-
Example 4.2 A.

Linear Algebra J

Chapter 4: Determinants Example 4.2.A. Find A;1, A1z, and A3 for
Section 4.2. The Determinant of a Square Matrix—Proofs of Theorems

a1l ar a3
A= | axn ax» ax

LINEAR
ALGERRA

Solution. To find A11, we simply eliminate the first row and first column

of A to get Aj1 = { 922 423 } Similarly, Ajp = { 921 423 } and

azp ass da31 433
a1 ax
Az = .0
B 431  as2
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Page 262 Number 12 Example 4.2.B
2 1 01
) . 3212
Example 4.2.B. Find the determinant of A = 40 1 4
4 -1 2 1 021
Page 262 Number 12. Find the cofactor of 3 in A = 11% é (1) Solution. We have
det(A) = ai1ay; + a12aj, + 213313 + 214y = 23y, + ay, + ay, where
Solution. We have ay; = 3, so we need ab; = (—1)>"1det(Ap;) where 5 1 9
Ax = { -12 } is a minor matrix. So 3/11 = (—1)1+1det(A11) =10 1 4
2 1
0 21
-1 2
he = —det(Ar) = — =—((=1)(1) — (2)(2)) =|5.| O
dyq e(21) ‘ 2 1‘ (( )() ()()) _ (2)‘; ;I-' _(1) 8 i“+(2) 8 ) bythe

definition of determinant of a 3 X 3 matrix

= (2(@)(1) = #)(2) = (1) ((0)(1) = (4)(0)) + (2) ((0)(2) — (1)(0))
= 2(=7)-0+0=-14,
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Example 4.2.B Example 4.2.B

Example 4.2.B (continued 1) Example 4.2.B (continued 2)
Solution (continued). 31 2
a, = (1) 2det(Ap)=—-|4 1 4 210 1
1 21 Example 4.2.B. Find the determinant of A = 3212
1 4 4 4 4 1 4 01 4
- (@], 1]-0|] T|+@ 1021
2 1 11 1 2
= —E)(WO - @WE)+ (@D - (1) -2(H@ - WD) solution (continued). So
= 3(-71+(0)-2(7)=7,
3 21 det(A) = 3113/11 + 3128/12 + 3138,13 + 3143/14
dy = (~1)'det(A)=—-|4 0 1 = 24y, + al, + 3,
102 = 2(-14) +(7) + (14)
B 01 4 1 4 0 = |-T7.
- (00 2|-0[1 2|01 g =
= —(3)((0() - (WO) + (B - (VA — (D) - (O)(1) F
= 042(7)—0=14,
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Example 4.2.C Page 255 Example 4
0 0 0 1
. . |10 1 2 0 Page 255 Example 4. Show that the determinant of an upper- or
Example 4.2.C. Find the determinant of A = 0 4 5 9 |- lower-triangular square matrix is the product of its diagonal elements.
1 15 6 57 Soluti Let
Solution. By Theorem 4.2, “General Expansion by Minors,” we can find ofution. Le
the determinant by expanding along any row or column, so we choose to w1 ue U1z Ut vy ]
start by expanding along the first column. We then have 0 wm w3 - Usp Usp
00 1 U~ 0 0 w3 -+ u3p-1 U3n
det(A) = (0)—(0)+(0)—(1)| 1 2 0
4 5 9 0 0 0 *rr Up—1,n—1 Un—1,n
‘ | 0 0 o - 0 Uppn |

be an upper triangular matrix. By Theorem 4.2, “General Expansion by
= —((0) = (0) + ((1)(5) — (2)(4))) = 3. Minors,” we calculate det(U) along the first column and then expand the
determinant of each minor along the first column.

So (det(A) =3.|0
Linear Algebra March 31,2010 8 /30
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Page 255 Example 4 (continued 1)

Page 255 Example 4. Show that the determinant of an upper- or
lower-triangular square matrix is the product of its diagonal elements.

Solution (continued). We get

uix U2 U1z - Ui,n—1 Uin
0 wxn w3 -+  wp-1 U2
0 0 w3 -+ w3p U3n

det(U) = _ :

0 0 Un—1,n—1 Un—1n
0 0 0 Unnp

Uzp U3 -+ uz n—1 Uzn

0 w3 -+ w3p1 U3n

= un : :
0 0 Un—1,n—1 Un—1n
0 0 tt 0 u"n
Linear Algebra March 31, 2019

Theorem 4.2 .A

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

1. The Transpose Property: det(A) = det(AT).

2. The Row-Interchange Property: If two different rows of a
square matrix A are interchanged, the determinant of the
resulting matrix is —det(A).

3. The Equal-Rows Property: If two rows of a square matrix A
are equal, then det(A) = 0.

4. The Scalar-Multiplication Property: If a single row of a
square matrix A is multiplied by a scalar r, the determinant
of the resulting matrix if rdet(A).

5. The Row-Addition Property: If the product of one row of A
by a scalar r is added to a different row of A, the
determinant of the resulting matrix is the same as det(A).

Linear Algebra March 31, 2019
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Page 255 Example 4

Page 255 Example 4 (continued 2)

Page 255 Example 4. Show that the determinant of an upper- or
lower-triangular square matrix is the product of its diagonal elements.

Solution (continued). ...

usz uzg --- us n—1 usnp
0 was -+ Usp- U4n
= U | . : = U11UpU33 "+ - Upp.
0 0 Upn—1,n—1 Up—1,n
0 o -- 0 Unn

That is, det(U) = u11u2u33 - - - Upp, as claimed. O
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Theorem 4.2.A(1), The Transpose Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

1. The Transpose Property: det(A) = det(AT).

Proof. (1) The result vacuously holds for a 1 x 1 matrix. For 2 x 2 matrix

A= [ Zi Zz ] we have det(A) = (a1)(b2) — (a2)(b1),

AT = [ Zl Zl } , and det(AT) = (a1)(b2) — (b1)(a2); hence the result
2 b2

holds for all 2 x 2 matrices. We use mathematical induction (see Appendix

A). Assume the property holds for all matrices of size k x j for

k=1,2,...,n—1. We will prove that this shows that the result holds for

k = n (that is, for n x n matrices) and then the claim holds by induction.

Linear Algebra March 31, 2019 13 /30




Theorem 4.2.A(1) (continued)

Proof (continued). Let A be an n x n matrix. Then by Definition 4.1,
“Cofactors and Determinants,” we have

det(A) = a11|A11] — a12|Ara| + -+ + (=1)"tag,|Arnl.

With B = AT we have that a;; = bj; and AlTJ- = Bj1. So applying
Theorem 4.2, “General Expansion by Minors,” we can compute det(B) by
expanding along the first column of B to get

det(AT) = det(B) = b11|Bi1| — bo1|Bo1| + -+ - 4+ (=1)" b1 | Bui
= aulAf)| — an|Ah| + -+ (=1)"ar,|Af|
since ajj; = bj; and AZ—J- = Bj1
= anlAul — anlAn|+ - + (1) a1, Ayl
since Ayj is (n—1) x (n—1) and so,

by the induction hypothesis, |A;; 7| = |Bj1|
= det(A).
Linear Algebra March 31, 2019

Theorem 4.2.A(2) (continued)

Proof (continued). Since n > 2, we can choose a kth row for expansion
by minors, where k & {r,i}. Consider the cofactors

(—1)*H| Ay and (—1)H|By.

These numbers must have opposite signs, by our induction hypothesis,
since the minor matrices Ay; and By have size (n — 1) x (n— 1), and By
can be obtained from Ay; by interchanging two rows (namely, the ith and
rth rows). That is, |Byj| = —|Ayj| and so by; = —a};. So applying
Theorem 4.2, “General Expansion by Minors,” we can compute det(B) by
expanding along the kth row of A and the kth row of B we find:

det(A) = ak1dyy + ak2din + *+* + Akndk,
= biaaly + bedly + -+ + bundl,
since the kth row of A is the same as the kth row of B
= br1(—bly) + bra(—bjo) + - - - + bun(—bj,) since by; = —aj;
= —(bk1bjq + brobjy + - + binby,) = —det(B).

Linear Algebra March 31, 2019
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Theorem 4.2.A. Properties of the Determinant
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(2), The Row-Interchange Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.
2. The Row-Interchange Property: If two different rows of a
square matrix A are interchanged, the determinant of the
resulting matrix is —det(A).

Proof (continued). So the result holds for k = n. Therefore, by
mathematical induction, (1) holds for all n x n matrices where n is a
natural number.

(2) We again use mathematical induction. For n = 2, we have

P b2 | (p) (@)~ (b2)(a1) = — ((a1)(b2) — (a2)(b)) = —

ar ar
so the result holds for n = 2. Assume the property holds for all matrices of
size k x kfor k=1,2,...,n—1. Let A be an n X n matrix and let B be
the matrix obtained from A by interchanging the ith row and the rth row.

d1  ar
b1 b2

)
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Theorem 4.2.A(3), The Equal-Rows Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

3. The Equal-Rows Property: If two rows of a square matrix A
are equal, then det(A) = 0.

Proof (continued). So the result holds for k = n. Therefore, by
mathematical induction, (2) holds for all n x n matrices where n is a
natural number.

(3) Let B be the matrix obtained from A by interchanging the two equal
rows (so B = A). By the Row-Interchange Property, det(B) = —det(A).
But since B = A, this implies det(B) = det(A). Hence det(A) = —det(A)
and we must have det(A) = 0.
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Theorem 4.2.A(4), The Scalar-Multiplication Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

4. The Scalar-Multiplication Property: If a single row of a

square matrix A is multiplied by a scalar r, the determinant
of the resulting matrix if rdet(A).

Proof (continued). (4) Let r € R be a scalar and let B be the matrix
obtained from A by multiplying the kth row of A by r; so the kth row of B
is [rak1, rak, . .., rakn] so byxj = rayj for j =1,2,...,n. Using Theorem
4.2, “General Expansion by Minors,” we can compute det(A) by expanding
along the kth row of A to det(A) get in terms of cofactors that

det(A) = aklajd + akgak + -+ ak,,ajm.

Since all rows of B equal the corresponding rows of A, except for the kth
row, then the minors satisfy Ax; = Byj and the cofactors satisfy aﬁ(j = b;g-
forj=1,2,...,n.

Theorem 4.2.A(5), The Row-Addition Property

Linear Algebra March 31, 2019

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

5. The Row-Addition Property: If the product of one row of A
by a scalar r is added to a different row of A, the
determinant of the resulting matrix is the same as det(A).

Proof (continued). (5) The ith row of A is [aj1, aj2, . . ., ain] and the kth
row of A is [ak1, ak2, - - -, akn] Where i # k. So if B is obtained from A by
adding r times Row / to Row k, that is

[rai1 + aki, raiz + ak2, - .., rain + akn]- As in the proof of Property 4, the
minors satisfy Ay; = By; and the cofactors satisfy aj(j = b;(j for
j=12,...,n

Linear Algebra March 31, 2019
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(4), The Scalar-Multiplication Property
(continued)

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

4. The Scalar-Multiplication Property: If a single row of a
square matrix A is multiplied by a scalar r, the determinant
of the resulting matrix if rdet(A).

Proof (continued). Finding det(B) by expanding along the kth row gives

det(B) bklb;d + bk2bi<2 + -+ bk,,b;m
= rak1dyy + rakeags + - + rakndl,
since by; = ray; and a; = bj;
= r(ak1d3 + ak2dio + - - + aknay,) = rdet(A).
So the result holds for k = n. Therefore, by mathematical induction, (4)

holds for all n X n matrices where n is a natural number.
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Theorem 4.2.A(5) The Row-Addition Property (continued)

Proof (continued). Using Theorem 4.2, “General Expansion by Minors,”
and expanding all determinant along the kth row, we have

det(B) = bk1bjq + bkobjs + -+ - + brnbi,
= (rajn + ak1)ag + (rai + ak2)ake + - - + (rain + akn) %y
since by; = rajj + ayj and by; = ay;
= r(a,-la;d + a,-2a2(2 +-- a,-,,aﬁm)
+(ak1aky + ak2dso + - + akndy)
= rdet(C) + det(A)

where matrix C is an n X n matrix with the same rows as matrix A, except
that the kth row of C is the same as the ith row of A. Since i # k, then
Row i and Row k of C are the same and so by Property 3, det(C) = 0.
Therefore, det(B) = det(A), as claimed. O
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Page 261 Number 8

Page 261 Number 8. Use row reduction and Theorem 4.2.A to find

2 0 -1 7
6 1 0 4
det(A) for A= 8 -2 10
4 1 0 2

Solution. Row reducing we have

2 0

Page 261 Number 8 (continued)

Page 261 Number 8. Use row reduction and Theorem 4.2.A to find

2 0 -1 7
6 1 0 4
det(A) for A= 8 -2 10
4 1 0 2

Solution (continued). ...

LT R Rk )2 20 -1 7 20 -1 7
A_ |6 1 04—l l0 13 17 01 3 —17 |R=RHIR 5 1 3 17
4 — g 1 =H.
8 =2 1 0 0 -2 5 -28 00 —1 5 0 0 —1 5
4 1 02 0 2 —12 ] 00 11 -62 00 0 -7
Re Ryt 2R, 2 0 -1 7 Rio R, 2 0 -1 7] So A ~ H through a sequence of 6 row-additions and one row-interchange.
R R Ry 01 3 -17 01 3 -17 Hence, by Theorem 4.2.A (Properties 2 and 5) det(A) = —det(H). Now H
0 0 11 -62 00 -1 5 is upper-triangular, so as shown in Page 255 Example 4,
00 -1 5 0 0 11 —62 | det(H) = (2)(1)(=1)(=7) = 14. Hence, |det(A) = —det(H) = —14.\5
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Theorem 4.3. Determinant Criterion for Invertibility

Theorem 4.3

Theorem 4.3. Determinant Criterion for Invertibility.
A square matrix A is invertible if and only if det(A) # 0. Equivalently, A is
singular if and only if det(A) = 0.

Proof. As commented above, A can be reduced to an echelon form H
without multiplying rows by scalars (i.e., “row scaling”) so

det(A) = +det(H). The H is upper triangular and so by Page 255
Example 4, the determinant of A is the product of its diagonal entries.
Now A is invertible if and only if A has only nonzero entries on its main
diagonal since by Theorem 1.12, “Conditions for A1 to Exist,” Ais
invertible if and only if it is row equivalent to Z. So

det(A) = tdet(H) # 0 if and only if A is invertible. O

Theorem 4.4

Theorem 4.4. The Multiplicative Property.
If A and B are n x n matrices, then det(AB) = det(A)det(B).

Proof. First, if A is a diagonal matrix then

aig 0 -~ 0 bi1 b2 --- bip
0 a» --- 0 by1 by -+ bop
AB = . . } . . . .
0 0 T dnn bnl bn2 e bnn
aiibi1 aubiz -+ aubia
| a2 bo1  axbry -+ axby,
annbn1  annbn2 -+ a@nnbnn

and so by Theorem 4.2.A(4), “The Scalar-Multiplication Property,”
det(AB) = aj1a - - - appdet(B) = det(A)det(B) because A upper
triangular implies det(A) = a11a22 - - - apn by Page 255 Example 4.
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Theorem 4.4. The Multiplicative Property Theorem 4.4. The Multiplicative Property

Theorem 4.4 (continued 1) Theorem 4.4 (continued 2)

'Proof' (continued.). Second, if Ais not invert“ible ther? AB is {101’.' Theorem 4.4. The Multiplicative Property.

invertible by Exercise 30, so by Theorem 4.1, “Determinant Criterion for If Aand B are n x n matrices, then det(AB) = det(A)det(B).
Invertibility,” det(A) = det(AB) = 0.

Third, for A invertible then as seen in the proof of Theorem 4.3, Proof (continued). The same sequence of elementary row operations will
“Determinant Criterion for Invertibility,” A can be row reduced through reduce the matrix AB to the matrix E(AB) = (EA)B = DB. So, similar to
row-interchange and row-addition elementary row operations to an the determinant of A, we have det(AB) = (—1)"det(DB). Therefore,

upper-triangular matrix with nonzero entries on the diagonal. We can then

use row-interchange and row-addition, as we would in the Gauss-Jordan det(AB) = (—1)"det(DB)

Method, to reduce A to a diagonal matrix where no diagonal entries are 0. = (—1)"det(D)det(B) since we showed that
So there is a matrix E, a product of elementary matrices corresponding to the theorem holds if the first matrix is diagonal
row-interchange and row-addition, such that D = EA where D is the = ((~1)"det(D))det(B)

diagonal matrix just described. Then Theorem 4.2.A(2) and (5),

_ : (1Y
“Row-Interchange Property” and “Row-Addition Property,” imply that = det(A)det(B) since det(A) = (—1)"det(D).

det(A) = (—1).’det(D) where r is the number of row interchanges used in Hence, det(AB) = det(A)det(B) in general. ]
the row reduction of A to D.
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Page 262 Number 28 Page 262 Number 30

Page 262 Number 28. Find the values of \ for which the matrix
2—A 0 0
A= 0 1-X 4 is singular.
0 1 1—A
Solution. By Theorem 4.3, “Determinant Criterion for Invertibility,” A is

singular if and only if det(A) = 0. We have by the definition of
determinant of a 3 X 3 matrix that ASSUME that AB is nonsingular. Then there is (AB)~! where

1\ a4 (AB)(AB)™! = 7. But then by Theorem 1.3.A, “Associativity of Matrix
det(A) = (2—)) ’ 1 1-1 ’ —(0) +(0) Multiplication,” A(B(AB)~1) = Z and so B(AB)~! is the inverse of A (by
Theorem 1.11, “A Commutative Property,” we have (B(AB) 1)A=71
= 2-M((1-N1-2)-#)(1)=(2-A)(1 -2 +21*—4)  ais0). But this CONTRADICTS the hypothesis that A is singular. So the
= (2— /\)()\2 —22-3)=2-XN)A-3)(A+1). assumption that AB is nonsingular is false and hence AB is singular, as

So det(A) = 0 if and only if A= —1, A\=2, or A= 3. That is, A is claimed. U
singular if and only if [ A = -1, A =2, or A =3.
Note. We'll see why this type of problem is of interest in the next chapter.

Page 262 Number 30. If A and B are n x n matrices and if A is singular,
prove (without using Theorem 4.4) that AB is also singular.

Solution. We give a proof by contradiction. Let A be singular and
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Page 262 Number 32

Page 262 Number 32. If A and C are n x n matrices with C invertible,
prove that det(A) = det(C~1AC). HINT: By Exercise 31, for invertible C
we have det(C~1) = 1/det(C).

Prove. By Theorem 4.4, “The Multiplicative Property,”
det(C1AC) = det(C1(AC)) = det(C1)det(AC) = det(C1)det(A)det(C)
By Exercise 31, det(C~!) = 1/det(C), so

det(C *AC) = (1/det(C))det(A)det(C) = det(A),

as claimed. L]



