and define $T:\mathcal{F}\to\mathcal{F}$ as T(f)=af, as in Example 3.4.A. Determine if T is invertible. If so, find its inverse.

Solution. Since $\ker(T) = \{0\}$ by Example 3.4.B, then T is one-to-one by Corollary 3.4.A. For any $g \in \mathcal{F}$, for f = g/a we have T(f) = T(g/a) = a(g/a) = g and so T is onto. So by Theorem 3.8, T is invertible. In fact, $T^{-1}(f) = f/a$ since $T^{-1}(T(f)) = T^{-1}(af) = (af)/a = f = a(f/a) = T(f/a) = T(T^{-1}(f))$ for all $f \in \mathcal{F}$. \square

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Theorem 3.8

Proof (continued). Now we need only show that T^{-1} is linear. Suppose $T(\vec{v}_1) = \vec{v}_1'$ and $T(\vec{v}_2) = \vec{v}_2'$; that is, $\vec{v}_1 = T^{-1}(\vec{v}_1')$ and $\vec{v}_2 = T^{-1}(\vec{v}_2')$. Then

$$T^{-1}(\vec{v}_1' + \vec{v}_2') = T^{-1}(T(\vec{v}_1) + T(\vec{v}_2))$$

$$= T^{-1}(T(\vec{v}_1 + \vec{v}_2)) \text{ since } T \text{ is linear}$$

$$= (T^{-1} \circ T)(\vec{v}_1 + \vec{v}_2) = \mathcal{I}(\vec{v}_1 + \vec{v}_2) = \vec{v}_1 + \vec{v}_2$$

$$= T^{-1}(\vec{v}_1') + T^{-1}(\vec{v}_2').$$

Also (since T is linear)

$$T^{-1}(r\vec{v}_1') = T^{-1}(rT(\vec{v}_1)) = T^{-1}(T(r\vec{v}_1)) = \mathcal{I}(r\vec{v}_1) = r\vec{v}_1 = rT^{-1}(\vec{v}_1').$$

Therefore T^{-1} is linear.

I Hererore 7 IS lilledr.

Phoesen 2.10 Matrix Benracentations of Linear Transformation

Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations.

Let V and V' be finite-dimensional vector spaces and let $B=(\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n)$ and $B'=(\vec{b}_1',\vec{b}_2',\ldots,\vec{b}_m')$ be ordered bases for V and V', respectively. Let $T:V\to V'$ be a linear transformation, and let $\overline{T}:\mathbb{R}^n\to\mathbb{R}^m$ be the linear transformation such that for each $\vec{v}\in V$, we have $\overline{T}(\vec{v}_B)=T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose jth column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'}=A\vec{v}_B$ for all vectors $\vec{v}\in V$.

Proof. Since B is a basis for V and B has n elements, then $\dim(V) = n$ and so by Theorem 3.3.A, "Fundamental Theorem of Finite Dimensional Vector Spaces," there is isomorphism $\alpha: V \to \mathbb{R}^n$ between V and \mathbb{R}^n where $\alpha(\vec{v}) = \vec{v}_B$, as shown in the proof of Theorem 3.3.A.

We need to show for all $\vec{v} \in V$ that $T(\vec{v})_{B'} = A(\vec{v}_B)$. We are given that $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$, or equivalently

$$\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}. \tag{*}$$

() Linear Algebra October 24, 2018 16 / 33 () Linear Algebra October 24, 2018 17 / 33

Theorem 3.10 (continued)

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B=(\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n)$ and $B'=(\vec{b}_1',\vec{b}_2',\ldots,\vec{b}_m')$ be ordered bases for V and V', respectively. Let $T:V\to V'$ be a linear transformation, and let $\overline{T}:\mathbb{R}^n\to\mathbb{R}^m$ be the linear transformation such that for each $\vec{v}\in V$, we have $\overline{T}(\vec{v}_B)=T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose jth column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'}=A\vec{v}_B$ for all vectors $\vec{v}\in V$.

Proof (continued). . . . $\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}$. (*) So we need to show that $\overline{T}(\vec{v}_B) = A(\vec{v}_B)$. Since $\overline{T}: \mathbb{R}^n \to \mathbb{R}^m$, then by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," the standard matrix representation of \overline{T} is the $m \times n$ matrix whose jth column is $\overline{T}(\hat{e}_j)$. By the definition of α , $\alpha(\vec{b}_j) = \hat{e}_j$, so $\overline{T}(\hat{e}_j) = \overline{T}(\alpha(\vec{b}_j)) = T(\vec{b}_j)_{B'}$ by (*). That is, the jth column of A is $T(\vec{b}_j)_{B'}$, as claimed.

Page 227 Number 22

Page 227 Number 22

Page 227 Number 22. Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases B and B' for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$.

- (a) Find the matrix representation A of T relative to B, B'.
- **(b)** Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 3x^2 + 4x$.

Solution. (a) We use Theorem 3.10, "Matrix Representation of Linear Transformations," and see that the columns of A are $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$, $T(\vec{b}_4)_{B'}$. We find

$$T(\vec{b}_1)_{B'} = T(x^3)_{B'} = (x(3x^2))_{B'} = (3x^3)_{B'} = [3,0,0,0]^T$$

 $T(\vec{b}_2)_{B'} = T(x^2)_{B'} = (x(2x))_{B'} = (2x^2)_{B'} = [0,2,0,0]^T$
 $T(\vec{b}_3)_{B'} = T(x)_{B'} = (x(1))_{B'} = (x_3)_{B'} = [0,0,1,0]^T$
 $T(\vec{b}_4)_{B'} = T(1)_{B'} = (x(0))_{B'} = [0,0,0,0]^T$.

Page 227 Number 18

Page 227 Number 18. Let V and V' be vector spaces with ordered bases $B=(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ and $B'=(\vec{b}_1',\vec{b}_2',\vec{b}_3',\vec{b}_4')$, respectively. Let $T:V\to V'$ be the linear transformation having matrix representation

$$A = \left[egin{array}{ccc} 4 & 1 & -1 \ 2 & 2 & 0 \ 0 & 6 & 1 \ 2 & 1 & 3 \end{array}
ight]$$
 relative to $B,B'.$ Find $T(ec{v})$ for $ec{v} = 3ec{b}_3 - ec{b}_1.$

Solution. We use Theorem 3.10, "Matrix Representation of Linear Transformations." Notice that $\vec{v}_B = [-1, 0, 3]$. So

$$T(\vec{v})_{B'} = A\vec{v}_B = \left[egin{array}{ccc} 4 & 1 & -1 \ 2 & 2 & 0 \ 0 & 6 & 1 \ 2 & 1 & 3 \end{array}
ight] \left[egin{array}{c} -1 \ 0 \ 3 \end{array}
ight] = \left[egin{array}{c} -7 \ -2 \ 3 \ 7 \end{array}
ight].$$

So
$$T(\vec{v}) = -7\vec{b}'_1 - 2\vec{b}'_2 + 3\vec{b}'_3 + 7\vec{b}'_4$$
.

Page 227 Numb

Page 227 Number 22 (continued 1)

Solution. So
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

(b) First $(x^3 - 3x^2 + 4x)_{B'} = [1, -3, 4, 0]^T$. From Theorem 3.10, $T(p(x))_{B'} = A\vec{v}_B$, so we want $\vec{v}_B \in \mathbb{R}^4$ such that $A\vec{v}_B = T(p(x))_{B'} = [1, -3, 4, 0]^T$. Let $\vec{v}_B = [v_1, v_2, v_3, v_4]^T$, and consider

the augmented matrix for
$$A\vec{v}_B = [1, -3, 4, 0]^T$$
:
$$\begin{bmatrix} 3 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We see that this is already in row reduced echelon form and so we need

$$3v_1 = 1$$
 $v_1 = 1/3$
 $2v_2 = -3$ or $v_2 = -3/2$
 $v_3 = 4$ or $v_3 = 4$
 $0 = 0$ $v_4 = v_4$

() Linear Algebra October 24, 2018 20 / 33 () Linear Algebra October 24, 2018 21 / 33

Page 227 Number 22 (continued 2)

Page 227 Number 22. Let $T: \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases B and B' for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$.

- (a) Find the matrix representation A of T relative to B, B'.
- **(b)** Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. So we take $k = v_4$ as a free variable. Then $\vec{v}_B = [1/3, -3/2, 4, k]$ for any $k \in \mathbb{R}$. So $\vec{v} \in \mathcal{P}_3$ is of the form $\left| \frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x + k \text{ for } k \in \mathbb{R}. \right| \square$

Page 227 Number 24 (continued 1)

Solution. So the columns of A are $T(\vec{b}_1)$, $T(\vec{b}_2)$, $T(\vec{b}_3)$, $T(\vec{b}_4)$:

$$A = \left[\begin{array}{cccc} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{array} \right]. \ \Box$$

(b) We know from Theorem 3.10, "Matrix Representations of Linear Transformations," that $T(4x^3 - 5x^2 + 4x - 7)_{B'} = A\vec{v}_B$. Now $\vec{v}_B = [4, -5, 4, -7]$ so

$$T(4x^3 - 5x^2 + 4x - 7)_{B'} = \begin{bmatrix} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 4 \\ -7 \end{bmatrix} = \begin{bmatrix} 48 \\ 28 \\ 6 \end{bmatrix}$$

and hence

$$T(4x^3 - 5x^2 + 4x - 7) = (48)x^2 + (28)x + (6)1 = 48x^2 + 28x + 6.$$

Page 227 Number 24

Page 227 Number 24. Let $T: \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}_1', \vec{b}_2', \vec{b}_3')$.

- (a) Find the matrix representation A of T relative to B, B'.
- **(b)** Use A from part (a) to compute $T(4x^3 5x^2 + 4x 7)$.

Solution. (a) Again we use Theorem 3.10 and find $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$, $T(\vec{b}_4)_{B'}$. First we need the derivatives of $\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4$: $\frac{d}{dx}[\vec{b}_1] = \frac{d}{dx}[x^3] = 3x^2, \frac{d}{dx}[\vec{b}_2] = \frac{d}{dx}[x^2] = 2x,$ $\frac{d}{dx}[\vec{b}_3] = \frac{d}{dx}[x] = 1$, and $\frac{d}{dx}[\vec{b}_4] = \frac{d}{dx}[1] = 0$. Since T first takes a derivative and then evaluates it at 2x + 1, we have $T(x^3) = 3(2x+1)^2 = 12x^2 + 12x + 3$, $T(x^2) = 2(2x+1) = 4x + 2$, T(x) = 1, and T(1) = 0, and so $T(\vec{b}_1)_{B'} = T(x^3)_{B'} = (12x^2 + 12x + 3)_{B'} = [12, 12, 3]^T$ $T(\vec{b}_2)_{B'} = T(x^2)_{B'} = (4x+2)_{B'} = [0,4,2]^T$ $T(\vec{b}_3)_{B'} = T(x)_{B'} = (1)_{B'} = [0,0,1]^T$, and $T(b_4)_{B'} = T(1)_{B'} = 0_{B'} = [0, 0, 0]^T.$

Page 227 Number 24 (continued 2)

Page 227 Number 24. Let $T: \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3 + x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}_1', \vec{b}_2', \vec{b}_3')$. **(b)** Use A from part (a) to compute $T(4x^3 - 5x^2 + 4x - 7)$.

Solution. Notice that $\frac{d}{dx}[4x^3 - 5x^2 + 4x - 7] = 12x^2 - 10x + 4$ and evaluating this at 2x + 1 gives

$$12(2x+1)^2 - 10(2x+1) + 4 = 12(4x^2 + 4x + 1) - 10(2x+1) + 4$$
$$= 48x^2 + 48x + 12 - 20x - 10 + 4 = 48x^2 + 28x + 6,$$

as expected. \square

Page 228 Number 28

Page 228 Number 28. Let $W = \operatorname{sp}(e^{2x}, e^{4x}, e^{8x})$ be a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$.

- (a) Find the matrix representation A relative to B, B' of the linear transformation $T: W \to W$ defined by $T(f) = \int_{-\infty}^{x} f(t) dt$.
- **(b)** Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution. (a) We use Theorem 3.10 and find $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$. We have

$$T(\vec{b}_1) = T(e^{2x}) = \int_{-\infty}^{x} e^{2t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{2t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{2} e^{2t} \right) \Big|_{a}^{x} \right)$$
$$= \lim_{a \to -\infty} \left(\frac{1}{2} e^{2x} - \frac{1}{2} e^{2a} \right) = \frac{1}{2} e^{2x} - 0 = \frac{1}{2} e^{2x}$$

Page 228 Number 28

Page 228 Number 28

Page 228 Number 28 (continued 2)

Page 228 Number 28. Let $W = \operatorname{sp}(e^{2x}, e^{4x}, e^{8x})$ a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$.

(b) Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution (continued). (b) It is easy to see that $A^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. By

Theorem 3.4.B, A^{-1} is the matrix representation of T^{-1} relative to B', B. So by Theorem 3.10, "Matrix Representations of Linear Transformations," we have that $T^{-1}(\vec{v})_B = A^{-1}\vec{v}_{B'}$ and so

$$T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})_B = A^{-1}((r_1e^{2x} + r_2e^{4x} + r_3e^{8x})'_B) = A^{-1}[r_1, r_2, r_3]^T$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2r_1 \\ 4r_2 \\ 8r_3 \end{bmatrix}.$$

Page 228 Number 28 (continued 1)

Solution (continued).

$$T(\vec{b}_{2}) = T(e^{4x}) = \int_{-\infty}^{x} e^{4t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{4t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{4} e^{4t} \right) \Big|_{a}^{x} \right)$$

$$= \lim_{a \to -\infty} \left(\frac{1}{4} e^{4x} - \frac{1}{4} e^{4a} \right) = \frac{1}{4} e^{4x} - 0 = \frac{1}{4} e^{4x}$$

$$T(\vec{b}_{3}) = T(e^{8x}) = \int_{-\infty}^{x} e^{8t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{8t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{8} e^{t} \right) \Big|_{a}^{x} \right)$$

$$= \lim_{a \to -\infty} \left(\frac{1}{8} e^{8x} - \frac{1}{8} e^{8a} \right) = \frac{1}{8} e^{8x} - 0 = \frac{1}{8} e^{8x}.$$
So $T(\vec{b}_{1})_{B'} = [1/2, 0, 0], \ T(\vec{b}_{2})_{B'} = [0, 1/4, 0], \ T(\vec{b}_{3})_{B'} = [0, 0, 1/8].$ So
$$A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/8 \end{bmatrix}.$$

Page 228 Number 28 (continued 3)

Page 228 Number 28. Let $W = \operatorname{sp}(e^{2x}, e^{4x}, e^{8x})$ a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$.

(b) Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution (continued). ...

$$T^{-1}(r_1e^{2x}+r_2e^{4x}+r_3e^{8x})_B=\begin{bmatrix}2r_1\\4r_2\\8r_3\end{bmatrix}.$$

So translating this using basis B we have

$$T^{-1}(r_1e^{2x}+r_2e^{4x}+r_3e^{8x})=2r_1e^{2x}+4r_2e^{4x}+8r_3e^{8x}.$$

() Linear Algebra October 24, 2018 28 / 33 () Linear Algebra October 24, 2018 29 / 33

Page 229 Number 44

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT: V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution. Let $\vec{v}_1, \vec{v}_2 \in V$ and $s, t \in \mathbb{R}$ be scalars. Then

$$(rT)(s\vec{v}_1+t\vec{v}_2) = r(T(s\vec{v}_1+t\vec{v}_2))$$
 by the definition of rT

$$= r(sT(\vec{v}_1)+tT(\vec{v}_2))$$
 by Note 3.4.A since T is linear
$$= r(sT(\vec{v}_1))+r(tT(\vec{v}_2))$$
 by S1
$$= (rs)T(\vec{v}_1)+(rt)T(\vec{v}_2)$$
 by S3
$$= (sr)T(\vec{v}_1)+(tr)T(\vec{v}_2)$$
 since multiplication is commutative in \mathbb{R}

$$= s(rT(\vec{v}_1))+t(rT(\vec{v}_2))$$
 by S3
$$= s(rT)(\vec{v}_1)+t(rT)(\vec{v}_2)$$
 by definition of rT .

Page 229 Number 44 (continued)

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT: V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution (continued). So rT is a linear transformation by Note 3.4.A. \square

Note. In Exercise 43 it is shown for $T_1, T_2 \in L(V, V')$ that $T_1 + T_2 \in L(V, V')$ where we define $(T_1 + T_2)(\vec{v}_1 + \vec{v}_2) = T_1(\vec{v}_1) + T_2(\vec{v}_2)$. So L(V, V') is closed under vector addition and scalar multiplication. Therefore, by Theorem 3.2, "Test for a Subspace," L(V, V') is a subspace of the vector space of all functions mapping V into V' (see "Summary Item 5 on page 188).

Page 226 Number 12

Page 226 Number 12. Let D_{∞} be the vector space of functions mapping $\mathbb R$ into $\mathbb R$ that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T:D_{\infty}\to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_1 f' + a_0 f$, where $a_n \neq 0$, is an *n*-dimensional subspace of D_{∞} . Use this information to find the solution set in D_{∞} of the differential equation y'-y=x. HINT: a particular solution to the differential equation is y = -x - 1.

Solution. First, we consider the "homogeneous" linear differential equation y' - y = 0; that is, y' = y. We know from Calculus that if y'=y then $y=ke^x$ for some $k\in\mathbb{R}$ (y'=y is a separable differential equation and can be solved by separation of variables and integration). This is the general solution to y' - y = 0 and the set of all such solutions form a subspace of the vector space \mathcal{F} of all real valued functions defined on \mathbb{R} (see exercise 3.2.40).

Page 226 Number 12 (continued)

Page 226 Number 12. Let D_{∞} be the vector space of functions mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T:D_{\infty}\to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_1 f' + a_0 f$, where $a_n \neq 0$, us an *n*-dimensional subspace of D_{∞} . Use this information to find the solution set in D_{∞} of the differential equation y'-y=x. HINT: a particular solution to the differential equation is y = -x - 1.

Solution (continued). By the solution to Exercise 3.2.41, all solutions to y' - y = x are of the form p(x) + h(x) where p(x) is a particular solution to y' - y = x and h(x) is some solution to the homogeneous differential equation y' - y = 0. We are given that a particular solution to y' - y = xis y = -x - 1. So the solution set to the differential equation y' - y = xis $|\{-x-1+ke^x\mid k\in\mathbb{R}\}.|\square$

Linear Algebra October 24, 2018 Linear Algebra October 24, 2018