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Chapter 3. Vector Spaces
Section 3.5. Inner-Product Spaces—Proofs of Theorems
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L Page 236 Number 2 |
Page 236 Number 2 (continued)

Page 236 Number 2. For [x1, x2], [y1, 2] € R?, define the quantity

([x1, %], [y1, y2]) = x1%2 + y1y2. Does this satisfy the conditions for an
inner product on R2?

Solution (continued). We pick particular numbers (inspired by these
equations) to show that P2 does not hold. Consider [z, 2] = [0, 0],
[x1,x] = [1,1], and [y1,y2] = [2,2]. Then

([0,0], [1,1] + [2,2]) = ([0,0], [3,3]) = (0)(0) + (3)(3) = 9
and
([0,0], [1,1]) + ([0,0], [2,2]) = ((0)(0) + (1)(1)) + ((0)(0) + (2)(2))

—1+4=5+£9=([0,0],[1,1] +[2,2]).

So P2 does not hold and this is | not an inner product in R?. |

I Linear Al March 14, 2018

Page 236 Number 2

Page 236 Number 2. For [x1, x2], [y1, y2] € R?, define the quantity

([x1,x2], [y1, y2]) = x1% + y1y2. Does this satisfy the conditions for an
inner product on R??

Solution. We test the parts of Definition 3.12, “Inner-Product Space.”
P1.

(y1, y2l, [x1, x2]) = y1ye + xax2 = x1x0 + y1y2 = ([x1, %], [v1, y2])-
So P1 is satisfied.
P2. Let [z1,20] € R2. Then
([21, 22), [x1, %2] + [y1, y2l) = ([21, 22], [x1 + y1. %2 + y2])
=zzz+ (x1+ )0+ y») = 2122 + (ax2 + yixo + x1y2 + y1y2)
and
([z1, 22], [x1, %2]) + ([21, 2], V1, y2l) = (2122 + x132) + (2122 + y1y2).

So these don't appear to be the same.
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Page 236 Number 10

Page 236 Number 10. Let C, 4 be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related
vector space). Define (f,g) = ‘fab f(z)g(x) dx. Prove that (-,-) is an inner
product on G, p.

Proof. We show that (-, -) satisfies P1-P4 of Definition 3.12,
“Inner-Product Space.” Let f,g,h€ C,p and r € R. Then

P1. (f.g) = [, f(x)g(x) dx = [, g(x)f(x) dx = (g.f).

P2. (f.g+ h) = [} F(x)(g(x) + h(x)) dx = [(F(x)g(x) + f(x)h(x)) dx
= [P (x)g(x) dx + [? F(x)h(x) dx = (f,g) + (f, h).

P3. r(f,g) = r_];b f(x)g(x) dx = jab rf(x)g(x) dx

_ { fab(rf(x))g(x) dx = (rf,g)
7 F(x)(rg(x)) dx = (f, rg).
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Page 236 Number 10 (continued)

16 Number 10

Page 236 Number 10. Let C,j be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related
vector space). Define (f, g) = fab f(z)g(x) dx. Prove that (-,-) is an inner
product on C, .

Proof (continued).

PA. (f.f) = [ f(x)f(x)dx = [2(f(x))? dx > 0, and

(f, f) = _]:’()"(x))2 dx = 0 if and only if (f(x))? = 0 for all a < x < b, that
is if and only if f(x) =0 for a < x < b (in C,p this means that f is the
zero vector).

So (,-) satisfies P1-P4 and hence is an inner product on C, . O
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Theorem 3.11 (continued)

Proof (continued). ...

with r = (W, w) and

= (w, W)V, V) —(w, w)(V, w)? = (%, W) [(w, W)(V, V) —(V,W)?] > 0. (13)
If (W, W) = 0 then w = 0 by Theorem 3.12 Part (P4), and the Schwarz
Inequality is proven (since it reduces to 0 > 0). If ||w||? = (W, w) # 0,
then by the above inequality the other factor of inequality (13) must also
be nonnegative:
(W, W)(V, V) — (V,w)% > 0.

Therefore

(v, w)? < (v, 9)(w, w) = ||7]]%||w]|*.

Taking square roots, we get the Schwarz Inequality. O
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Theorem 3.11

Theorem 3.11. Schwarz Inequality.
Let V be an inner-product space, and let v, w € V. Then
(v, w) < |[v]|||w]|.

Proof. Let r,s € R. Then we have:

|rv +sw||> = (rv+ sw,rv+ sw) by Definition 3.13, “norm”
(rv + sw, rv) + (rv + sw, sw) by P2

(rv,rv +sw) + (sw, rv + sw) by P1

(rv, rv) + (rv,sw) + (sw, rv) + (sw,sw) by P2
r?(V, V) + 2rs(V, w) + s*(w, w) by P1 and P3

> 0 by P4.
Since this equation holds for all r.s € R, we are free to choose particular
values of r and s. We choose r = (w, w) and s = —(V, w).
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236 Number 12

Page 236 Number 12

Page 236 Number 12. Show that sin x and cos x are orthogonal
functions in the vector space Cy , of continuous functions with domain

0 < x < m where the inner product is defined as (f,g) = [; f(x)g(x) dx
(see Exercise 10).

Solution. We have (by u-substitution with u = sinx and du = cos x):
™
{cos x,sinx) = / cos x sin x dx
0

o1 1
= Zsin =—sin“m—=sin“"0=0—-0=0.
5 I X . 5 I m 5 I
So by the definition of orthogonal in an inner-product space, cos x and
sin x are orthogonal. [J

1.5
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Page 237 Number 18

Page 237 Number 18. For vectors 4, Vv, and w in an inner-product space
and for scalars r and s, prove that if w is perpendicular to both & and v
then w is perpendicular to ri + sv.

Proof. Since w is perpendicular to both i and v then by the definition of
perpendicular (or orthogonal), (w, u) = (w, V) = 0. So

(W, rid+sv) = (w,ri)+ (w,svV) by P2
= r(w,u)+s(w,V) by P3
= r(0) +s(0) =0.
So w is perpendicular to rid + sv, as claimed. O
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Page 237 Number 20 (contmued)

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| V is orthogonal to each vector in S}

is a subspace of V. S+ is called the perp space of set S.

Proof (continued). Next,

(rv,5) = r(v,s) by P3
= r0)=20

for every § € S and hence rvV € S+ and S+ is closed under scalar
multiplication. Therefore Theorem 3.2, “Test for Subspace,” implies that
St is a subspace of V. O
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Page 237 Number 20

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}
is a subspace of V. S+ is called the perp space of set S.

Proof. We apply Theorem 3.2, “Test for a Subspace,” and test S+ for
closure under vector addition and closure under scalar multiplication. Let
V,w e St and let r € R be a scalar. Then by the definition of S+, for
every 5§ € S we have (v,5) =0 and (w,5) = 0. Now

(V+w,5) = (5V+w)byPl
= (5,7)+ (5, W) by P2
= 040=0

for every 5 € S and hence vV + w € S* and S* is closed under vector
addition.
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237 Number 24

Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any
v, w in an inner-product space V, ||V — w|| < ||V] + ||[w]|.

Proof. Let V., w € V. Then —w € V and so we consider the vector sum
vV + (—w). The Triangle Inequality implies that
[V + (—=w)|[ < [[V[| + || — w]. Now

| —w|| = +/(—w,—w) by Definition 3.13,

Magnitude or Norm of a Vector”

= V(=1)(W,-w) = V(-1)(-1)(%, %) by P3

= V{(w,w) = ||w].
So [[v—w|=[v+(—=w)l| <[Vl + ][ —w] =V O
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[ Page 237 Number 26 |
Page 237 Number 26

Page 237 Number 26. Let vV and w be vectors in an inner-product space
V. Show that ||V||w + ||w| V is perpendicular to ||V|w — ||w| V.

Solution. Consider

(Ivllw + ([w][v, [V]|w — [[w]|V)

(IVl[w + [[w||v, [[v]w) + ([V]w + [|w][v, —[|w|v) by P2
(Ivllw, [[vlw + [[w][v) + (= |[w|[V, ||V]|w + [|w]|v) by P1
(vllw, [Iv]iw) + ([[v][w, [|w][v) + (=[lw]lv. ||v]|w)
+{=|w|lv.,||w[|v) by P2
V12 (W, &) + 7wl (%, V) — |Z]|[|w]| (7, %) — |W]*(¥, ¥) by P3
17]12(|w|? — ||w|?||V||? by Definition 3.13,
“Magnitude and Norm of a Vector”
0.

Since the inner product is 0, the vectors are perpendicular. [J
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