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Page 236 Number 2

Page 236 Number 2. For [x1, x2], [y1, o] € R?, define the quantity

([x1, x2], [y1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R??
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Page 236 Number 2. For [x1, x2], [y1, o] € R?, define the quantity

([x1, x2], [y1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R??

Solution. We test the parts of Definition 3.12, “Inner-Product Space.”
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Page 236 Number 2

Page 236 Number 2. For [x1, x2], [y1, o] € R?, define the quantity

([x1, x2], [y1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R??

Solution. We test the parts of Definition 3.12, “Inner-Product Space.”
P1.

([y1, y2, [x1, x2]) = yaye + xixe = x1x2 + y1y2 = ([x1, x2], [v1, y2])-
So P1 is satisfied.
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Page 236 Number 2

Page 236 Number 2. For [x1, x2], [y1, o] € R?, define the quantity
([x1, x2], [y1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R??

Solution. We test the parts of Definition 3.12, “Inner-Product Space.”
P1.

(v, yol, [x1, x2]) = y1yo + x1xo = x1x2 + y1yo = ([x1, x2], [y1, y2))-
So P1 is satisfied.
P2. Let [z1,2] € R2 Then

([z1, 22], [x1, x2] + [y1, y2l) = ([21, 22], [x1 + y1, %2 + y2])

=212 + (X1 + y1)(x2 + y2) = z120 + (x1x2 + y1x0 + X1y2 + Y1)2)

and
([z1, 22], [x1, x2]) + ([21, 22], [y1, y2l) = (2122 + x1%2) + (Z122 + Y1Y2)-

So these don't appear to be the same.
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Page 236 Number 2

Page 236 Number 2 (continued)

Page 236 Number 2. For [x1, x2], [y1, y2] € R?, define the quantity

([x1,%2], [v1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R2?

Solution (continued). We pick particular numbers (inspired by these
equations) to show that P2 does not hold. Consider [z, z2] = [0, 0],
[x1,x2] = [1,1], and [y1, 2] = [2,2].
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Page 236 Number 2 (continued)

Page 236 Number 2. For [x1, x2], [y1, y2] € R?, define the quantity
([x1,%2], [v1, y2]) = x1x2 + y1y2. Does this satisfy the conditions for an
inner product on R2?

Solution (continued). We pick particular numbers (inspired by these
equations) to show that P2 does not hold. Consider [z, z2] = [0, 0],
[x1,x2] = [1,1], and [y1, y2] = [2,2]. Then

(0,0], [1,1] + [2,2]) = ([0,0],[3,3]) = (0)(0) + (3)(3) = 9
and
([0,0], [1,1]) + ([0, 0], [2, 2]) = ((0)(0) + (1)(1)) + ((0)(0) + (2)(2))

—14+4=5%9=(0,0],[1,1] +[2,2]).

So P2 does not hold and this is | not an inner product in R?. |
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Page 236 Number 10

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related

vector space). Define (f, g) = f f(z)g(x) dx. Prove that (-,

-) is an inner
product on C, p.
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Page 236 Number 10

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related

vector space). Define (f, g) f f(z)g(x) dx. Prove that (-,-) is an inner
product on C, p.

Proof. We show that (-, -) satisfies P1-P4 of Definition 3.12,
“Inner-Product Space.” Let f,g,hc C,p and r € R.
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Page 236 Number 10

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related

vector space). Define (f, g) f f(z)g(x) dx. Prove that (-,-) is an inner
product on C, p.

Proof. We show that (-, -) satisfies P1-P4 of Definition 3.12,
“Inner-Product Space.” Let f,g,h € C;p and r € R. Then

PL. (f,g) = [P F(x)g(x) dx = [P g(x)f(x)dx = (g, ).
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Page 236 Number 10

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related

vector space). Define (f, g) f f(z)g(x) dx. Prove that (-,-) is an inner
product on C, p.

Proof. We show that (-, -) satisfies P1-P4 of Definition 3.12,
“Inner—Product Space.” Let f,g,he C,p and r € R. Then

P1. = [P F(x) dx— [?g(x)f(x) dx = (g, ).
P2. f g+h f f +h( ) dx = [P(F(x)g(x) + F(x)h(x)) dx
= [PF(x dx—i—f f(x)h(x) dx = (f,g) + (f, h).
Linear Algebra
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Page 236 Number 10

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related
vector space). Define (f, g) f f(z)g(x) dx. Prove that (-,-) is an inner
product on C, p.

Proof. We show that (-, -) satisfies P1-P4 of Definition 3.12,
“Inner—Product Space.” Let f,g,he C,p and r € R. Then

P1. = [P F(x) dx— [?g(x)f(x) dx = (g, ).

P2. f g+h f f +h( ) dx = [P(F(x)g(x) + F(x)h(x)) dx
_f f(x x)dx—i—f f(x)h(x)dx = (f,g) + (f, h).

P3. r<f,g>:rfaf )dx:fa rf(x)g(x) dx

{ I (rf( )e(x) dx = (rf, g)
f f(x)(rg(x)) dx = (f, rg).
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Page 236 Number 10 (continued)

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related

vector space). Define (f, g) f f(z . Prove that (-,-) is an inner
product on C, p.
Proof (continued)
= [PF(x)f(x) dx = [P(f(x))? dx > 0, and
<f, f) = fa (f(x))? dx = O if and only if (f(x))?> =0 for all a < x < b, that

is if and only if f(x) =0 for a < x < b (in G, p this means that f is the
zero vector).
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Page 236 Number 10 (continued)

Page 236 Number 10. Let C, ;, be the vector space of all continuous real
valued functions with domain a < x < b (see Note 3.1.A for a related
vector space). Define (f, g) f f(z . Prove that (-,-) is an inner
product on C, p.

Proof (continued)

= [PF(x)f(x) dx = [P(f(x))? dx > 0, and
<f, f) = fa (f(x))? dx = O if and only if (f(x))?> =0 for all a < x < b, that
is if and only if f(x) =0 for a < x < b (in G, p this means that f is the
zero vector).

So (-, ) satisfies P1-P4 and hence is an inner product on C, . O
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Theorem 3.11

Theorem 3.11. Schwarz Inequality.
Let V be an inner-product space, and let v, w € V. Then
(v, w) < ||V]|[|w].
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Theorem 3.11. Schwarz Inequality

Theorem 3.11

Theorem 3.11. Schwarz Inequality.
Let V be an inner-product space, and let v, w € V. Then
(v, w) < ||V]|[|w].

Proof. Let r,s € R. Then we have:

|rv+sw|®> = (rv+ sw,rv + sw) by Definition 3.13, “norm”

= (rv+sw,rv)+ (rv+sw,sw) by P2
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Theorem 3.11

Theorem 3.11. Schwarz Inequality.

Let V be an inner-product space, and let v, w € V. Then

(v, w) < [|v]|[|w].

Proof. Let r,s € R. Then we have:

|rv+sw|> = (rv+sw,rv+sw) by
= (ri+4sw,rv)+ (rv
= (rv,rv+4sw) +
= (rv,rv v

Linear Algebra
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Theorem 3.11

Theorem 3.11. Schwarz Inequality.

Let V be an inner-product space, and let v, w € V. Then

(v, w) < [|v]|[|w].

Proof. Let r,s € R. Then we have:

|rv+sw|> = (rv+sw,rv+sw)
= (rv+4sw,rv)+ (rv
= (rv,rv+4sw) + (sw,
= (rv,rv) + (rv,sw)
= r3(V,V) +2rs(V, W)
> 0 by P4

T+

by Definition 3.13, “norm”
+ sw,sw) by P2

rv +sw) by P1

(sw, rv) + (sw,sw) by P2
s%(w,w) by P1 and P3

Since this equation holds for all r,s € R, we are free to choose particular

values of r and s. We choose r = (w, w) and s =

Linear Algebra
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Theorem 3.11 (continued)

Proof (continued). ...

r
with r = (w, w) and
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Theorem 3.11 (continued)

Proof (continued). ...
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Theorem 3.11 (continued)

Proof (continued). ...

= (W, w)*(V, V) (W, W)(V, w)? = (w, w)[(w, W) (V, V) —(V,w)?] > 0. (13)
If (W, w) =0 then w = 0 by Theorem 3.12 Part (P4), and the Schwarz
Inequality is proven (since it reduces to 0 > 0). If |w||?> = (w, w) # 0,
then by the above inequality the other factor of inequality (13) must also

be nonnegative:
(W, w)(V, V) — (V,w)? > 0.
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Theorem 3.11 (continued)

Proof (continued). ...

= (W, w)*(V, V) (W, W)(V, w)? = (w, w)[(w, W) (V, V) —(V,w)?] > 0. (13)
If (W, w) =0 then w = 0 by Theorem 3.12 Part (P4), and the Schwarz
Inequality is proven (since it reduces to 0 > 0). If |w||?> = (w, w) # 0,
then by the above inequality the other factor of inequality (13) must also
be nonnegative:
(W, w)(V, V) — (V,w)? > 0.

Therefore

(v, w)? < (v, 7)(w,w) = |[V]]*||w]|*.
Taking square roots, we get the Schwarz Inequality. O
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Page 236 Number 12

Page 236 Number 12. Show that sin x and cos x are orthogonal
functions in the vector space Cy, of continuous functions With domain
0 < x < 7 where the inner product is defined as (f, g) fo x) dx

(see Exercise 10).
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Page 236 Number 12

Page 236 Number 12. Show that sin x and cos x are orthogonal
functions in the vector space Cy, of continuous functions With domain

0 < x < 7 where the inner product is defined as (f, g) fo x) dx
(see Exercise 10).

Solution. We have (by u-substitution with u = sin x and du = cos x):
™
(cos x,sinx) = / Cos x sin x dx
0

s
1
:fsin27r—lsin20:0—0:0.
0 2 2
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Page 236 Number 12

Page 236 Number 12. Show that sin x and cos x are orthogonal
functions in the vector space Cy, of continuous functions With domain

0 < x < 7 where the inner product is defined as (f, g) fo x) dx
(see Exercise 10).

Solution. We have (by u-substitution with u = sin x and du = cos x):
™
(cos x,sinx) = / Cos x sin x dx
0

1 1

=5 ==5s —=sin“0=0—-0=0.

5 Sin” T2 in®m — = sin

So by the definition of orthogonal in an inner-product space, cos x and
sin x are orthogonal. [

2
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Page 237 Number 18

Page 237 Number 18

Page 237 Number 18. For vectors i, V, and w in an inner-product space

and for scalars r and s, prove that if w is perpendicular to both & and v
then w is perpendicular to rii + sv.
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Page 237 Number 18

Page 237 Number 18. For vectors i, V, and w in an inner-product space
and for scalars r and s, prove that if w is perpendicular to both & and v
then w is perpendicular to rii + sv.

Proof. Since w is perpendicular to both i and vV then by the definition of
perpendicular (or orthogonal), (w, i) = (w, V) = 0.
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Page 237 Number 18

Page 237 Number 18. For vectors i, V, and w in an inner-product space
and for scalars r and s, prove that if w is perpendicular to both & and v
then w is perpendicular to rii + sv.

Proof. Since w is perpendicular to both i and vV then by the definition of

perpendicular (or orthogonal), (w, ) =

(W, ri + sv)

(W, V) = 0. So

(w, ri) + (w, sv) by P2
w, U) + s(w, V) by P3

r{w, d) +
r(0) + s(0) = 0.

So w is perpendicular to ri 4 sv, as claimed.

Linear Algebra
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Page 237 Number 20

Page 237 Number 20

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}

is a subspace of V. St is called the perp space of set S.
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Page 237 Number 20

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}
is a subspace of V. St is called the perp space of set S.

Proof. We apply Theorem 3.2, “Test for a Subspace,” and test S+ for
closure under vector addition and closure under scalar multiplication. Let
V,w € S and let r € R be a scalar.
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Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}
is a subspace of V. St is called the perp space of set S.

Proof. We apply Theorem 3.2, “Test for a Subspace,” and test S+ for
closure under vector addition and closure under scalar multiplication. Let
V,w € SL and let r € R be a scalar. Then by the definition of St for
every s € S we have (V,s) =0 and (w,s) = 0.
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Page 237 Number 20

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}
is a subspace of V. St is called the perp space of set S.

Proof. We apply Theorem 3.2, “Test for a Subspace,” and test S+ for
closure under vector addition and closure under scalar multiplication. Let
V,w € SL and let r € R be a scalar. Then by the definition of St for
every s € S we have (V,s) =0 and (w,s) = 0. Now

(V+w,s) = (s,Vv+w) by P1
= (5,V)+ (s,w) by P2
= 0+0=0

for every 5 € S and hence Vv + w € S+ and S is closed under vector

addition.
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Page 237 Number 20 (continued)

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}
is a subspace of V. S+ is called the perp space of set S.
Proof (continued). Next,

(rv,s) = r(V,s) by P3
= r(0)=0

for every § € S and hence rv € S+ and S+ is closed under scalar
multiplication.
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Page 237 Number 20 (continued)

Page 237 Number 20. Let V be an inner-product space and let S be a
subset of V. Prove that

S+ = {V € V| Vis orthogonal to each vector in S}

is a subspace of V. S+ is called the perp space of set S.

Proof (continued). Next,

(rv,s) = r(V,s) by P3
= r(0)=0

for every § € S and hence rv € S+ and S+ is closed under scalar
multiplication. Therefore Theorem 3.2, “Test for Subspace,” implies that
S+ is a subspace of V. O

Linear Algebra March 14, 2018 12/ 14



Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any
V,w in an inner-product space V, ||V — w/| < |[V] + ||W]|.
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Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any
V,w in an inner-product space V, ||V — w/| < |[V] + ||W]|.

Proof. Let v,w € V. Then —w € V and so we consider the vector sum
V + (—w). The Triangle Inequality implies that
V4 (=)l < IVl + 1| = wl.
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Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any
V,w in an inner-product space V, ||V — w/| < |[V] + ||W]|.

Proof. Let v,w € V. Then —w € V and so we consider the vector sum
V + (—w). The Triangle Inequality implies that
IV + (=w)[| < [IV]| + || = wl]. Now

| —w| = +/(—w,—w) by Definition 3.13,
Magnitude or Norm of a Vector”

= VD@, W) = VD 1), W) by P3

= Vw,w) = [w].
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Page 237 Number 24

Page 237 Number 24. Use the Triangle Inequality to prove that for any
V,w in an inner-product space V, ||V — w/| < |[V] + ||W]|.

Proof. Let v,w € V. Then —w € V and so we consider the vector sum
V + (—w). The Triangle Inequality implies that
IV + (=w)[| < [IV]| + || = wl]. Now

| —w| = +/(—w,—w) by Definition 3.13,
Magnitude or Norm of a Vector”

= VD@, W) = VD 1), W) by P3

= Vw,w) = [w].

So |[v—wl = I[V+(=w)|| <[Vl + ]| = wll = [[V][ + [[w]. as claimed. []
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Page 237 Number 26

Page 237 Number 26. Let V and w be vectors in an inner-product space
V. Show that ||V||w + ||w||V is perpendicular to ||V|jw — ||w||V.
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Page 237 Number 26

Page 237 Number 26. Let V and w be vectors in an inner-product space
V. Show that ||V||w + ||w||V is perpendicular to ||V|jw — ||w||V.
Solution. Consider

(vllw + WV, [[vlw — [|w][v)
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Page 237 Number 26

Page 237 Number 26

Page 237 Number 26. Let V and w be vectors in an inner-product space
V. Show that ||V||w + ||w||V is perpendicular to ||V|jw — ||w||V.
Solution. Consider

(vllw + WV, [[vlw — [|w][v)
(Ivilw + flw{|v, [|v]w

= =

)+ (Vllw + [[w]|v, —[[w[|v) by P2
(vilw, [vi[w + [[w][v) + (=[[w[lv, [V]w +[[w][v) by P1
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Page 237 Number 26

Page 237 Number 26. Let V and w be vectors in an inner-product space
V. Show that ||V||w + ||w||V is perpendicular to ||V|jw — ||w||V.

Solution. Consider

(Ivllw + ([w]v, [v][w — [[w]|V)
= (Ivllw + W] v, [V]w) + ([IV]|w +
= (lIvllw, IVlw + [[w[|v) + (= [lw]v,
= (Vlw, [[vilw) + (IV][w, [[w[[v) + (-]
+(=[wl[v, W] V) by P2
= V=W, w) + [IVI[[[wl[(w, V) — || v]|[|w]
Linear Algebra
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Page 237 Number 26

Page 237 Number 26. Let V and w be vectors in an inner-product space
V. Show that ||V||w + ||w||V is perpendicular to ||V|jw — ||w||V.

Solution. Consider

(vlw + [[wllv, [[v]w — [|w]|v)
= (IVlw + [w][v, [[v]|w) + ([[Vw + [|w]v, —[|w] V) by P2
= (Vlw, [IVlw + [|w[|v) + (=[|w[]v, [ v]|w + [|w] V) by P1
= (Vlw, [IVlw) + {lIvlw, [[w[|v) + (~[|w[|v, [|V]|w)
+{=[lw[v,[|w||V) by P2
= V2w, w) + [Vlllw] (%, &) = [9[|| W[ (7, w) - [|W]*(7, V) by P3
= H\_/’HZHWH2 HWH HVH2 by Definition 3.13,
“Magnitude and Norm of a Vector”

Since the inner product is 0, the vectors are perpendicular. [J
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	Page 236 Number 2
	Page 236 Number 10
	Theorem 3.11. Schwarz Inequality
	Page 236 Number 12
	Page 237 Number 18
	Page 237 Number 20
	Page 237 Number 24
	Page 237 Number 26

