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Example 3.4.A

Example 3.4.A

Example 3.4.A. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define
T : F → F as T (f ) = af . Is T a linear transformation?

Solution. We use Note 3.4.A. Let f , g ∈ F and let r , s ∈ R. Then

T (rf + sg) = a(rf + sg)

= a(rf ) + a(sg) by S1

= (ar)f + (as)g by S3

= (ra)f + (sa)g by commutivity in R
= r(af ) + s(ag) by S3

= rT (f ) + sT (g).

Therefore, yes, T is a linear transformation. �
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Example 3.4.B

Example 3.4.B

Example 3.4.B. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define
T : F → F as T (f ) = af , as in Example 3.4.A. Describe the kernel of T .

Solution. Let f ∈ ker(T ). Then T (f ) = 0 (where 0 = 0(x) denotes the
constant function which is 0 for all x ∈ R). So
T (f ) = af = af (x) = 0(x) = 0. Since a 6= 0 then f (x) = 0 for all x ∈ R.

That is, f (x) = 0(x) or f = 0. So ker(T ) = {0} = {0(x)}. �
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Page 214 Example 1

Page 214 Example 1. Let F be the vector space of all functions
f : R → R (see Example 3.1.3), and let D be its subspace of all
differentiable functions. Show that differentiation is a linear transformation
of D into F .

Proof. Let T : D → F be defined as T (f ) = f ′. Let f , g ∈ D and let
r ∈ R. Since the derivative of a sum is the sum of the derivatives, then

T (f + g) = (f + g)′ = f ′ + g ′ = T (f ) + T (g).

Since the derivative of a multiple of a function is the multiple times the
derivative, then

T (rf ) = (rf )′ = rf ′ = rT (f ).

Therefore T is linear.
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Page 215 Example 3. Let Ca,b be the set of all continuous functions
mapping [a, b] → R. Then Ca,b is a vector space (based on an argument
similar to that which justifies that C = {f ∈ F | f is continuous} is a
subspace of F , as mentioned in Note 3.2.B). Prove that T : Ca,b → R
defined by T (f ) =

∫ b
a f (x) dx is a linear transformation. Such a

transformation which maps functions to real numbers is called a linear
functional.

Proof. Let f , g ∈ Ca,b and let r ∈ R be a scalar. Since the integral of a
sum is the sum of the integrals and the integral of a multiple of a function
is the multiple of the integral of the function, we have

T (f +g) =

∫ b

a
(f (x)+g(x)) dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx = T (f )+T (g)

and T (rf ) =
∫ b
a rf (x) dx = r

∫ b
a f (x) dx = rT (f ). So, by Definition 3.9,

“Linear Transformation,” T is a linear transformation.
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Page 215 Example 4. Let C be the vector space of all continuous
functions mapping R into R (see Note 3.2.A). Let a ∈ R and let
Ta : C → C be defined by Ta(f ) =

∫ x
a f (t) dt. Prove that T is a linear

transformation.

Proof. Similar to the previous example, for f , g ∈ C and for scalar r ∈ R
we have

Ta(f +g) =

∫ x

a
(f (t)+g(t)) dt =

∫ x

a
f (t) dt+

∫ x

a
g(t) dt = Ta(f )+Ta(g)

and

Ta(rf ) =

∫ x

a
rf (t) dt = r

∫ x

a
f (t) dt = rTa(f ).

So by Definition 3.9, “Linear Transformation,” Ta is a linear
transformation.
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Theorem 3.5. Preservation of Zero and Subtraction

Theorem 3.5

Theorem 3.5. Preservation of Zero and Subtraction
Let V and V ′ be vectors spaces, and let T : V → V ′ be a linear
transformation. Then
(1) T (~0) = ~0′, and
(2) T (~v1 − ~v2) = T (~v1)− T (~v2), for any vectors ~v1 and ~v2 in V .

Proof. First,

T (~0) = T (0~0) by Theorem 3.1(4),

“Elementary Properties of Vector Spaces”

= 0T (~0) by Definition 3.9(2),

“Linear Transformations”

= ~0′ by Theorem 3.1(4).
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Theorem 3.5. Preservation of Zero and Subtraction

Theorem 3.5 (continued)

Theorem 3.5. Preservation of Zero and Subtraction
Let V and V ′ be vectors spaces, and let T : V → V ′ be a linear
transformation. Then
(1) T (~0) = ~0′, and
(2) T (~v1 − ~v2) = T (~v1)− T (~v2), for any vectors ~v1 and ~v2 in V .

Proof (continued). Second,

T (~v1 − ~v2) = T (~v1 − (1)~v2) by S4

= T (~v1 + (−1)~v2) by Theorem 3.1(6)

= T (~v1) + (−1)T (~v2) by Note 3.4.A

= T (~v1)− T (~v2) by Theorem 3.1(6).

So (1) and (2) hold, as claimed.
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Theorem 3.6. Bases and Linear Transformations

Theorem 3.6

Theorem 3.6. Bases and Linear Transformations.
Let T : V → V ′ be a linear transformation, and let B be a basis for V .
For any vector ~v in V , the vector T (~v) is uniquely determined by the
vectors T (~b) for all ~b ∈ B.

Proof. Let T and T be two linear transformations such that
T (~bi ) = T (~bi ) for each vector ~bi ∈ B. Let ~v ∈ V . Then for some scalars
r1, r2, . . . , rk we have ~v = r1~b1 + r2~v2 + · · ·+ rk~bk .

Then

T (~v) = T (r1~b1 + r2~b2 + · · ·+ rk~bk)

= r1T (~b1) + r2T (~b2) + · · ·+ rkT (~bk) by Note 3.4.A

= r1T (~b1) + r2T (~b2) + · · ·+ rkT (~bk)

= T (r1~b1 + r2~b2 + · · ·+ rk~bk) by Note 3.4.A

= T (~v).

Therefore T and T are the same transformations.
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Theorem 3.4.A (Page 229 number 46)

Theorem 3.4.A

Theorem 3.4.A. (Page 229 number 46) Let T : V → V ′ be a linear
transformation and let T (~p) = ~b for a particular vector ~p in V . The
solution set of T (~x) = ~b is the set {~p + ~h | ~h ∈ ker(T )}.

Proof. Let ~p be a solution of T (~v) = ~b. Then T (~p) = ~b. Let ~h be a
solution of T (~x) = ~0′. Then T (~h) = ~0′.

Therefore, by Definition 3.9(1),
“Linear Transformation,”

T (~p + ~h) = T (~p) + T (~h) = ~b + ~0′ = ~b,

and so ~p + ~h is indeed a solution. Also, if ~q is any solution of T (~x) = ~b
then by Theorem 3.5(2), “Preservation of Zero and Subtraction,”

T (~q − ~p) = T (~q)− T (~p) = ~b − ~b = ~0′,

and so ~q − ~p is in the kernel of T . Therefore for some ~h ∈ ker(T ), we
have ~q − ~p = ~h, for ~q = ~p + ~h.
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Corollary 3.4.A. One-to-One and Kernel

Corollary 3.4.A

Corollary 3.4.A. One-to-One and Kernel.
A linear transformation T is one-to-one if and only if ker(T ) = {~0}.

Proof. Let T : V → V ′ where V and V ′ are vector spaces.

Let ker(T ) = {~0}. Suppose for some ~v1, ~v2 ∈ V we have T (~v1) = T (~v2).
Then T (~v1)− T (~v2) = ~0′ and so by Theorem 3.5(2), Preservation of Zero
and Subtraction, T (~v1 − ~v2) = ~0′. That is, ~v1 − ~v2 ∈ ker(T ) = {~0}. So it
must be that ~v1 − ~v2 = ~0, or ~v1 = ~v2, and hence T is one-to-one.

Next, suppose T is one-to-one. Since T (~0) = ~0′ by Theorem 3.5(1),
“Preservation of Zero and Subtraction,” then for any nonzero vector
~x ∈ V we must have that T (~x) 6= ~0′. That is, the only vector in ker(T ) is
~0. So ker(T ) = {~0}, as claimed.
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Theorem 3.8

Theorem 3.8

Theorem 3.8. A linear transformation T : V → V ′ is invertible if and
only if it is one-to-one and onto V ′. When T−1 exists, it is linear.

Proof. ASSUME T is invertible and is not one-to-one. Then by the
definition of “one-to-one,” for some ~v1 6= ~v2 both in V , we have
T (~v1) = T (~v2) = ~v ′.

But then ~v1 = I~v1 = T−1 ◦ T (~v1) = T−1(~v ′) and
~v2 = I~v2 = T−1 ◦ T (~v2) = T−1(~v ′), which implies that ~v1 = ~v2, a
CONTRADICTION. Therefore if T is invertible then T is one-to-one.

From Definition 3.10, “Invertible Transformation,” if T is invertible then
for any ~v ′ ∈ V ′ we must have T−1(~v ′) = ~v for some ~v ∈ V . Therefore the
image of ~v is ~v ′ ∈ V ′ and T is onto.
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Theorem 3.8

Theorem 3.8 (continued 1)

Theorem 3.8. A linear transformation T : V → V ′ is invertible if and
only if it is one-to-one and onto V ′. When T−1 exists, it is linear.

Proof (continued). Finally, we need to show that if T is one-to-one and
onto then it is invertible. Suppose that T is one-to-one and onto V ′.
Since T is onto V ′, then for each ~v ′ ∈ V ′ we can find ~v ∈ V such that
T (~v) = ~v ′ and because T is one-to-one, this vector ~v ∈ V is unique (from
the definition of “one-to-one” and “onto”).

Let T−1 : V ′ → V be defined
by T−1(~v ′) = ~v . Then

(T ◦ T−1)(~v ′) = T (T−1(~v ′)) = T (~v) = ~v ′

and
(T−1 ◦ T )(~v) = T−1(T (~v)) = T−1(~v ′) = ~v ,

and so T ◦T−1 is the identity map on V ′ and T−1 ◦T is the identity map
on V .
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Theorem 3.8

Theorem 3.8 (continued 2)

Theorem 3.8. A linear transformation T : V → V ′ is invertible if and
only if it is one-to-one and onto V ′. When T−1 exists, it is linear.

Proof (continued). Now we need only show that T−1 is linear. Suppose
T (~v1) = ~v ′1 and T (~v2) = ~v ′2; that is, ~v1 = T−1(~v ′1) and ~v2 = T−1(~v ′2).

Then

T−1(~v ′1 + ~v ′2) = T−1(T (~v1) + T (~v2))

= T−1(T (~v1 + ~v2)) since T is linear

= (T−1 ◦ T )(~v1 + ~v2) = I(~v1 + ~v2) = ~v1 + ~v2

= T−1(~v ′1) + T−1(~v ′2).

Also (since T is linear)

T−1(r~v ′1) = T−1(rT (~v1)) = T−1(T (r~v1)) = I(r~v1) = r~v1 = rT−1(~v ′1).

Therefore T−1 is linear.
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Example 3.4.C

Example 3.4.C

Example 3.4.C. Let F be the vector space of all functions mapping R
into R (see Example 3.1.3). Let a be a nonzero scalar and define
T : F → F as T (f ) = af , as in Example 3.4.A. Determine if T is
invertible. If so, find its inverse.

Solution. Since ker(T ) = {0} by Example 3.4.B, then T is one-to-one by
Corollary 3.4.A. For any g ∈ F , for f = g/a we have
T (f ) = T (g/a) = a(g/a) = g and so T is onto.

So by Theorem 3.8, T is
invertible. In fact, T−1(f ) = f /a since
T−1(T (f )) = T−1(af ) = (af )/a = f = a(f /a) = T (f /a) = T (T−1(f ))
for all f ∈ F . �
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Theorem 3.10. Matrix Representations of Linear Transformations

Theorem 3.10

Theorem 3.10. Matrix Representations of Linear Transformations.
Let V and V ′ be finite-dimensional vector spaces and let
B = (~b1,~b2, . . . ,~bn) and B ′ = (~b′1,

~b′2, . . . ,
~b′m) be ordered bases for V and

V ′, respectively. Let T : V → V ′ be a linear transformation, and let
T : Rn → Rm be the linear transformation such that for each ~v ∈ V , we
have T (~vB) = T (~v)B′ . Then the standard matrix representation of T is
the matrix A whose jth column vector is T (~bj)B′ , and T (~v)B′ = A~vB for
all vectors ~v ∈ V .

Proof. Since B is a basis for V and B has n elements, then dim(V ) = n
and so by Theorem 3.3.A, “Fundamental Theorem of Finite Dimensional
Vector Spaces,” there is isomorphism α : V → Rn between V and Rn

where α(~v) = ~vB , as shown in the proof of Theorem 3.3.A.

We need to show for all ~v ∈ V that T (~v)B′ = A(~vB). We are given that
T (~vB) = T (~v)B′ , or equivalently

T (α(~v)) = T (~v)B′ . (∗)
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Theorem 3.10. Matrix Representations of Linear Transformations

Theorem 3.10 (continued)

Theorem 3.10. Matrix Representations of Linear Transformations.
Let V and V ′ be finite-dimensional vector spaces and let
B = (~b1,~b2, . . . ,~bn) and B ′ = (~b′1,

~b′2, . . . ,
~b′m) be ordered bases for V and

V ′, respectively. Let T : V → V ′ be a linear transformation, and let
T : Rn → Rm be the linear transformation such that for each ~v ∈ V , we
have T (~vB) = T (~v)B′ . Then the standard matrix representation of T is
the matrix A whose jth column vector is T (~bj)B′ , and T (~v)B′ = A~vB for
all vectors ~v ∈ V .

Proof (continued). . . .T (α(~v)) = T (~v)B′ . (∗)
So we need to show that T (~vB) = A(~vB). Since T : Rn → Rm, then by
Corollary 2.3.A, “Standard Matrix Representation of Linear
Transformations,” the standard matrix representation of T is the m × n
matrix whose jth column is T (êj).

By the definition of α, α(~bj) = êj , so

T (êj) = T (α(~bj)) = T (~bj)B′ by (∗). That is, the jth column of A is

T (~bj)B′ , as claimed.
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Page 227 Number 18

Page 227 Number 18

Page 227 Number 18. Let V and V ′ be vector spaces with ordered
bases B = (~b1,~b2,~b3) and B ′ = (~b′1,

~b′2,
~b′3,

~b′4), respectively. Let
T : V → V ′ be the linear transformation having matrix representation

A =


4 1 −1
2 2 0
0 6 1
2 1 3

 relative to B,B ′. Find T (~v) for ~v = 3~b3 − ~b1.

Solution. We use Theorem 3.10, “Matrix Representation of Linear
Transformations.” Notice that ~vB = [−1, 0, 3].

So

T (~v)B′ = A~vB =


4 1 −1
2 2 0
0 6 1
2 1 3


 −1

0
3

 =


−7
−2

3
7

 .

So T (~v) = −7~b′1 − 2~b′2 + 3~b′3 + 7~b′4. �
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Page 227 Number 22

Page 227 Number 22

Page 227 Number 22. Let T : P3 → P3 be defined by
T (p(x)) = xD(p(x)) = xp′(x) and let the ordered bases B and B ′ for P3

both be (x3, x2, x , 1).
(a) Find the matrix representation A of T relative to B,B ′.
(b) Working with the matrix A and coordinate vectors, find all solutions
p(x) of T (p(x)) = x3 − 3x2 + 4x .

Solution. (a) We use Theorem 3.10, “Matrix Representation of Linear
Transformations,” and see that the columns of A are T (~b1)B′ , T (~b2)B′ ,
T (~b3)B′ , T (~b4)B′ .

We find

T (~b1)B′ = T (x3)B′ = (x(3x2))B′ = (3x3)B′ = [3, 0, 0, 0]T

T (~b2)B′ = T (x2)B′ = (x(2x))B′ = (2x2)B′ = [0, 2, 0, 0]T

T (~b3)B′ = T (x)B′ = (x(1))B′ = (x)B′ = [0, 0, 1, 0]T

T (~b4)B′ = T (1)B′ = (x(0))B′ = (0)B′ = [0, 0, 0, 0]T .
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Transformations,” and see that the columns of A are T (~b1)B′ , T (~b2)B′ ,
T (~b3)B′ , T (~b4)B′ . We find
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Page 227 Number 22

Page 227 Number 22 (continued 1)

Solution. So A =


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

 .

(b) First (x3 − 3x2 + 4x)B′ = [1,−3, 4, 0]T . From Theorem 3.10,
T (p(x))B′ = A~vB , so we want ~vB ∈ R4 such that
A~vB = T (p(x))B′ = [1,−3, 4, 0]T .

Let ~vB = [v1, v2, v3, v4]
T , and consider

the augmented matrix for A~vB = [1,−3, 4, 0]T :


3 0 0 0 1
0 2 0 0 −3
0 0 1 0 4
0 0 0 0 0

 .

We see that this is already in row reduced echelon form and so we need
3v1 = 1
2v2 = −3
v3 = 4
0 = 0

or

v1 = 1/3
v2 = −3/2
v3 = 4
v4 = v4

.
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Page 227 Number 22

Page 227 Number 22 (continued 2)

Page 227 Number 22. Let T : P3 → P3 be defined by
T (p(x)) = xD(p(x)) = xp′(x) and let the ordered bases B and B ′ for P3

both be (x3, x2, x , 1).
(a) Find the matrix representation A of T relative to B,B ′.
(b) Working with the matrix A and coordinate vectors, find all solutions
p(x) of T (p(x)) = x3 − 3x2 + 4x .

Solution. So we take k = v4 as a free variable. Then
~vB = [1/3,−3/2, 4, k] for any k ∈ R. So ~v ∈ P3 is of the form

1

3
x3 − 3

2
x2 + 4x + k for k ∈ R. �
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Page 227 Number 22 (continued 2)

Page 227 Number 22. Let T : P3 → P3 be defined by
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Page 227 Number 24

Page 227 Number 24. Let T : P3 → P2 be defined by
T (p(x)) = p′(x)|2x+1 = p′(2x + 1), where p′(x) = D(p(x)), and let
B = (~b1,~b2,~b3,~b4) = (x3, x2, x , 1) and B ′ = (x2, x , 1) = (~b′1,

~b′2,
~b′3).

(a) Find the matrix representation A of T relative to B,B ′.
(b) Use A from part (a) to compute T (4x3 − 5x2 + 4x − 7).

Solution. (a) Again we use Theorem 3.10 and find
T (~b1)B′ ,T (~b2)B′ ,T (~b3)B′ ,T (~b4)B′ . First we need the derivatives of
~b1,~b2,~b3,~b4:

d
dx [~b1] = d

dx [x3] = 3x2, d
dx [~b2] = d

dx [x2] = 2x ,
d
dx [~b3] = d

dx [x ] = 1, and d
dx [~b4] = d

dx [1] = 0.

Since T first takes a
derivative and then evaluates it at 2x + 1, we have
T (x3) = 3(2x + 1)2 = 12x2 + 12x + 3, T (x2) = 2(2x + 1) = 4x + 2,
T (x) = 1, and T (1) = 0, and so
T (~b1)B′ = T (x3)B′ = (12x2 + 12x + 3)B′ = [12, 12, 3]T ,
T (~b2)B′ = T (x2)B′ = (4x + 2)B′ = [0, 4, 2]T ,
T (~b3)B′ = T (x)B′ = (1)B′ = [0, 0, 1]T , and
T (~b4)B′ = T (1)B′ = 0B′ = [0, 0, 0]T .
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Page 227 Number 24

Page 227 Number 24 (continued 1)

Solution. So the columns of A are T (~b1),T (~b2),T (~b3),T (~b4):

A =

 12 0 0 0
12 4 0 0
3 2 1 0

 . �

(b) We know from Theorem 3.10, “Matrix Representations of Linear
Transformations,” that T (4x3 − 5x2 + 4x − 7)B′ = A~vB . Now
~vB = [4,−5, 4,−7] so

T (4x3 − 5x2 + 4x − 7)B′ =

 12 0 0 0
12 4 0 0
3 2 1 0




4
−5

4
−7

 =

 48
28
6


and hence
T (4x3 − 5x2 + 4x − 7) = (48)x2 + (28)x + (6)1 = 48x2 + 28x + 6.
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Page 227 Number 24

Page 227 Number 24 (continued 2)

Page 227 Number 24. Let T : P3 → P2 be defined by
T (p(x)) = p′(x)|2x+1 = p′(2x + 1), where p′(x) = D(p(x)), and let
B = (~b1,~b2,~b3,~b4) = (x3 + x2, x , 1) and B ′ = (x2, x , 1) = (~b′1,

~b′2,
~b′3).

(b) Use A from part (a) to compute T (4x3 − 5x2 + 4x − 7).

Solution. Notice that d
dx [4x3 − 5x2 + 4x − 7] = 12x2 − 10x + 4 and

evaluating this at 2x + 1 gives

12(2x + 1)2 − 10(2x + 1) + 4 = 12(4x2 + 4x + 1)− 10(2x + 1) + 4

= 48x2 + 48x + 12− 20x − 10 + 4 = 48x2 + 28x + 6,

as expected. �
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Page 228 Number 28

Page 228 Number 28

Page 228 Number 28. Let W = sp(e2x , e4x , e8x) be a subspace of F
(see Example 3.1.3) and let B = B ′ = (e2x , e4x , e8x).
(a) Find the matrix representation A relative to B,B ′ of the linear
transformation T : W → W defined by T (f ) =

∫ x
−∞ f (t) dt.

(b) Find A−1 where A is the matrix of part (a) and use it to find
T−1(r1e

2x + r2e
4x + r3e

8x).

Solution. (a) We use Theorem 3.10 and find T (~b1)B′ ,T (~b2)B′ ,T (~b3)B′ .
We have

T (~b1) = T (e2x) =

∫ x

−∞
e2t dt = lim

a→−∞

(∫ x

a
e2t dt

)
= lim

a→−∞

((
1

2
e2t

)∣∣∣∣x
a

)

= lim
a→−∞

(
1

2
e2x − 1

2
e2a

)
=

1

2
e2x − 0 =

1

2
e2x
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Page 228 Number 28

Page 228 Number 28 (continued 1)

Solution (continued).

T (~b2) = T (e4x) =

∫ x

−∞
e4t dt = lim

a→−∞

(∫ x

a
e4t dt

)
= lim

a→−∞

((
1

4
e4t

)∣∣∣∣x
a

)

= lim
a→−∞

(
1

4
e4x − 1

4
e4a

)
=

1

4
e4x − 0 =

1

4
e4x

T (~b3) = T (e8x) =

∫ x

−∞
e8t dt = lim

a→−∞

(∫ x

a
e8t dt

)
= lim

a→−∞

((
1

8
et

)∣∣∣∣x
a

)
= lim

a→−∞

(
1

8
e8x − 1

8
e8a

)
=

1

8
e8x − 0 =

1

8
e8x .

So T (~b1)B′ = [1/2, 0, 0], T (~b2)B′ = [0, 1/4, 0], T (~b3)B′ = [0, 0, 1/8]. So

A =

 1/2 0 0
0 1/4 0
0 0 1/8

.
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Page 228 Number 28

Page 228 Number 28 (continued 2)

Page 228 Number 28. Let W = sp(e2x , e4x , e8x) a subspace of F (see
Example 3.1.3) and let B = B ′ = (e2x , e4x , e8x).
(b) Find A−1 where A is the matrix of part (a) and use it to find
T−1(r1e

2x + r2e
4x + r3e

8x).

Solution (continued). (b) It is easy to see that A−1 =

 2 0 0
0 4 0
0 0 8

. By

Theorem 3.4.B, A−1 is the matrix representation of T−1 relative to B ′,B.
So by Theorem 3.10, “Matrix Representations of Linear Transformations,”
we have that T−1(~v)B = A−1~vB′ and so

T−1(r1e
2x+r2e

4x+r3e
8x)B = A−1((r1e

2x+r2e
4x+r3e

8x)′B) = A−1[r1, r2, r3]
T

=

 2 0 0
0 4 0
0 0 8

 r1
r2
r3

 =

 2r1
4r2
8r3

 .

() Linear Algebra October 24, 2018 28 / 33



Page 228 Number 28

Page 228 Number 28 (continued 2)
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Page 228 Number 28

Page 228 Number 28 (continued 3)

Page 228 Number 28. Let W = sp(e2x , e4x , e8x) a subspace of F (see
Example 3.1.3) and let B = B ′ = (e2x , e4x , e8x).
(b) Find A−1 where A is the matrix of part (a) and use it to find
T−1(r1e

2x + r2e
4x + r3e

8x).

Solution (continued). . . .

T−1(r1e
2x + r2e

4x + r3e
8x)B =

 2r1
4r2
8r3

 .

So translating this using basis B we have

T−1(r1e
2x + r2e

4x + r3e
8x) = 2r1e

2x + 4r2e
4x + 8r3e

8x . �
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Page 229 Number 44

Page 229 Number 44

Page 229 Number 44. Denote the set of all linear transformations from
V to V ′ as L(V ,V ′). Let T ∈ L(V ,V ′) and let r ∈ R be a scalar. Define
rT : V → V ′ as (rT )~v = r(T (~v)) for each ~v ∈ V . Prove that
rT ∈ L(V ,V ′).

Solution. Let ~v1, ~v2 ∈ V and s, t ∈ R be scalars.

Then

(rT )(s~v1 + t~v2) = r(T (s~v1 + t~v2)) by the definition of rT

= r(sT (~v1) + tT (~v2)) by Note 3.4.A since T is linear

= r(sT (~v1)) + r(tT (~v2) by S1

= (rs)T (~v1) + (rt)T (~v2) by S3

= (sr)T (~v1) + (tr)T (~v2) since multiplication

is commutative in R
= s(rT (~v1)) + t(rT (~v2)) by S3

= s(rT )(~v1) + t(rT )(~v2) by definition of rT .
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= r(sT (~v1) + tT (~v2)) by Note 3.4.A since T is linear

= r(sT (~v1)) + r(tT (~v2) by S1

= (rs)T (~v1) + (rt)T (~v2) by S3

= (sr)T (~v1) + (tr)T (~v2) since multiplication

is commutative in R
= s(rT (~v1)) + t(rT (~v2)) by S3

= s(rT )(~v1) + t(rT )(~v2) by definition of rT .
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Page 229 Number 44 (continued)

Page 229 Number 44. Denote the set of all linear transformations from
V to V ′ as L(V ,V ′). Let T ∈ L(V ,V ′) and let r ∈ R be a scalar. Define
rT : V → V ′ as (rT )~v = r(T (~v)) for each ~v ∈ V . Prove that
rT ∈ L(V ,V ′).

Solution (continued). So rT is a linear transformation by Note 3.4.A. �

Note. In Exercise 43 it is shown for T1,T2 ∈ L(V ,V ′) that
T1 + T2 ∈ L(V ,V ′) where we define
(T1 + T2)(~v1 + ~v2) = T1(~v1) + T2(~v2). So L(V ,V ′) is closed under vector
addition and scalar multiplication. Therefore, by Theorem 3.2, “Test for a
Subspace,” L(V ,V ′) is a subspace of the vector space of all functions
mapping V into V ′ (see “Summary Item 5 on page 188).
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Page 226 Number 12

Page 226 Number 12. Let D∞ be the vector space of functions mapping
R into R that have derivatives of all orders. It can be shown that the
kernel of a linear transformation T : D∞ → D∞ of the form
T (f ) = anf

(n) + an−1f
(n−1) + · · ·+ a1f

′ + a0f , where an 6= 0, is an
n-dimensional subspace of D∞. Use this information to find the solution
set in D∞ of the differential equation y ′ − y = x . HINT: a particular
solution to the differential equation is y = −x − 1.

Solution. First, we consider the “homogeneous” linear differential
equation y ′ − y = 0; that is, y ′ = y . We know from Calculus that if
y ′ = y then y = kex for some k ∈ R (y ′ = y is a separable differential
equation and can be solved by separation of variables and integration).
This is the general solution to y ′ − y = 0 and the set of all such solutions
form a subspace of the vector space F of all real valued functions defined
on R (see exercise 3.2.40).
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Page 226 Number 12 (continued)

Page 226 Number 12. Let D∞ be the vector space of functions mapping
R into R that have derivatives of all orders. It can be shown that the
kernel of a linear transformation T : D∞ → D∞ of the form
T (f ) = anf

(n) + an−1f
(n−1) + · · ·+ a1f

′ + a0f , where an 6= 0, us an
n-dimensional subspace of D∞. Use this information to find the solution
set in D∞ of the differential equation y ′ − y = x . HINT: a particular
solution to the differential equation is y = −x − 1.

Solution (continued). By the solution to Exercise 3.2.41, all solutions to
y ′ − y = x are of the form p(x) + h(x) where p(x) is a particular solution
to y ′ − y = x and h(x) is some solution to the homogeneous differential
equation y ′ − y = 0. We are given that a particular solution to y ′ − y = x
is y = −x − 1. So the solution set to the differential equation y ′ − y = x

is {−x − 1 + kex | k ∈ R}. �
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