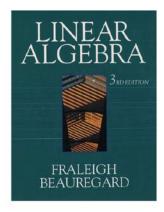
Linear Algebra

Chapter 3. Vector Spaces

Section 3.5. Inner-Product Spaces—Proofs of Theorems



Linear Algeb

March 14, 2018 1 / 14

Page 236 Number 2

Page 236 Number 2 (continued)

Page 236 Number 2. For $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$, define the quantity $\langle [x_1, x_2], [y_1, y_2] \rangle = x_1x_2 + y_1y_2$. Does this satisfy the conditions for an inner product on \mathbb{R}^2 ?

Solution (continued). We pick particular numbers (inspired by these equations) to show that P2 does not hold. Consider $[z_1, z_2] = [0, 0]$, $[x_1, x_2] = [1, 1]$, and $[y_1, y_2] = [2, 2]$. Then

$$\langle [0,0], [1,1] + [2,2] \rangle = \langle [0,0], [3,3] \rangle = (0)(0) + (3)(3) = 9$$

and

$$\langle [0,0], [1,1] \rangle + \langle [0,0], [2,2] \rangle = ((0)(0) + (1)(1)) + ((0)(0) + (2)(2))$$

= 1 + 4 = 5 \neq 9 = \langle [0,0], [1,1] + [2,2] \rangle.

So P2 does not hold and this is not an inner product in \mathbb{R}^2 . \square

Page 236 Number 2

Page 236 Number 2

Page 236 Number 2. For $[x_1, x_2], [y_1, y_2] \in \mathbb{R}^2$, define the quantity $\langle [x_1, x_2], [y_1, y_2] \rangle = x_1x_2 + y_1y_2$. Does this satisfy the conditions for an inner product on \mathbb{R}^2 ?

Solution. We test the parts of Definition 3.12, "Inner-Product Space." **P1.**

$$\langle [y_1, y_2], [x_1, x_2] \rangle = y_1 y_2 + x_1 x_2 = x_1 x_2 + y_1 y_2 = \langle [x_1, x_2], [y_1, y_2] \rangle.$$

So P1 is satisfied.

P2. Let $[z_1, z_2] \in \mathbb{R}^2$. Then

$$\langle [z_1, z_2], [x_1, x_2] + [y_1, y_2] \rangle = \langle [z_1, z_2], [x_1 + y_1, x_2 + y_2] \rangle$$

= $z_1 z_2 + (x_1 + y_1)(x_2 + y_2) = z_1 z_2 + (x_1 x_2 + y_1 x_2 + x_1 y_2 + y_1 y_2)$

and

$$\langle [z_1, z_2], [x_1, x_2] \rangle + \langle [z_1, z_2], [y_1, y_2] \rangle = (z_1 z_2 + x_1 x_2) + (z_1 z_2 + y_1 y_2).$$

So these don't appear to be the same.

Linear Algebra Walch 14, 2010 37 14

Page 236 Number 1

Page 236 Number 10

Page 236 Number 10. Let $C_{a,b}$ be the vector space of all continuous real valued functions with domain $a \le x \le b$ (see Note 3.1.A for a related vector space). Define $\langle f, g \rangle = \int_a^b f(z)g(x) \, dx$. Prove that $\langle \cdot, \cdot \rangle$ is an inner product on $C_{a,b}$.

Proof. We show that $\langle \cdot, \cdot \rangle$ satisfies P1–P4 of Definition 3.12, "Inner-Product Space." Let $f, g, h \in C_{a,b}$ and $r \in \mathbb{R}$. Then

P1.
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx = \int_a^b g(x)f(x) dx = \langle g,f\rangle.$$

P2.
$$\langle f, g + h \rangle = \int_{a}^{b} f(x)(g(x) + h(x)) dx = \int_{a}^{b} (f(x)g(x) + f(x)h(x)) dx = \int_{a}^{b} f(x)g(x) dx + \int_{a}^{b} f(x)h(x) dx = \langle f, g \rangle + \langle f, h \rangle.$$

P3.
$$r\langle f,g\rangle = r\int_a^b f(x)g(x) dx = \int_a^b rf(x)g(x) dx$$

$$= \begin{cases} \int_a^b (rf(x))g(x) dx = \langle rf, g \rangle \\ \int_a^b f(x)(rg(x)) dx = \langle f, rg \rangle. \end{cases}$$

Linear Algebra March 14, 2018 4 / 14 () Linear Algebra March 14, 2018 5 / 14

Page 236 Number 10 (continued)

Page 236 Number 10. Let $C_{a,b}$ be the vector space of all continuous real valued functions with domain $a \le x \le b$ (see Note 3.1.A for a related vector space). Define $\langle f, g \rangle = \int_a^b f(z)g(x) dx$. Prove that $\langle \cdot, \cdot \rangle$ is an inner product on $C_{a,b}$.

Proof (continued).

P4. $\langle f, f \rangle = \int_{a}^{b} f(x) f(x) dx = \int_{a}^{b} (f(x))^{2} dx \ge 0$, and $\langle f, f \rangle = \int_a^b (f(x))^2 dx = 0$ if and only if $(f(x))^2 = 0$ for all $a \le x \le b$, that is if and only if f(x) = 0 for $a \le x \le b$ (in $C_{a,b}$ this means that f is the zero vector).

So $\langle \cdot, \cdot \rangle$ satisfies P1-P4 and hence is an inner product on $C_{a,b}$.

Linear Algebra

March 14, 2018

Theorem 3.11 (continued)

Proof (continued). ...

$$r^2 \langle \vec{v}, \vec{v} \rangle + 2rs \langle \vec{v}, \vec{w} \rangle + s^2 \langle \vec{w}, \vec{w} \rangle \ge 0$$

with $r = \langle \vec{w}, \vec{w} \rangle$ and $s = -\langle \vec{v}, \vec{w} \rangle$ we have

$$\langle \vec{w}, \vec{w} \rangle^2 \langle \vec{v}, \vec{v} \rangle - 2 \langle \vec{w}, \vec{w} \rangle \langle \vec{v}, \vec{w} \rangle^2 + \langle \vec{v}, \vec{w} \rangle^2 \langle \vec{w}, \vec{w} \rangle$$

 $= \langle \vec{w}, \vec{w} \rangle^2 \langle \vec{v}, \vec{v} \rangle - \langle \vec{w}, \vec{w} \rangle \langle \vec{v}, \vec{w} \rangle^2 = \langle \vec{w}, \vec{w} \rangle [\langle \vec{w}, \vec{w} \rangle \langle \vec{v}, \vec{v} \rangle - \langle \vec{v}, \vec{w} \rangle^2] > 0.$ (13) If $\langle \vec{w}, \vec{w} \rangle = 0$ then $\vec{w} = \vec{0}$ by Theorem 3.12 Part (P4), and the Schwarz Inequality is proven (since it reduces to $0 \ge 0$). If $\|\vec{w}\|^2 = \langle \vec{w}, \vec{w} \rangle \ne 0$, then by the above inequality the other factor of inequality (13) must also be nonnegative:

$$\langle \vec{w}, \vec{w} \rangle \langle \vec{v}, \vec{v} \rangle - \langle \vec{v}, \vec{w} \rangle^2 \ge 0.$$

Therefore

$$\langle \vec{v}, \vec{w} \rangle^2 \le \langle \vec{v}, \vec{v} \rangle \langle \vec{w}, \vec{w} \rangle = \|\vec{v}\|^2 \|\vec{w}\|^2.$$

Taking square roots, we get the Schwarz Inequality.

Theorem 3.11

Theorem 3.11. Schwarz Inequality.

Let V be an inner-product space, and let $\vec{v}, \vec{w} \in V$. Then $\langle \vec{v}, \vec{w} \rangle \leq ||\vec{v}|| ||\vec{w}||.$

Proof. Let $r, s \in \mathbb{R}$. Then we have:

$$\begin{split} \|r\vec{v}+s\vec{w}\|^2 &= \langle r\vec{v}+s\vec{w},r\vec{v}+s\vec{w}\rangle \text{ by Definition 3.13, "norm"} \\ &= \langle r\vec{v}+s\vec{w},r\vec{v}\rangle + \langle r\vec{v}+s\vec{w},s\vec{w}\rangle \text{ by P2} \\ &= \langle r\vec{v},r\vec{v}+s\vec{w}\rangle + \langle s\vec{w},r\vec{v}+s\vec{w}\rangle \text{ by P1} \\ &= \langle r\vec{v},r\vec{v}\rangle + \langle r\vec{v},s\vec{w}\rangle + \langle s\vec{w},r\vec{v}\rangle + \langle s\vec{w},s\vec{w}\rangle \text{ by P2} \\ &= r^2\langle \vec{v},\vec{v}\rangle + 2rs\langle \vec{v},\vec{w}\rangle + s^2\langle \vec{w},\vec{w}\rangle \text{ by P1 and P3} \\ &\geq 0 \text{ by P4.} \end{split}$$

Since this equation holds for all $r, s \in \mathbb{R}$, we are free to choose particular values of r and s. We choose $r = \langle \vec{w}, \vec{w} \rangle$ and $s = -\langle \vec{v}, \vec{w} \rangle$.

Linear Algebra

March 14, 2018 7 / 14

Page 236 Number 12

Page 236 Number 12. Show that $\sin x$ and $\cos x$ are orthogonal functions in the vector space $C_{0,\pi}$ of continuous functions with domain $0 \le x \le \pi$ where the inner product is defined as $\langle f, g \rangle = \int_0^{\pi} f(x)g(x) dx$ (see Exercise 10).

Solution. We have (by *u*-substitution with $u = \sin x$ and $du = \cos x$):

$$\langle \cos x, \sin x \rangle = \int_0^{\pi} \cos x \sin x \, dx$$

$$= \frac{1}{2}\sin^2 x \bigg|_0^{\pi} = \frac{1}{2}\sin^2 \pi - \frac{1}{2}\sin^2 0 = 0 - 0 = 0.$$

So by the definition of orthogonal in an inner-product space, cos x and $\sin x$ are orthogonal. \square

Page 237 Number 18

Page 237 Number 18. For vectors \vec{u} , \vec{v} , and \vec{w} in an inner-product space and for scalars r and s, prove that if \vec{w} is perpendicular to both \vec{u} and \vec{v} then \vec{w} is perpendicular to $r\vec{u} + s\vec{v}$.

Proof. Since \vec{w} is perpendicular to both \vec{u} and \vec{v} then by the definition of perpendicular (or orthogonal), $\langle \vec{w}, \vec{u} \rangle = \langle \vec{w}, \vec{v} \rangle = 0$. So

$$\langle \vec{w}, r\vec{u} + s\vec{v} \rangle = \langle \vec{w}, r\vec{u} \rangle + \langle \vec{w}, s\vec{v} \rangle \text{ by P2}$$

= $r\langle \vec{w}, \vec{u} \rangle + s\langle \vec{w}, \vec{v} \rangle \text{ by P3}$
= $r(0) + s(0) = 0$.

So \vec{w} is perpendicular to $r\vec{u} + s\vec{v}$, as claimed.

March 14, 2018 10 / 14

Page 237 Number 2

Page 237 Number 20 (continued)

Page 237 Number 20. Let V be an inner-product space and let S be a subset of V. Prove that

$$S^{\perp} = \{ \vec{v} \in V \mid \vec{v} \text{ is orthogonal to each vector in } S \}$$

is a subspace of V. S^{\perp} is called the *perp space* of set S.

Proof (continued). Next,

$$\langle r\vec{v}, \vec{s} \rangle = r \langle \vec{v}, \vec{s} \rangle$$
 by P3
= $r(0) = 0$

for every $\vec{s} \in S$ and hence $r\vec{v} \in S^{\perp}$ and S^{\perp} is closed under scalar multiplication. Therefore Theorem 3.2, "Test for Subspace," implies that S^{\perp} is a subspace of V.

Page 237 Number 20

Page 237 Number 20

Page 237 Number 20. Let V be an inner-product space and let S be a subset of V. Prove that

$$S^{\perp} = \{ \vec{v} \in V \mid \vec{v} \text{ is orthogonal to each vector in } S \}$$

is a subspace of V. S^{\perp} is called the *perp space* of set S.

Proof. We apply Theorem 3.2, "Test for a Subspace," and test S^{\perp} for closure under vector addition and closure under scalar multiplication. Let $\vec{v}, \vec{w} \in S^{\perp}$ and let $r \in \mathbb{R}$ be a scalar. Then by the definition of S^{\perp} , for every $\vec{s} \in S$ we have $\langle \vec{v}, \vec{s} \rangle = 0$ and $\langle \vec{w}, \vec{s} \rangle = 0$. Now

$$\langle \vec{v} + \vec{w}, \vec{s} \rangle = \langle \vec{s}, \vec{v} + \vec{w} \rangle$$
 by P1
= $\langle \vec{s}, \vec{v} \rangle + \langle \vec{s}, \vec{w} \rangle$ by P2
= $0 + 0 = 0$

Linear Algebra

March 14, 2018 11 / 14

for every $\vec{s} \in S$ and hence $\vec{v} + \vec{w} \in S^\perp$ and S^\perp is closed under vector addition.

Page 227 Number 5

Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any \vec{v} , \vec{w} in an inner-product space V, $\|\vec{v} - \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$.

Proof. Let $\vec{v}, \vec{w} \in V$. Then $-\vec{w} \in V$ and so we consider the vector sum $\vec{v} + (-\vec{w})$. The Triangle Inequality implies that $\|\vec{v} + (-\vec{w})\| \le \|\vec{v}\| + \|-\vec{w}\|$. Now

$$\|-\vec{w}\| = \sqrt{\langle -\vec{w}, -\vec{w} \rangle}$$
 by Definition 3.13,
Magnitude or Norm of a Vector"
$$= \sqrt{(-1)\langle \vec{w}, -\vec{w} \rangle} = \sqrt{(-1)(-1)\langle \vec{w}, \vec{w} \rangle} \text{ by P3}$$
$$= \sqrt{\langle \vec{w}, \vec{w} \rangle} = \|\vec{w}\|.$$

So
$$\|\vec{v} - \vec{w}\| = \|\vec{v} + (-\vec{w})\| \le \|\vec{v}\| + \|-\vec{w}\| = \|\vec{v}\| + \|\vec{w}\|$$
, as claimed. \square

Linear Algebra March 14, 2018 12 / 14 () Linear Algebra March 14, 2018 13 / 14

Page 237 Number 26

Page 237 Number 26. Let \vec{v} and \vec{w} be vectors in an inner-product space V. Show that $\|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}$ is perpendicular to $\|\vec{v}\|\vec{w} - \|\vec{w}\|\vec{v}$.

Solution. Consider

$$\langle \|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}, \|\vec{v}\|\vec{w} - \|\vec{w}\|\vec{v}\rangle$$

$$= \langle \|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}, \|\vec{v}\|\vec{w}\rangle + \langle \|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}, -\|\vec{w}\|\vec{v}\rangle \text{ by P2}$$

$$= \langle \|\vec{v}\|\vec{w}, \|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}\rangle + \langle -\|\vec{w}\|\vec{v}, \|\vec{v}\|\vec{w} + \|\vec{w}\|\vec{v}\rangle \text{ by P1}$$

$$= \langle \|\vec{v}\|\vec{w}, \|\vec{v}\|\vec{w}\rangle + \langle \|\vec{v}\|\vec{w}, \|\vec{w}\|\vec{v}\rangle + \langle -\|\vec{w}\|\vec{v}, \|\vec{v}\|\vec{w}\rangle + \langle -\|\vec{w}\|\vec{v}, \|\vec{w}\|\vec{v}\rangle \text{ by P2}$$

$$= \|\vec{v}\|^2 \langle \vec{w}, \vec{w} \rangle + \|\vec{v}\| \|\vec{w}\| \langle \vec{w}, \vec{v} \rangle - \|\vec{v}\| \|\vec{w}\| \langle \vec{v}, \vec{w} \rangle - \|\vec{w}\|^2 \langle \vec{v}, \vec{v} \rangle \text{ by P3}$$

$$= \|\vec{v}\|^2 \|\vec{w}\|^2 - \|\vec{w}\|^2 \|\vec{v}\|^2$$
 by Definition 3.13,

"Magnitude and Norm of a Vector"

= 0.

Since the inner product is 0, the vectors are perpendicular. \Box

Linear Algebra

March 14, 2018 14 / 14