Linear Algebra

Chapter 3. Vector Spaces Section 3.4. Linear Transformations—Proofs of Theorems

Table of contents

Page 229 Number 44

Example 3.4.A Example 3.4.B Page 214 Example 1 Page 215 Example 3 Page 215 Example 4 Theorem 3.5. Preservation of Zero and Subtraction Theorem 3.6. Bases and Linear Transformations Theorem 3.4.A (Page 229 number 46) Corollary 3.4.A. One-to-One and Kernel Theorem 3.8 Example 3.4.C Theorem 3.10. Matrix Representations of Linear Transformations Page 227 Number 18 Page 227 Number 22 Page 227 Number 24 Page 228 Number 28

Example 3.4.A

Example 3.4.A. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af. Is T a linear transformation?

Solution. We use Note 3.4.A. Let $f, g \in \mathcal{F}$ and let $r, s \in \mathbb{R}$. Then

$$T(rf + sg) = a(rf + sg)$$

= $a(rf) + a(sg)$ by S1
= $(ar)f + (as)g$ by S3
= $(ra)f + (sa)g$ by commutivity in \mathbb{R}
= $r(af) + s(ag)$ by S3
= $rT(f) + sT(g)$.

Therefore, yes, T is a linear transformation. \Box

Example 3.4.A

Example 3.4.A. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af. Is T a linear transformation?

Solution. We use Note 3.4.A. Let $f, g \in \mathcal{F}$ and let $r, s \in \mathbb{R}$. Then

$$T(rf + sg) = a(rf + sg)$$

= $a(rf) + a(sg)$ by S1
= $(ar)f + (as)g$ by S3
= $(ra)f + (sa)g$ by commutivity in \mathbb{R}
= $r(af) + s(ag)$ by S3
= $rT(f) + sT(g)$.

Therefore, yes, T is a linear transformation. \Box

Example 3.4.B. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Describe the kernel of T.

Solution. Let $f \in \text{ker}(T)$. Then T(f) = 0 (where 0 = 0(x) denotes the constant function which is 0 for all $x \in \mathbb{R}$). So T(f) = af = af(x) = 0(x) = 0. Since $a \neq 0$ then f(x) = 0 for all $x \in \mathbb{R}$. That is, f(x) = 0(x) or f = 0. So $[\text{ker}(T) = \{0\} = \{0(x)\}.]$

()

Example 3.4.B. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Describe the kernel of T.

Solution. Let $f \in \text{ker}(T)$. Then T(f) = 0 (where 0 = 0(x) denotes the constant function which is 0 for all $x \in \mathbb{R}$). So T(f) = af = af(x) = 0(x) = 0. Since $a \neq 0$ then f(x) = 0 for all $x \in \mathbb{R}$. That is, f(x) = 0(x) or f = 0. So $[\text{ker}(T) = \{0\} = \{0(x)\}.]$

Page 214 Example 1. Let \mathcal{F} be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$ (see Example 3.1.3), and let D be its subspace of all differentiable functions. Show that differentiation is a linear transformation of D into F.

Proof. Let $T : D \to F$ be defined as T(f) = f'. Let $f, g \in D$ and let $r \in \mathbb{R}$. Since the derivative of a sum is the sum of the derivatives, then

$$T(f+g) = (f+g)' = f' + g' = T(f) + T(g).$$

Page 214 Example 1. Let \mathcal{F} be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$ (see Example 3.1.3), and let D be its subspace of all differentiable functions. Show that differentiation is a linear transformation of D into F.

Proof. Let $T : D \to F$ be defined as T(f) = f'. Let $f, g \in D$ and let $r \in \mathbb{R}$. Since the derivative of a sum is the sum of the derivatives, then

$$T(f+g) = (f+g)' = f' + g' = T(f) + T(g).$$

Since the derivative of a multiple of a function is the multiple times the derivative, then

$$T(rf) = (rf)' = rf' = rT(f).$$

Therefore T is linear.

Page 214 Example 1. Let \mathcal{F} be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$ (see Example 3.1.3), and let D be its subspace of all differentiable functions. Show that differentiation is a linear transformation of D into F.

Proof. Let $T : D \to F$ be defined as T(f) = f'. Let $f, g \in D$ and let $r \in \mathbb{R}$. Since the derivative of a sum is the sum of the derivatives, then

$$T(f+g) = (f+g)' = f' + g' = T(f) + T(g).$$

Since the derivative of a multiple of a function is the multiple times the derivative, then

$$T(rf) = (rf)' = rf' = rT(f).$$

Therefore T is linear.

Page 215 Example 3. Let $C_{a,b}$ be the set of all continuous functions mapping $[a, b] \to \mathbb{R}$. Then $C_{a,b}$ is a vector space (based on an argument similar to that which justifies that $C = \{f \in \mathcal{F} \mid f \text{ is continuous}\}$ is a subspace of \mathcal{F} , as mentioned in Note 3.2.B). Prove that $T : C_{a,b} \to \mathbb{R}$ defined by $T(f) = \int_a^b f(x) dx$ is a linear transformation. Such a transformation which maps functions to real numbers is called a *linear functional*.

Proof. Let $f, g \in C_{a,b}$ and let $r \in \mathbb{R}$ be a scalar. Since the integral of a sum is the sum of the integrals and the integral of a multiple of a function is the multiple of the integral of the function, we have

$$T(f+g) = \int_{a}^{b} (f(x)+g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = T(f) + T(g)$$

Page 215 Example 3. Let $C_{a,b}$ be the set of all continuous functions mapping $[a, b] \to \mathbb{R}$. Then $C_{a,b}$ is a vector space (based on an argument similar to that which justifies that $C = \{f \in \mathcal{F} \mid f \text{ is continuous}\}$ is a subspace of \mathcal{F} , as mentioned in Note 3.2.B). Prove that $T : C_{a,b} \to \mathbb{R}$ defined by $T(f) = \int_a^b f(x) dx$ is a linear transformation. Such a transformation which maps functions to real numbers is called a *linear functional*.

Proof. Let $f, g \in C_{a,b}$ and let $r \in \mathbb{R}$ be a scalar. Since the integral of a sum is the sum of the integrals and the integral of a multiple of a function is the multiple of the integral of the function, we have

$$T(f+g) = \int_{a}^{b} (f(x)+g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = T(f) + T(g)$$

and $T(rf) = \int_{a}^{b} rf(x) dx = r \int_{a}^{b} f(x) dx = rT(f)$. So, by Definition 3.9, "Linear Transformation," T is a linear transformation.

Page 215 Example 3. Let $C_{a,b}$ be the set of all continuous functions mapping $[a, b] \to \mathbb{R}$. Then $C_{a,b}$ is a vector space (based on an argument similar to that which justifies that $C = \{f \in \mathcal{F} \mid f \text{ is continuous}\}$ is a subspace of \mathcal{F} , as mentioned in Note 3.2.B). Prove that $T : C_{a,b} \to \mathbb{R}$ defined by $T(f) = \int_a^b f(x) dx$ is a linear transformation. Such a transformation which maps functions to real numbers is called a *linear functional*.

Proof. Let $f, g \in C_{a,b}$ and let $r \in \mathbb{R}$ be a scalar. Since the integral of a sum is the sum of the integrals and the integral of a multiple of a function is the multiple of the integral of the function, we have

$$T(f+g) = \int_{a}^{b} (f(x)+g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = T(f) + T(g)$$

and $T(rf) = \int_{a}^{b} rf(x) dx = r \int_{a}^{b} f(x) dx = rT(f)$. So, by Definition 3.9, "Linear Transformation," T is a linear transformation.

Page 215 Example 4. Let *C* be the vector space of all continuous functions mapping \mathbb{R} into \mathbb{R} (see Note 3.2.A). Let $a \in \mathbb{R}$ and let $T_a : C \to C$ be defined by $T_a(f) = \int_a^x f(t) dt$. Prove that *T* is a linear transformation.

Proof. Similar to the previous example, for $f, g \in C$ and for scalar $r \in \mathbb{R}$ we have

$$T_{a}(f+g) = \int_{a}^{x} (f(t)+g(t)) dt = \int_{a}^{x} f(t) dt + \int_{a}^{x} g(t) dt = T_{a}(f) + T_{a}(g)$$

Page 215 Example 4. Let *C* be the vector space of all continuous functions mapping \mathbb{R} into \mathbb{R} (see Note 3.2.A). Let $a \in \mathbb{R}$ and let $T_a : C \to C$ be defined by $T_a(f) = \int_a^x f(t) dt$. Prove that *T* is a linear transformation.

Proof. Similar to the previous example, for $f, g \in C$ and for scalar $r \in \mathbb{R}$ we have

$$T_{a}(f+g) = \int_{a}^{x} (f(t)+g(t)) dt = \int_{a}^{x} f(t) dt + \int_{a}^{x} g(t) dt = T_{a}(f) + T_{a}(g)$$

and

$$T_a(rf) = \int_a^x rf(t) dt = r \int_a^x f(t) dt = rT_a(f).$$

So by Definition 3.9, "Linear Transformation," T_a is a linear transformation.

Page 215 Example 4. Let *C* be the vector space of all continuous functions mapping \mathbb{R} into \mathbb{R} (see Note 3.2.A). Let $a \in \mathbb{R}$ and let $T_a : C \to C$ be defined by $T_a(f) = \int_a^x f(t) dt$. Prove that *T* is a linear transformation.

Proof. Similar to the previous example, for $f, g \in C$ and for scalar $r \in \mathbb{R}$ we have

$$T_{a}(f+g) = \int_{a}^{x} (f(t)+g(t)) dt = \int_{a}^{x} f(t) dt + \int_{a}^{x} g(t) dt = T_{a}(f) + T_{a}(g)$$

and

$$T_a(rf) = \int_a^x rf(t) dt = r \int_a^x f(t) dt = rT_a(f).$$

So by Definition 3.9, "Linear Transformation," T_a is a linear transformation.

Theorem 3.5. Preservation of Zero and Subtraction Let V and V' be vectors spaces, and let $T : V \to V'$ be a linear transformation. Then (1) $T(\vec{0}) = \vec{0'}$, and (2) $T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1) - T(\vec{v}_2)$, for any vectors \vec{v}_1 and \vec{v}_2 in V.

Proof. First,

$$T(\vec{0}) = T(0\vec{0}) \text{ by Theorem 3.1(4),}$$

"Elementary Properties of Vector Spaces"

$$= 0T(\vec{0}) \text{ by Definition 3.9(2),}$$

"Linear Transformations"

$$\vec{x}' \vdash T = -2.1(4)$$

Theorem 3.5. Preservation of Zero and Subtraction Let V and V' be vectors spaces, and let $T : V \to V'$ be a linear transformation. Then (1) $T(\vec{0}) = \vec{0'}$, and (2) $T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1) - T(\vec{v}_2)$, for any vectors \vec{v}_1 and \vec{v}_2 in V.

Proof. First,

$$T(\vec{0}) = T(0\vec{0})$$
 by Theorem 3.1(4),
"Elementary Properties of Vector Spaces"
 $= 0T(\vec{0})$ by Definition 3.9(2),
"Linear Transformations"

$$=$$
 $\vec{0}'$ by Theorem 3.1(4).

Theorem 3.5 (continued)

Theorem 3.5. Preservation of Zero and Subtraction Let V and V' be vectors spaces, and let $T : V \to V'$ be a linear transformation. Then (1) $T(\vec{0}) = \vec{0'}$, and (2) $T(\vec{v_1} - \vec{v_2}) = T(\vec{v_1}) - T(\vec{v_2})$, for any vectors $\vec{v_1}$ and $\vec{v_2}$ in V.

Proof (continued). Second,

$$T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1 - (1)\vec{v}_2) \text{ by S4}$$

= $T(\vec{v}_1 + (-1)\vec{v}_2) \text{ by Theorem 3.1(6)}$
= $T(\vec{v}_1) + (-1)T(\vec{v}_2) \text{ by Note 3.4.A}$
= $T(\vec{v}_1) - T(\vec{v}_2) \text{ by Theorem 3.1(6).}$

So (1) and (2) hold, as claimed.

Theorem 3.6. Bases and Linear Transformations.

Let $T: V \to V'$ be a linear transformation, and let B be a basis for V. For any vector \vec{v} in V, the vector $T(\vec{v})$ is uniquely determined by the vectors $T(\vec{b})$ for all $\vec{b} \in B$.

Proof. Let T and \overline{T} be two linear transformations such that $T(\vec{b}_i) = \overline{T}(\vec{b}_i)$ for each vector $\vec{b}_i \in B$. Let $\vec{v} \in V$. Then for some scalars r_1, r_2, \ldots, r_k we have $\vec{v} = r_1\vec{b}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{b}_k$.

Theorem 3.6. Bases and Linear Transformations.

Let $T: V \to V'$ be a linear transformation, and let B be a basis for V. For any vector \vec{v} in V, the vector $T(\vec{v})$ is uniquely determined by the vectors $T(\vec{b})$ for all $\vec{b} \in B$.

Proof. Let T and \overline{T} be two linear transformations such that $T(\vec{b}_i) = \overline{T}(\vec{b}_i)$ for each vector $\vec{b}_i \in B$. Let $\vec{v} \in V$. Then for some scalars r_1, r_2, \ldots, r_k we have $\vec{v} = r_1\vec{b}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{b}_k$. Then

$$T(\vec{v}) = T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k)$$

= $r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_kT(\vec{b}_k)$ by Note 3.4.A
= $r_1\overline{T}(\vec{b}_1) + r_2\overline{T}(\vec{b}_2) + \dots + r_k\overline{T}(\vec{b}_k)$
= $\overline{T}(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k)$ by Note 3.4.A
= $\overline{T}(\vec{v})$.

Therefore T and \overline{T} are the same transformations.

(

Theorem 3.6. Bases and Linear Transformations.

Let $T: V \to V'$ be a linear transformation, and let B be a basis for V. For any vector \vec{v} in V, the vector $T(\vec{v})$ is uniquely determined by the vectors $T(\vec{b})$ for all $\vec{b} \in B$.

Proof. Let T and \overline{T} be two linear transformations such that $T(\vec{b}_i) = \overline{T}(\vec{b}_i)$ for each vector $\vec{b}_i \in B$. Let $\vec{v} \in V$. Then for some scalars r_1, r_2, \ldots, r_k we have $\vec{v} = r_1\vec{b}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{b}_k$. Then

$$T(\vec{v}) = T(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k)$$

= $r_1T(\vec{b}_1) + r_2T(\vec{b}_2) + \dots + r_kT(\vec{b}_k)$ by Note 3.4.A
= $r_1\overline{T}(\vec{b}_1) + r_2\overline{T}(\vec{b}_2) + \dots + r_k\overline{T}(\vec{b}_k)$
= $\overline{T}(r_1\vec{b}_1 + r_2\vec{b}_2 + \dots + r_k\vec{b}_k)$ by Note 3.4.A
= $\overline{T}(\vec{v})$.

Therefore T and \overline{T} are the same transformations.

Theorem 3.4.A. (Page 229 number 46) Let $T : V \to V'$ be a linear transformation and let $T(\vec{p}) = \vec{b}$ for a particular vector \vec{p} in V. The solution set of $T(\vec{x}) = \vec{b}$ is the set $\{\vec{p} + \vec{h} \mid \vec{h} \in \text{ker}(T)\}$.

Proof. Let \vec{p} be a solution of $T(\vec{v}) = \vec{b}$. Then $T(\vec{p}) = \vec{b}$. Let \vec{h} be a solution of $T(\vec{x}) = \vec{0'}$. Then $T(\vec{h}) = \vec{0'}$.

Theorem 3.4.A. (Page 229 number 46) Let $T : V \to V'$ be a linear transformation and let $T(\vec{p}) = \vec{b}$ for a particular vector \vec{p} in V. The solution set of $T(\vec{x}) = \vec{b}$ is the set $\{\vec{p} + \vec{h} \mid \vec{h} \in \text{ker}(T)\}$.

Proof. Let \vec{p} be a solution of $T(\vec{v}) = \vec{b}$. Then $T(\vec{p}) = \vec{b}$. Let \vec{h} be a solution of $T(\vec{x}) = \vec{0'}$. Then $T(\vec{h}) = \vec{0'}$. Therefore, by Definition 3.9(1), "Linear Transformation,"

$$T(\vec{p} + \vec{h}) = T(\vec{p}) + T(\vec{h}) = \vec{b} + \vec{0'} = \vec{b},$$

and so $\vec{p} + \vec{h}$ is indeed a solution. Also, if \vec{q} is any solution of $T(\vec{x}) = \vec{b}$ then by Theorem 3.5(2), "Preservation of Zero and Subtraction,"

$$T(\vec{q} - \vec{p}) = T(\vec{q}) - T(\vec{p}) = \vec{b} - \vec{b} = \vec{0'},$$

and so $\vec{q} - \vec{p}$ is in the kernel of T.

Theorem 3.4.A. (Page 229 number 46) Let $T : V \to V'$ be a linear transformation and let $T(\vec{p}) = \vec{b}$ for a particular vector \vec{p} in V. The solution set of $T(\vec{x}) = \vec{b}$ is the set $\{\vec{p} + \vec{h} \mid \vec{h} \in \text{ker}(T)\}$.

Proof. Let \vec{p} be a solution of $T(\vec{v}) = \vec{b}$. Then $T(\vec{p}) = \vec{b}$. Let \vec{h} be a solution of $T(\vec{x}) = \vec{0'}$. Then $T(\vec{h}) = \vec{0'}$. Therefore, by Definition 3.9(1), "Linear Transformation,"

$$T(\vec{p}+\vec{h}) = T(\vec{p}) + T(\vec{h}) = \vec{b} + \vec{0'} = \vec{b},$$

and so $\vec{p} + \vec{h}$ is indeed a solution. Also, if \vec{q} is any solution of $T(\vec{x}) = \vec{b}$ then by Theorem 3.5(2), "Preservation of Zero and Subtraction,"

$$T(\vec{q}-\vec{p})=T(\vec{q})-T(\vec{p})=\vec{b}-\vec{b}=\vec{0'},$$

and so $\vec{q} - \vec{p}$ is in the kernel of T. Therefore for some $\vec{h} \in \text{ker}(T)$, we have $\vec{q} - \vec{p} = \vec{h}$, for $\vec{q} = \vec{p} + \vec{h}$.

Theorem 3.4.A. (Page 229 number 46) Let $T : V \to V'$ be a linear transformation and let $T(\vec{p}) = \vec{b}$ for a particular vector \vec{p} in V. The solution set of $T(\vec{x}) = \vec{b}$ is the set $\{\vec{p} + \vec{h} \mid \vec{h} \in \text{ker}(T)\}$.

Proof. Let \vec{p} be a solution of $T(\vec{v}) = \vec{b}$. Then $T(\vec{p}) = \vec{b}$. Let \vec{h} be a solution of $T(\vec{x}) = \vec{0'}$. Then $T(\vec{h}) = \vec{0'}$. Therefore, by Definition 3.9(1), "Linear Transformation,"

$$T(\vec{p}+\vec{h}) = T(\vec{p}) + T(\vec{h}) = \vec{b} + \vec{0'} = \vec{b},$$

and so $\vec{p} + \vec{h}$ is indeed a solution. Also, if \vec{q} is any solution of $T(\vec{x}) = \vec{b}$ then by Theorem 3.5(2), "Preservation of Zero and Subtraction,"

$$T(\vec{q}-\vec{p}) = T(\vec{q}) - T(\vec{p}) = \vec{b} - \vec{b} = \vec{0'},$$

and so $\vec{q} - \vec{p}$ is in the kernel of T. Therefore for some $\vec{h} \in \text{ker}(T)$, we have $\vec{q} - \vec{p} = \vec{h}$, for $\vec{q} = \vec{p} + \vec{h}$.

Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel. A linear transformation T is one-to-one if and only if ker $(T) = {\vec{0}}$.

Proof. Let $T: V \to V'$ where V and V' are vector spaces.

Let ker(T) = { $\vec{0}$ }. Suppose for some $\vec{v}_1, \vec{v}_2 \in V$ we have $T(\vec{v}_1) = T(\vec{v}_2)$. Then $T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}'$ and so by Theorem 3.5(2), Preservation of Zero and Subtraction, $T(\vec{v}_1 - \vec{v}_2) = \vec{0}'$. That is, $\vec{v}_1 - \vec{v}_2 \in \text{ker}(T) = \{\vec{0}\}$. So it must be that $\vec{v}_1 - \vec{v}_2 = \vec{0}$, or $\vec{v}_1 = \vec{v}_2$, and hence T is one-to-one.

Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel.

A linear transformation T is one-to-one if and only if $ker(T) = {\vec{0}}$.

Proof. Let $T: V \to V'$ where V and V' are vector spaces.

Let ker(T) = { $\vec{0}$ }. Suppose for some $\vec{v}_1, \vec{v}_2 \in V$ we have $T(\vec{v}_1) = T(\vec{v}_2)$. Then $T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}'$ and so by Theorem 3.5(2), Preservation of Zero and Subtraction, $T(\vec{v}_1 - \vec{v}_2) = \vec{0}'$. That is, $\vec{v}_1 - \vec{v}_2 \in \text{ker}(T) = \{\vec{0}\}$. So it must be that $\vec{v}_1 - \vec{v}_2 = \vec{0}$, or $\vec{v}_1 = \vec{v}_2$, and hence T is one-to-one.

Next, suppose T is one-to-one. Since $T(\vec{0}) = \vec{0}'$ by Theorem 3.5(1), "Preservation of Zero and Subtraction," then for any nonzero vector $\vec{x} \in V$ we must have that $T(\vec{x}) \neq \vec{0}'$. That is, the only vector in ker(T) is $\vec{0}$. So ker(T) = { $\vec{0}$ }, as claimed.

Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel.

A linear transformation T is one-to-one if and only if ker $(T) = \{\vec{0}\}$.

Proof. Let $T: V \to V'$ where V and V' are vector spaces.

Let ker(T) = { $\vec{0}$ }. Suppose for some $\vec{v}_1, \vec{v}_2 \in V$ we have $T(\vec{v}_1) = T(\vec{v}_2)$. Then $T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}'$ and so by Theorem 3.5(2), Preservation of Zero and Subtraction, $T(\vec{v}_1 - \vec{v}_2) = \vec{0}'$. That is, $\vec{v}_1 - \vec{v}_2 \in \text{ker}(T) = \{\vec{0}\}$. So it must be that $\vec{v}_1 - \vec{v}_2 = \vec{0}$, or $\vec{v}_1 = \vec{v}_2$, and hence T is one-to-one.

Next, suppose T is one-to-one. Since $T(\vec{0}) = \vec{0}'$ by Theorem 3.5(1), "Preservation of Zero and Subtraction," then for any nonzero vector $\vec{x} \in V$ we must have that $T(\vec{x}) \neq \vec{0}'$. That is, the only vector in ker(T) is $\vec{0}$. So ker(T) = { $\vec{0}$ }, as claimed.

Theorem 3.8. A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof. ASSUME *T* is invertible and is not one-to-one. Then by the definition of "one-to-one," for some $\vec{v}_1 \neq \vec{v}_2$ both in *V*, we have $T(\vec{v}_1) = T(\vec{v}_2) = \vec{v}'$.

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof. ASSUME *T* is invertible and is not one-to-one. Then by the definition of "one-to-one," for some $\vec{v_1} \neq \vec{v_2}$ both in *V*, we have $T(\vec{v_1}) = T(\vec{v_2}) = \vec{v'}$. But then $\vec{v_1} = \mathcal{I}\vec{v_1} = T^{-1} \circ T(\vec{v_1}) = T^{-1}(\vec{v'})$ and $\vec{v_2} = \mathcal{I}\vec{v_2} = T^{-1} \circ T(\vec{v_2}) = T^{-1}(\vec{v'})$, which implies that $\vec{v_1} = \vec{v_2}$, a CONTRADICTION. Therefore if *T* is invertible then *T* is one-to-one.

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof. ASSUME *T* is invertible and is not one-to-one. Then by the definition of "one-to-one," for some $\vec{v}_1 \neq \vec{v}_2$ both in *V*, we have $T(\vec{v}_1) = T(\vec{v}_2) = \vec{v}'$. But then $\vec{v}_1 = \mathcal{I}\vec{v}_1 = T^{-1} \circ T(\vec{v}_1) = T^{-1}(\vec{v}')$ and $\vec{v}_2 = \mathcal{I}\vec{v}_2 = T^{-1} \circ T(\vec{v}_2) = T^{-1}(\vec{v}')$, which implies that $\vec{v}_1 = \vec{v}_2$, a CONTRADICTION. Therefore if *T* is invertible then *T* is one-to-one.

From Definition 3.10, "Invertible Transformation," if T is invertible then for any $\vec{v}' \in V'$ we must have $T^{-1}(\vec{v}') = \vec{v}$ for some $\vec{v} \in V$. Therefore the image of \vec{v} is $\vec{v}' \in V'$ and T is onto. **Theorem 3.8.** A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof. ASSUME *T* is invertible and is not one-to-one. Then by the definition of "one-to-one," for some $\vec{v}_1 \neq \vec{v}_2$ both in *V*, we have $T(\vec{v}_1) = T(\vec{v}_2) = \vec{v}'$. But then $\vec{v}_1 = \mathcal{I}\vec{v}_1 = T^{-1} \circ T(\vec{v}_1) = T^{-1}(\vec{v}')$ and $\vec{v}_2 = \mathcal{I}\vec{v}_2 = T^{-1} \circ T(\vec{v}_2) = T^{-1}(\vec{v}')$, which implies that $\vec{v}_1 = \vec{v}_2$, a CONTRADICTION. Therefore if *T* is invertible then *T* is one-to-one.

From Definition 3.10, "Invertible Transformation," if T is invertible then for any $\vec{v}' \in V'$ we must have $T^{-1}(\vec{v}') = \vec{v}$ for some $\vec{v} \in V$. Therefore the image of \vec{v} is $\vec{v}' \in V'$ and T is onto.

Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and onto then it is invertible. Suppose that T is one-to-one and onto V'. Since T is onto V', then for each $\vec{v}' \in V'$ we can find $\vec{v} \in V$ such that $T(\vec{v}) = \vec{v}'$ and because T is one-to-one, this vector $\vec{v} \in V$ is unique (from the definition of "one-to-one" and "onto").

Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and onto then it is invertible. Suppose that T is one-to-one and onto V'. Since T is onto V', then for each $\vec{v}' \in V'$ we can find $\vec{v} \in V$ such that $T(\vec{v}) = \vec{v}'$ and because T is one-to-one, this vector $\vec{v} \in V$ is unique (from the definition of "one-to-one" and "onto"). Let $T^{-1}: V' \to V$ be defined by $T^{-1}(\vec{v}') = \vec{v}$. Then

$$(T \circ T^{-1})(\vec{v}') = T(T^{-1}(\vec{v}')) = T(\vec{v}) = \vec{v}'$$

and

$$(T^{-1} \circ T)(\vec{v}) = T^{-1}(T(\vec{v})) = T^{-1}(\vec{v}') = \vec{v},$$

and so $T \circ T^{-1}$ is the identity map on V' and $T^{-1} \circ T$ is the identity map on V.

Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and onto then it is invertible. Suppose that T is one-to-one and onto V'. Since T is onto V', then for each $\vec{v}' \in V'$ we can find $\vec{v} \in V$ such that $T(\vec{v}) = \vec{v}'$ and because T is one-to-one, this vector $\vec{v} \in V$ is unique (from the definition of "one-to-one" and "onto"). Let $T^{-1}: V' \to V$ be defined by $T^{-1}(\vec{v}') = \vec{v}$. Then

$$(T \circ T^{-1})(\vec{v}') = T(T^{-1}(\vec{v}')) = T(\vec{v}) = \vec{v}'$$

and

$$(T^{-1} \circ T)(\vec{v}) = T^{-1}(T(\vec{v})) = T^{-1}(\vec{v}') = \vec{v},$$

and so $T \circ T^{-1}$ is the identity map on V' and $T^{-1} \circ T$ is the identity map on V.

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation $T : V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Now we need only show that T^{-1} is linear. Suppose $T(\vec{v}_1) = \vec{v}'_1$ and $T(\vec{v}_2) = \vec{v}'_2$; that is, $\vec{v}_1 = T^{-1}(\vec{v}'_1)$ and $\vec{v}_2 = T^{-1}(\vec{v}'_2)$.
Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Now we need only show that T^{-1} is linear. Suppose $T(\vec{v}_1) = \vec{v}'_1$ and $T(\vec{v}_2) = \vec{v}'_2$; that is, $\vec{v}_1 = T^{-1}(\vec{v}'_1)$ and $\vec{v}_2 = T^{-1}(\vec{v}'_2)$. Then

$$\begin{aligned} T^{-1}(\vec{v}_1' + \vec{v}_2') &= T^{-1}(T(\vec{v}_1) + T(\vec{v}_2)) \\ &= T^{-1}(T(\vec{v}_1 + \vec{v}_2)) \text{ since } T \text{ is linear} \\ &= (T^{-1} \circ T)(\vec{v}_1 + \vec{v}_2) = \mathcal{I}(\vec{v}_1 + \vec{v}_2) = \vec{v}_1 + \vec{v}_2 \\ &= T^{-1}(\vec{v}_1') + T^{-1}(\vec{v}_2'). \end{aligned}$$

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Now we need only show that T^{-1} is linear. Suppose $T(\vec{v}_1) = \vec{v}'_1$ and $T(\vec{v}_2) = \vec{v}'_2$; that is, $\vec{v}_1 = T^{-1}(\vec{v}'_1)$ and $\vec{v}_2 = T^{-1}(\vec{v}'_2)$. Then

$$\begin{aligned} T^{-1}(\vec{v}_1' + \vec{v}_2') &= T^{-1}(T(\vec{v}_1) + T(\vec{v}_2)) \\ &= T^{-1}(T(\vec{v}_1 + \vec{v}_2)) \text{ since } T \text{ is linear} \\ &= (T^{-1} \circ T)(\vec{v}_1 + \vec{v}_2) = \mathcal{I}(\vec{v}_1 + \vec{v}_2) = \vec{v}_1 + \vec{v}_2 \\ &= T^{-1}(\vec{v}_1') + T^{-1}(\vec{v}_2'). \end{aligned}$$

Also (since T is linear)

$$T^{-1}(r\vec{v}_1) = T^{-1}(rT(\vec{v}_1)) = T^{-1}(T(r\vec{v}_1)) = \mathcal{I}(r\vec{v}_1) = r\vec{v}_1 = rT^{-1}(\vec{v}_1').$$

Therefore T^{-1} is linear.

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation $T: V \to V'$ is invertible if and only if it is one-to-one and onto V'. When T^{-1} exists, it is linear.

Proof (continued). Now we need only show that T^{-1} is linear. Suppose $T(\vec{v}_1) = \vec{v}'_1$ and $T(\vec{v}_2) = \vec{v}'_2$; that is, $\vec{v}_1 = T^{-1}(\vec{v}'_1)$ and $\vec{v}_2 = T^{-1}(\vec{v}'_2)$. Then

$$\begin{array}{rcl} T^{-1}(\vec{v}_1'+\vec{v}_2') &=& T^{-1}(T(\vec{v}_1)+T(\vec{v}_2)) \\ &=& T^{-1}(T(\vec{v}_1+\vec{v}_2)) \text{ since } T \text{ is linear} \\ &=& (T^{-1}\circ T)(\vec{v}_1+\vec{v}_2) = \mathcal{I}(\vec{v}_1+\vec{v}_2) = \vec{v}_1+\vec{v}_2 \\ &=& T^{-1}(\vec{v}_1')+T^{-1}(\vec{v}_2'). \end{array}$$

Also (since T is linear)

$$T^{-1}(r\vec{v}_1') = T^{-1}(rT(\vec{v}_1)) = T^{-1}(T(r\vec{v}_1)) = \mathcal{I}(r\vec{v}_1) = r\vec{v}_1 = rT^{-1}(\vec{v}_1').$$

Therefore T^{-1} is linear.

()

Example 3.4.C. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Determine if T is invertible. If so, find its inverse.

Solution. Since ker(T) = {0} by Example 3.4.B, then T is one-to-one by Corollary 3.4.A. For any $g \in \mathcal{F}$, for f = g/a we have T(f) = T(g/a) = a(g/a) = g and so T is onto.

Linear Algebra

Example 3.4.C. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Determine if T is invertible. If so, find its inverse.

Solution. Since ker(T) = {0} by Example 3.4.B, then T is one-to-one by Corollary 3.4.A. For any $g \in \mathcal{F}$, for f = g/a we have T(f) = T(g/a) = a(g/a) = g and so T is onto. So by Theorem 3.8, T is invertible. In fact, $T^{-1}(f) = f/a$ since $T^{-1}(T(f)) = T^{-1}(af) = (af)/a = f = a(f/a) = T(f/a) = T(T^{-1}(f))$ for all $f \in \mathcal{F}$. \Box

()

Example 3.4.C. Let \mathcal{F} be the vector space of all functions mapping \mathbb{R} into \mathbb{R} (see Example 3.1.3). Let *a* be a nonzero scalar and define $T : \mathcal{F} \to \mathcal{F}$ as T(f) = af, as in Example 3.4.A. Determine if T is invertible. If so, find its inverse.

Solution. Since ker(T) = {0} by Example 3.4.B, then T is one-to-one by Corollary 3.4.A. For any $g \in \mathcal{F}$, for f = g/a we have T(f) = T(g/a) = a(g/a) = g and so T is onto. So by Theorem 3.8, T is invertible. In fact, $T^{-1}(f) = f/a$ since $T^{-1}(T(f)) = T^{-1}(af) = (af)/a = f = a(f/a) = T(f/a) = T(T^{-1}(f))$ for all $f \in \mathcal{F}$. \Box

Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, ..., \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof. Since *B* is a basis for *V* and *B* has *n* elements, then dim(*V*) = *n* and so by Theorem 3.3.A, "Fundamental Theorem of Finite Dimensional Vector Spaces," there is isomorphism $\alpha : V \to \mathbb{R}^n$ between *V* and \mathbb{R}^n where $\alpha(\vec{v}) = \vec{v}_B$, as shown in the proof of Theorem 3.3.A.

Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, ..., \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof. Since *B* is a basis for *V* and *B* has *n* elements, then dim(*V*) = *n* and so by Theorem 3.3.A, "Fundamental Theorem of Finite Dimensional Vector Spaces," there is isomorphism $\alpha : V \to \mathbb{R}^n$ between *V* and \mathbb{R}^n where $\alpha(\vec{v}) = \vec{v}_B$, as shown in the proof of Theorem 3.3.A.

We need to show for all $\vec{v} \in V$ that $T(\vec{v})_{B'} = A(\vec{v}_B)$. We are given that $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$, or equivalently

$$\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}.$$
 (*)

Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, ..., \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof. Since *B* is a basis for *V* and *B* has *n* elements, then dim(*V*) = *n* and so by Theorem 3.3.A, "Fundamental Theorem of Finite Dimensional Vector Spaces," there is isomorphism $\alpha : V \to \mathbb{R}^n$ between *V* and \mathbb{R}^n where $\alpha(\vec{v}) = \vec{v}_B$, as shown in the proof of Theorem 3.3.A.

We need to show for all $\vec{v} \in V$ that $T(\vec{v})_{B'} = A(\vec{v}_B)$. We are given that $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$, or equivalently

$$\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}.$$
 (*)

Theorem 3.10 (continued)

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, ..., \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, ..., \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof (continued). ... $\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}$. (*) So we need to show that $\overline{T}(\vec{v}_B) = A(\vec{v}_B)$. Since $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$, then by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," the standard matrix representation of \overline{T} is the $m \times n$ matrix whose *j*th column is $\overline{T}(\hat{e}_j)$.

Theorem 3.10 (continued)

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, \ldots, \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof (continued). ... $\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}$. (*) So we need to show that $\overline{T}(\vec{v}_B) = A(\vec{v}_B)$. Since $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$, then by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," the standard matrix representation of \overline{T} is the $m \times n$ matrix whose *j*th column is $\overline{T}(\hat{e}_j)$. By the definition of α , $\alpha(\vec{b}_j) = \hat{e}_j$, so $\overline{T}(\hat{e}_j) = \overline{T}(\alpha(\vec{b}_j)) = T(\vec{b}_j)_{B'}$ by (*). That is, the *j*th column of *A* is $T(\vec{b}_j)_{B'}$, as claimed.

Theorem 3.10 (continued)

Theorem 3.10. Matrix Representations of Linear Transformations. Let V and V' be finite-dimensional vector spaces and let $B = (\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n)$ and $B' = (\vec{b}'_1, \vec{b}'_2, \ldots, \vec{b}'_m)$ be ordered bases for V and V', respectively. Let $T : V \to V'$ be a linear transformation, and let $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation such that for each $\vec{v} \in V$, we have $\overline{T}(\vec{v}_B) = T(\vec{v})_{B'}$. Then the standard matrix representation of \overline{T} is the matrix A whose *j*th column vector is $T(\vec{b}_j)_{B'}$, and $T(\vec{v})_{B'} = A\vec{v}_B$ for all vectors $\vec{v} \in V$.

Proof (continued). ... $\overline{T}(\alpha(\vec{v})) = T(\vec{v})_{B'}$. (*) So we need to show that $\overline{T}(\vec{v}_B) = A(\vec{v}_B)$. Since $\overline{T} : \mathbb{R}^n \to \mathbb{R}^m$, then by Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," the standard matrix representation of \overline{T} is the $m \times n$ matrix whose *j*th column is $\overline{T}(\hat{e}_j)$. By the definition of α , $\alpha(\vec{b}_j) = \hat{e}_j$, so $\overline{T}(\hat{e}_j) = \overline{T}(\alpha(\vec{b}_j)) = T(\vec{b}_j)_{B'}$ by (*). That is, the *j*th column of *A* is $T(\vec{b}_j)_{B'}$, as claimed.

Page 227 Number 18. Let *V* and *V'* be vector spaces with ordered bases $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$ and $B' = (\vec{b}'_1, \vec{b}'_2, \vec{b}'_3, \vec{b}'_4)$, respectively. Let $T : V \to V'$ be the linear transformation having matrix representation $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ relative to *B*, *B'*. Find $T(\vec{v})$ for $\vec{v} = 3\vec{b}_3 - \vec{b}_1$.

Solution. We use Theorem 3.10, "Matrix Representation of Linear Transformations." Notice that $\vec{v}_B = [-1, 0, 3]$.

Page 227 Number 18. Let *V* and *V'* be vector spaces with ordered bases $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$ and $B' = (\vec{b}'_1, \vec{b}'_2, \vec{b}'_3, \vec{b}'_4)$, respectively. Let $T : V \to V'$ be the linear transformation having matrix representation $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ relative to *B*, *B'*. Find $T(\vec{v})$ for $\vec{v} = 3\vec{b}_3 - \vec{b}_1$.

Solution. We use Theorem 3.10, "Matrix Representation of Linear Transformations." Notice that $\vec{v}_B = [-1, 0, 3]$. So

$$T(\vec{v})_{B'} = A\vec{v}_B = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -7 \\ -2 \\ 3 \\ 7 \end{bmatrix}$$

Linear Algebra

So
$$T(\vec{v}) = -7\vec{b}_1' - 2\vec{b}_2' + 3\vec{b}_3' + 7\vec{b}_4'$$
.

Page 227 Number 18. Let *V* and *V'* be vector spaces with ordered bases $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$ and $B' = (\vec{b}'_1, \vec{b}'_2, \vec{b}'_3, \vec{b}'_4)$, respectively. Let $T : V \to V'$ be the linear transformation having matrix representation $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ relative to *B*, *B'*. Find $T(\vec{v})$ for $\vec{v} = 3\vec{b}_3 - \vec{b}_1$.

Solution. We use Theorem 3.10, "Matrix Representation of Linear Transformations." Notice that $\vec{v}_B = [-1, 0, 3]$. So

$$T(\vec{v})_{B'} = A\vec{v}_B = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 2 & 0 \\ 0 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -7 \\ -2 \\ 3 \\ 7 \end{bmatrix}$$

So
$$T(\vec{v}) = -7\vec{b}'_1 - 2\vec{b}'_2 + 3\vec{b}'_3 + 7\vec{b}'_4$$
.

Page 227 Number 22. Let $T : \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases *B* and *B'* for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$.

(a) Find the matrix representation A of T relative to B, B'.

(b) Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. (a) We use Theorem 3.10, "Matrix Representation of Linear Transformations," and see that the columns of A are $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$, $T(\vec{b}_4)_{B'}$.

Linear Algebra

Page 227 Number 22. Let $T : \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases *B* and *B'* for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$.

(a) Find the matrix representation A of T relative to B, B'.

(b) Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. (a) We use Theorem 3.10, "Matrix Representation of Linear Transformations," and see that the columns of A are $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$, $T(\vec{b}_4)_{B'}$. We find

$$T(\vec{b}_1)_{B'} = T(x^3)_{B'} = (x(3x^2))_{B'} = (3x^3)_{B'} = [3,0,0,0]^T$$

$$T(\vec{b}_2)_{B'} = T(x^2)_{B'} = (x(2x))_{B'} = (2x^2)_{B'} = [0,2,0,0]^T$$

$$T(\vec{b}_3)_{B'} = T(x)_{B'} = (x(1))_{B'} = (x)_{B'} = [0,0,1,0]^T$$

$$T(\vec{b}_4)_{B'} = T(1)_{B'} = (x(0))_{B'} = (0)_{B'} = [0,0,0,0]^T.$$

Page 227 Number 22. Let $T : \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases *B* and *B'* for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$.

(a) Find the matrix representation A of T relative to B, B'.

(b) Working with the matrix A and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. (a) We use Theorem 3.10, "Matrix Representation of Linear Transformations," and see that the columns of A are $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$, $T(\vec{b}_4)_{B'}$. We find

$$T(\vec{b}_{1})_{B'} = T(x^{3})_{B'} = (x(3x^{2}))_{B'} = (3x^{3})_{B'} = [3,0,0,0]^{T}$$

$$T(\vec{b}_{2})_{B'} = T(x^{2})_{B'} = (x(2x))_{B'} = (2x^{2})_{B'} = [0,2,0,0]^{T}$$

$$T(\vec{b}_{3})_{B'} = T(x)_{B'} = (x(1))_{B'} = (x)_{B'} = [0,0,1,0]^{T}$$

$$T(\vec{b}_{4})_{B'} = T(1)_{B'} = (x(0))_{B'} = (0)_{B'} = [0,0,0,0]^{T}.$$

Page 227 Number 22 (continued 1)

Solution. So $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(b) First $(x^3 - 3x^2 + 4x)_{B'} = [1, -3, 4, 0]^T$. From Theorem 3.10, $T(p(x))_{B'} = A\vec{v}_B$, so we want $\vec{v}_B \in \mathbb{R}^4$ such that $A\vec{v}_B = T(p(x))_{B'} = [1, -3, 4, 0]^T$.

Page 227 Number 22 (continued 1)

Solution. So $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(b) First $(x^3 - 3x^2 + 4x)_{B'} = [1, -3, 4, 0]^T$. From Theorem 3.10, $T(p(x))_{B'} = A\vec{v}_B$, so we want $\vec{v}_B \in \mathbb{R}^4$ such that $A\vec{v}_B = T(p(x))_{B'} = [1, -3, 4, 0]^T$. Let $\vec{v}_B = [v_1, v_2, v_3, v_4]^T$, and consider the augmented matrix for $A\vec{v}_B = [1, -3, 4, 0]^T$: $\begin{bmatrix} 3 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

Page 227 Number 22 (continued 1)

Solution. So
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) First $(x^3 - 3x^2 + 4x)_{B'} = [1, -3, 4, 0]^T$. From Theorem 3.10, $T(p(x))_{B'} = A\vec{v}_B$, so we want $\vec{v}_B \in \mathbb{R}^4$ such that $A\vec{v}_B = T(p(x))_{B'} = [1, -3, 4, 0]^T$. Let $\vec{v}_B = [v_1, v_2, v_3, v_4]^T$, and consider the augmented matrix for $A\vec{v}_B = [1, -3, 4, 0]^T$: $\begin{bmatrix} 3 & 0 & 0 & 0 & | & 1 \\ 0 & 2 & 0 & 0 & | & -3 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$.

We see that this is already in row reduced echelon form and so we need $3v_1 = 1$ $v_1 = 1/3$

$$2v_{2} = -3 \quad v_{1} = -3/2 \\ v_{3} = 4 \quad v_{3} = 4 \\ 0 = 0 \quad v_{4} = v_{4}$$

Page 227 Number 22 (continued 1)

Solution. So
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) First $(x^3 - 3x^2 + 4x)_{B'} = [1, -3, 4, 0]^T$. From Theorem 3.10, $T(p(x))_{B'} = A\vec{v}_B$, so we want $\vec{v}_B \in \mathbb{R}^4$ such that $A\vec{v}_B = T(p(x))_{B'} = [1, -3, 4, 0]^T$. Let $\vec{v}_B = [v_1, v_2, v_3, v_4]^T$, and consider the augmented matrix for $A\vec{v}_B = [1, -3, 4, 0]^T$: $\begin{bmatrix} 3 & 0 & 0 & 0 & | & 1 \\ 0 & 2 & 0 & 0 & | & -3 \\ 0 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$.

We see that this is already in row reduced echelon form and so we need

Page 227 Number 22 (continued 2)

Page 227 Number 22. Let $T : \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases *B* and *B'* for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$. (a) Find the matrix representation *A* of *T* relative to *B*, *B'*. (b) Working with the matrix *A* and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. So we take $k = v_4$ as a free variable. Then $\vec{v}_B = [1/3, -3/2, 4, k]$ for any $k \in \mathbb{R}$. So $\vec{v} \in \mathcal{P}_3$ is of the form $\left[\frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x + k \text{ for } k \in \mathbb{R}.\right]$

Page 227 Number 22 (continued 2)

Page 227 Number 22. Let $T : \mathcal{P}_3 \to \mathcal{P}_3$ be defined by T(p(x)) = xD(p(x)) = xp'(x) and let the ordered bases *B* and *B'* for \mathcal{P}_3 both be $(x^3, x^2, x, 1)$. (a) Find the matrix representation *A* of *T* relative to *B*, *B'*. (b) Working with the matrix *A* and coordinate vectors, find all solutions p(x) of $T(p(x)) = x^3 - 3x^2 + 4x$.

Solution. So we take $k = v_4$ as a free variable. Then $\vec{v}_B = [1/3, -3/2, 4, k]$ for any $k \in \mathbb{R}$. So $\vec{v} \in \mathcal{P}_3$ is of the form $\boxed{\frac{1}{3}x^3 - \frac{3}{2}x^2 + 4x + k}$ for $k \in \mathbb{R}$.

Page 227 Number 24. Let $T : \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}_1', \vec{b}_2', \vec{b}_3')$. (a) Find the matrix representation A of T relative to B, B'. (b) Use A from part (a) to compute $T(4x^3 - 5x^2 + 4x - 7)$. **Solution.** (a) Again we use Theorem 3.10 and find $T(\vec{b}_1)_{B'}, T(\vec{b}_2)_{B'}, T(\vec{b}_3)_{B'}, T(\vec{b}_4)_{B'}$. First we need the derivatives of $\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4: \frac{d}{dx}[\vec{b}_1] = \frac{d}{dx}[x^3] = 3x^2, \frac{d}{dx}[\vec{b}_2] = \frac{d}{dx}[x^2] = 2x,$ $\frac{d}{dx}[\vec{b}_3] = \frac{d}{dx}[x] = 1$, and $\frac{d}{dx}[\vec{b}_4] = \frac{d}{dx}[1] = 0$.

Page 227 Number 24. Let $T : \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}_1', \vec{b}_2', \vec{b}_3')$. (a) Find the matrix representation A of T relative to B, B'. (b) Use A from part (a) to compute $T(4x^3 - 5x^2 + 4x - 7)$. Solution. (a) Again we use Theorem 3.10 and find $T(\vec{b}_1)_{B'}, T(\vec{b}_2)_{B'}, T(\vec{b}_3)_{B'}, T(\vec{b}_4)_{B'}$. First we need the derivatives of $\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4: \frac{d}{dx}[\vec{b}_1] = \frac{d}{dx}[x^3] = 3x^2, \frac{d}{dx}[\vec{b}_2] = \frac{d}{dx}[x^2] = 2x,$ $\frac{d}{dx}[\vec{b}_3] = \frac{d}{dx}[x] = 1$, and $\frac{d}{dx}[\vec{b}_4] = \frac{d}{dx}[1] = 0$. Since T first takes a derivative and then evaluates it at 2x + 1, we have $T(x^3) = 3(2x+1)^2 = 12x^2 + 12x + 3$, $T(x^2) = 2(2x+1) = 4x + 2$, T(x) = 1, and T(1) = 0, and so $T(\vec{b}_1)_{B'} = T(x^3)_{B'} = (12x^2 + 12x + 3)_{B'} = [12, 12, 3]^T$ $T(\vec{b}_2)_{B'} = T(x^2)_{B'} = (4x+2)_{B'} = [0,4,2]^T$ $T(\dot{b}_3)_{B'} = T(x)_{B'} = (1)_{B'} = [0, 0, 1]^T$, and $T(\dot{b_4})_{B'} = T(1)_{B'} = 0_{B'} = [0, 0, 0]^T.$

Page 227 Number 24. Let $T : \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3, x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$. (a) Find the matrix representation A of T relative to B, B'. (b) Use A from part (a) to compute $T(4x^3 - 5x^2 + 4x - 7)$. Solution. (a) Again we use Theorem 3.10 and find $T(\vec{b}_1)_{B'}, T(\vec{b}_2)_{B'}, T(\vec{b}_3)_{B'}, T(\vec{b}_4)_{B'}$. First we need the derivatives of $\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4: \frac{d}{dx}[\vec{b}_1] = \frac{d}{dx}[x^3] = 3x^2, \frac{d}{dx}[\vec{b}_2] = \frac{d}{dx}[x^2] = 2x,$ $\frac{d}{dx}[\vec{b}_3] = \frac{d}{dx}[x] = 1$, and $\frac{d}{dx}[\vec{b}_4] = \frac{d}{dx}[1] = 0$. Since T first takes a derivative and then evaluates it at 2x + 1, we have $T(x^3) = 3(2x+1)^2 = 12x^2 + 12x + 3$, $T(x^2) = 2(2x+1) = 4x + 2$, T(x) = 1, and T(1) = 0, and so $T(\dot{b_1})_{B'} = T(x^3)_{B'} = (12x^2 + 12x + 3)_{B'} = [12, 12, 3]^T$ $T(\vec{b}_2)_{B'} = T(x^2)_{B'} = (4x+2)_{B'} = [0,4,2]^T$ $T(\vec{b}_3)_{B'} = T(x)_{B'} = (1)_{B'} = [0, 0, 1]^T$, and $T(\dot{b}_4)_{B'} = T(1)_{B'} = 0_{B'} = [0, 0, 0]^T.$ Linear Algebra

Page 227 Number 24 (continued 1)

Solution. So the columns of *A* are $T(\vec{b}_1), T(\vec{b}_2), T(\vec{b}_3), T(\vec{b}_4)$: $A = \begin{bmatrix} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}. \square$

(b) We know from Theorem 3.10, "Matrix Representations of Linear Transformations," that $T(4x^3 - 5x^2 + 4x - 7)_{B'} = A\vec{v}_B$. Now $\vec{v}_B = [4, -5, 4, -7]$ so

$$T(4x^{3} - 5x^{2} + 4x - 7)_{B'} = \begin{bmatrix} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 4 \\ -7 \end{bmatrix} = \begin{bmatrix} 48 \\ 28 \\ 6 \end{bmatrix}$$

and hence

$$T(4x^3 - 5x^2 + 4x - 7) = (48)x^2 + (28)x + (6)1 = 48x^2 + 28x + 6.$$

Page 227 Number 24 (continued 1)

Solution. So the columns of *A* are $T(\vec{b}_1), T(\vec{b}_2), T(\vec{b}_3), T(\vec{b}_4)$: $A = \begin{bmatrix} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}. \square$

(b) We know from Theorem 3.10, "Matrix Representations of Linear Transformations," that $T(4x^3 - 5x^2 + 4x - 7)_{B'} = A\vec{v}_B$. Now $\vec{v}_B = [4, -5, 4, -7]$ so

$$T(4x^{3}-5x^{2}+4x-7)_{B'} = \begin{bmatrix} 12 & 0 & 0 & 0 \\ 12 & 4 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -5 \\ 4 \\ -7 \end{bmatrix} = \begin{bmatrix} 48 \\ 28 \\ 6 \end{bmatrix}$$

and hence $T(4x^3 - 5x^2 + 4x - 7) = (48)x^2 + (28)x + (6)1 = 48x^2 + 28x + 6.$

Page 227 Number 24 (continued 2)

Page 227 Number 24. Let $T : \mathcal{P}_3 \to \mathcal{P}_2$ be defined by $T(p(x)) = p'(x)|_{2x+1} = p'(2x+1)$, where p'(x) = D(p(x)), and let $B = (\vec{b}_1, \vec{b}_2, \vec{b}_3, \vec{b}_4) = (x^3 + x^2, x, 1)$ and $B' = (x^2, x, 1) = (\vec{b}'_1, \vec{b}'_2, \vec{b}'_3)$. **(b)** Use *A* from part (a) to compute $T(4x^3 - 5x^2 + 4x - 7)$.

Solution. Notice that $\frac{d}{dx}[4x^3 - 5x^2 + 4x - 7] = 12x^2 - 10x + 4$ and evaluating this at 2x + 1 gives

$$12(2x+1)^2 - 10(2x+1) + 4 = 12(4x^2 + 4x + 1) - 10(2x+1) + 4$$
$$= 48x^2 + 48x + 12 - 20x - 10 + 4 = 48x^2 + 28x + 6,$$
as expected. \Box

Page 228 Number 28. Let $W = sp(e^{2x}, e^{4x}, e^{8x})$ be a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$. (a) Find the matrix representation A relative to B, B' of the linear transformation $T : W \to W$ defined by $T(f) = \int_{-\infty}^{x} f(t) dt$. (b) Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution. (a) We use Theorem 3.10 and find $T(\vec{b}_1)_{B'}, T(\vec{b}_2)_{B'}, T(\vec{b}_3)_{B'}$. We have

$$T(\vec{b}_1) = T(e^{2x}) = \int_{-\infty}^{x} e^{2t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{2t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{2} e^{2t} \right) \Big|_{a}^{x} \right)$$
$$= \lim_{a \to -\infty} \left(\frac{1}{2} e^{2x} - \frac{1}{2} e^{2a} \right) = \frac{1}{2} e^{2x} - 0 = \frac{1}{2} e^{2x}$$

Page 228 Number 28. Let $W = sp(e^{2x}, e^{4x}, e^{8x})$ be a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$. (a) Find the matrix representation A relative to B, B' of the linear transformation $T : W \to W$ defined by $T(f) = \int_{-\infty}^{x} f(t) dt$. (b) Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution. (a) We use Theorem 3.10 and find $T(\vec{b}_1)_{B'}$, $T(\vec{b}_2)_{B'}$, $T(\vec{b}_3)_{B'}$. We have

$$T(\vec{b}_1) = T(e^{2x}) = \int_{-\infty}^{x} e^{2t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{2t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{2} e^{2t} \right) \Big|_{a}^{x} \right)$$
$$= \lim_{a \to -\infty} \left(\frac{1}{2} e^{2x} - \frac{1}{2} e^{2a} \right) = \frac{1}{2} e^{2x} - 0 = \frac{1}{2} e^{2x}$$

Page 228 Number 28 (continued 1)

Solution (continued).

 $T(\vec{b}_2) = T(e^{4x}) = \int_{-\infty}^{\infty} e^{4t} dt = \lim_{a \to -\infty} \left(\int_{-\infty}^{\infty} e^{4t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{4} e^{4t} \right) \right|^{\wedge} \right)$ $= \lim_{a \to -\infty} \left(\frac{1}{4} e^{4x} - \frac{1}{4} e^{4a} \right) = \frac{1}{4} e^{4x} - 0 = \frac{1}{4} e^{4x}$ $T(\vec{b}_3) = T(e^{8x}) = \int_{-\infty}^{x} e^{8t} dt = \lim_{a \to -\infty} \left(\int_{a}^{x} e^{8t} dt \right) = \lim_{a \to -\infty} \left(\left(\frac{1}{8} e^t \right) \right|^x \right)$ $= \lim_{a \to -\infty} \left(\frac{1}{8} e^{8x} - \frac{1}{8} e^{8a} \right) = \frac{1}{8} e^{8x} - 0 = \frac{1}{8} e^{8x}.$ So $T(\vec{b}_1)_{B'} = [1/2, 0, 0], \ T(\vec{b}_2)_{B'} = [0, 1/4, 0], \ T(\vec{b}_3)_{B'} = [0, 0, 1/8].$ So $\begin{vmatrix} A = \\ 0 & 1/4 & 0 \\ 0 & 0 & 1/8 \end{vmatrix}.$

Page 228 Number 28 (continued 2)

Page 228 Number 28. Let $W = sp(e^{2x}, e^{4x}, e^{8x})$ a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$. **(b)** Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution (continued). (b) It is easy to see that $A^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. By Theorem 3.4.B, A^{-1} is the matrix representation of T^{-1} relative to B', B. So by Theorem 3.10, "Matrix Representations of Linear Transformations," we have that $T^{-1}(\vec{v})_B = A^{-1}\vec{v}_{B'}$ and so

$$T^{-1}(r_1e^{2x}+r_2e^{4x}+r_3e^{8x})_B = A^{-1}((r_1e^{2x}+r_2e^{4x}+r_3e^{8x})'_B) = A^{-1}[r_1,r_2,r_3]^T$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2r_1 \\ 4r_2 \\ 8r_3 \end{bmatrix}$$

Page 228 Number 28 (continued 2)

Page 228 Number 28. Let $W = sp(e^{2x}, e^{4x}, e^{8x})$ a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$. **(b)** Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution (continued). (b) It is easy to see that $A^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. By Theorem 3.4.B, A^{-1} is the matrix representation of T^{-1} relative to B', B. So by Theorem 3.10, "Matrix Representations of Linear Transformations," we have that $T^{-1}(\vec{v})_B = A^{-1}\vec{v}_{B'}$ and so

$$T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})_B = A^{-1}((r_1e^{2x} + r_2e^{4x} + r_3e^{8x})'_B) = A^{-1}[r_1, r_2, r_3]^T$$
$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2r_1 \\ 4r_2 \\ 8r_3 \end{bmatrix}.$$

Page 228 Number 28 (continued 3)

Page 228 Number 28. Let $W = sp(e^{2x}, e^{4x}, e^{8x})$ a subspace of \mathcal{F} (see Example 3.1.3) and let $B = B' = (e^{2x}, e^{4x}, e^{8x})$. **(b)** Find A^{-1} where A is the matrix of part (a) and use it to find $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x})$.

Solution (continued). ...

$$T^{-1}(r_1e^{2x}+r_2e^{4x}+r_3e^{8x})_B = \begin{bmatrix} 2r_1\\4r_2\\8r_3 \end{bmatrix}.$$

So translating this using basis *B* we have $T^{-1}(r_1e^{2x} + r_2e^{4x} + r_3e^{8x}) = 2r_1e^{2x} + 4r_2e^{4x} + 8r_3e^{8x}. \square$
Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution. Let $\vec{v}_1, \vec{v}_2 \in V$ and $s, t \in \mathbb{R}$ be scalars.

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution. Let $\vec{v}_1, \vec{v}_2 \in V$ and $s, t \in \mathbb{R}$ be scalars. Then

 $(rT)(s\vec{v}_1 + t\vec{v}_2) = r(T(s\vec{v}_1 + t\vec{v}_2))$ by the definition of rT

- $= r(sT(\vec{v}_1) + tT(\vec{v}_2))$ by Note 3.4.A since T is linear
- $= r(sT(\vec{v}_1)) + r(tT(\vec{v}_2) \text{ by S1}$
- $= (rs)T(\vec{v}_1) + (rt)T(\vec{v}_2)$ by S3

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution. Let $ec{v}_1, ec{v}_2 \in V$ and $s, t \in \mathbb{R}$ be scalars. Then

$$(rT)(s\vec{v_1} + t\vec{v_2}) = r(T(s\vec{v_1} + t\vec{v_2}))$$
 by the definition of rT

 $= r(sT(\vec{v}_1) + tT(\vec{v}_2))$ by Note 3.4.A since T is linear

$$= r(sT(ec{v}_1)) + r(tT(ec{v}_2))$$
 by S1

$$= (rs)T(\vec{v}_1) + (rt)T(\vec{v}_2)$$
 by S3

= $(sr)T(\vec{v}_1) + (tr)T(\vec{v}_2)$ since multiplication

is commutative in ${\mathbb R}$

- $= s(rT(\vec{v_1})) + t(rT(\vec{v_2}))$ by S3
- $= s(rT)(\vec{v}_1) + t(rT)(\vec{v}_2)$ by definition of rT.

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution. Let $ec{v}_1, ec{v}_2 \in V$ and $s, t \in \mathbb{R}$ be scalars. Then

$$(rT)(s\vec{v}_1 + t\vec{v}_2) = r(T(s\vec{v}_1 + t\vec{v}_2))$$
 by the definition of rT

 $= r(sT(\vec{v}_1) + tT(\vec{v}_2))$ by Note 3.4.A since T is linear

$$= r(sT(ec{v}_1)) + r(tT(ec{v}_2))$$
 by S1

$$= (rs)T(\vec{v}_1) + (rt)T(\vec{v}_2)$$
 by S3

= $(sr)T(\vec{v}_1) + (tr)T(\vec{v}_2)$ since multiplication

is commutative in $\ensuremath{\mathbb{R}}$

- $= s(rT(\vec{v_1})) + t(rT(\vec{v_2}))$ by S3
- $= s(rT)(\vec{v}_1) + t(rT)(\vec{v}_2)$ by definition of rT.

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution (continued). So rT is a linear transformation by Note 3.4.A. \Box

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution (continued). So rT is a linear transformation by Note 3.4.A. \Box

Note. In Exercise 43 it is shown for $T_1, T_2 \in L(V, V')$ that $T_1 + T_2 \in L(V, V')$ where we define $(T_1 + T_2)(\vec{v}_1 + \vec{v}_2) = T_1(\vec{v}_1) + T_2(\vec{v}_2)$. So L(V, V') is closed under vector addition and scalar multiplication.

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution (continued). So rT is a linear transformation by Note 3.4.A. \Box

Note. In Exercise 43 it is shown for $T_1, T_2 \in L(V, V')$ that $T_1 + T_2 \in L(V, V')$ where we define $(T_1 + T_2)(\vec{v}_1 + \vec{v}_2) = T_1(\vec{v}_1) + T_2(\vec{v}_2)$. So L(V, V') is closed under vector addition and scalar multiplication. Therefore, by Theorem 3.2, "Test for a Subspace," L(V, V') is a subspace of the vector space of all functions mapping V into V' (see "Summary Item 5 on page 188).

Page 229 Number 44. Denote the set of all linear transformations from V to V' as L(V, V'). Let $T \in L(V, V')$ and let $r \in \mathbb{R}$ be a scalar. Define $rT : V \to V'$ as $(rT)\vec{v} = r(T(\vec{v}))$ for each $\vec{v} \in V$. Prove that $rT \in L(V, V')$.

Solution (continued). So rT is a linear transformation by Note 3.4.A. \Box

Note. In Exercise 43 it is shown for T_1 , $T_2 \in L(V, V')$ that $T_1 + T_2 \in L(V, V')$ where we define $(T_1 + T_2)(\vec{v}_1 + \vec{v}_2) = T_1(\vec{v}_1) + T_2(\vec{v}_2)$. So L(V, V') is closed under vector addition and scalar multiplication. Therefore, by Theorem 3.2, "Test for a Subspace," L(V, V') is a subspace of the vector space of all functions mapping V into V' (see "Summary Item 5 on page 188).

Page 226 Number 12. Let D_{∞} be the vector space of functions mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T: D_{\infty} \to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_1 f' + a_0 f$, where $a_n \neq 0$, is an *n*-dimensional subspace of D_{∞} . Use this information to find the solution set in D_{∞} of the differential equation y' - y = x. HINT: a particular solution to the differential equation is y = -x - 1.

Solution. First, we consider the "homogeneous" linear differential equation y' - y = 0; that is, y' = y. We know from Calculus that if y' = y then $y = ke^x$ for some $k \in \mathbb{R}$ (y' = y is a separable differential equation and can be solved by separation of variables and integration). This is the general solution to y' - y = 0 and the set of all such solutions form a subspace of the vector space \mathcal{F} of all real valued functions defined on \mathbb{R} (see exercise 3.2.40).

Page 226 Number 12. Let D_{∞} be the vector space of functions mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T: D_{\infty} \to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_1 f' + a_0 f$, where $a_n \neq 0$, is an *n*-dimensional subspace of D_{∞} . Use this information to find the solution set in D_{∞} of the differential equation y' - y = x. HINT: a particular solution to the differential equation is y = -x - 1.

Solution. First, we consider the "homogeneous" linear differential equation y' - y = 0; that is, y' = y. We know from Calculus that if y' = y then $y = ke^x$ for some $k \in \mathbb{R}$ (y' = y is a separable differential equation and can be solved by separation of variables and integration). This is the general solution to y' - y = 0 and the set of all such solutions form a subspace of the vector space \mathcal{F} of all real valued functions defined on \mathbb{R} (see exercise 3.2.40).

Page 226 Number 12 (continued)

Page 226 Number 12. Let D_{∞} be the vector space of functions mapping \mathbb{R} into \mathbb{R} that have derivatives of all orders. It can be shown that the kernel of a linear transformation $T: D_{\infty} \to D_{\infty}$ of the form $T(f) = a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_1 f' + a_0 f$, where $a_n \neq 0$, us an *n*-dimensional subspace of D_{∞} . Use this information to find the solution set in D_{∞} of the differential equation y' - y = x. HINT: a particular solution to the differential equation is y = -x - 1.

Solution (continued). By the solution to Exercise 3.2.41, all solutions to y' - y = x are of the form p(x) + h(x) where p(x) is a particular solution to y' - y = x and h(x) is some solution to the homogeneous differential equation y' - y = 0. We are given that a particular solution to y' - y = x is y = -x - 1. So the solution set to the differential equation y' - y = x is $\{-x - 1 + ke^x \mid k \in \mathbb{R}\}$.