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Example 4.2.A

Example 4.2.A.

Example 4.2.A. Find A11, A12, and A13 for

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Solution. To find A11, we simply eliminate the first row and first column

of A to get A11 =

[
a22 a23

a32 a33

]
. Similarly, A12 =

[
a21 a23

a31 a33

]
and

A13 =

[
a21 a22

a31 a32

]
. �
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Page 262 Number 12

Page 262 Number 12

Page 262 Number 12. Find the cofactor of 3 in A =

 4 −1 2
3 1 0

−1 2 1

.

Solution. We have a21 = 3, so we need a′21 = (−1)2+1det(A21) where

A21 =

[
−1 2

2 1

]
is a minor matrix. So

a′21 = −det(A21) = −
∣∣∣∣ −1 2

2 1

∣∣∣∣ = − ((−1)(1)− (2)(2)) = 5. �
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Example 4.2.B

Example 4.2.B

Example 4.2.B. Find the determinant of A =


2 1 0 1
3 2 1 2
4 0 1 4
1 0 2 1

 .

Solution. We have
det(A) = a11a

′
11 + a12a

′
12 + a13a

′
13 + a14a

′
14 = 2a′11 + a′12 + a′14 where

a′11 = (−1)1+1det(A11) =

∣∣∣∣∣∣
2 1 2
0 1 4
0 2 1

∣∣∣∣∣∣

= (2)

∣∣∣∣ 1 4
2 1

∣∣∣∣− (1)

∣∣∣∣ 0 4
0 1

∣∣∣∣ + (2)

∣∣∣∣ 0 1
0 2

∣∣∣∣ by the

definition of determinant of a 3× 3 matrix

= (2) ((1)(1)− (4)(2))− (1) ((0)(1)− (4)(0)) + (2) ((0)(2)− (1)(0))

= 2(−7)− 0 + 0 = −14,
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Example 4.2.B

Example 4.2.B (continued 1)

Solution (continued).

a′12 = (−1)1+2det(A12) = −

∣∣∣∣∣∣
3 1 2
4 1 4
1 2 1

∣∣∣∣∣∣
= −

(
(3)

∣∣∣∣ 1 4
2 1

∣∣∣∣− (1)

∣∣∣∣ 4 4
1 1

∣∣∣∣ + (2)

∣∣∣∣ 4 1
1 2

∣∣∣∣)
= −(3) ((1)(1)− (4)(2)) + ((4)(1)− (4)(1))− 2 ((4)(2)− (1)(1))

= −3(−7) + (0)− 2(7) = 7,

a′14 = (−1)1+4det(A14) = −

∣∣∣∣∣∣
3 2 1
4 0 1
1 0 2

∣∣∣∣∣∣
= −

(
(3)

∣∣∣∣ 0 1
0 2

∣∣∣∣− (2)

∣∣∣∣ 4 1
1 2

∣∣∣∣ + (1)

∣∣∣∣ 4 0
1 0

∣∣∣∣)
= −(3) ((0)(2)− (1)(0)) + (2) ((4)(2)− (1)(1))− ((4)(0)− (0)(1))

= 0 + 2(7)− 0 = 14.
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Example 4.2.B

Example 4.2.B (continued 2)

Example 4.2.B. Find the determinant of A =


2 1 0 1
3 2 1 2
4 0 1 4
1 0 2 1

 .

Solution (continued). So

det(A) = a11a
′
11 + a12a

′
12 + a13a

′
13 + a14a

′
14

= 2a′11 + a′12 + a′14

= 2(−14) + (7) + (14)

= −7.

�
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Example 4.2.C

Example 4.2.C

Example 4.2.C. Find the determinant of A =


0 0 0 1
0 1 2 0
0 4 5 9
1 15 6 57

 .

Solution. By Theorem 4.2, “General Expansion by Minors,” we can find
the determinant by expanding along any row or column, so we choose to
start by expanding along the first column.

We then have

det(A) = (0)− (0) + (0)− (1)

∣∣∣∣∣∣
0 0 1
1 2 0
4 5 9

∣∣∣∣∣∣
= −

(
(0)− (0) + (1)

∣∣∣∣ 1 2
4 5

∣∣∣∣) expanding along the first row

= − ((0)− (0) + ((1)(5)− (2)(4))) = 3.

So det(A) = 3. �
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Page 255 Example 4

Page 255 Example 4

Page 255 Example 4. Show that the determinant of an upper- or
lower-triangular square matrix is the product of its diagonal elements.

Solution. Let

U =



u11 u12 u13 · · · u1,n−1 u1n

0 u22 u23 · · · u2,n−1 u2n

0 0 u33 · · · u3,n−1 u3n
...

...
...

. . .
...

...
0 0 0 · · · un−1,n−1 un−1,n

0 0 0 · · · 0 unn


be an upper triangular matrix.

By Theorem 4.2, “General Expansion by
Minors,” we calculate det(U) along the first column and then expand the
determinant of each minor along the first column.
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Page 255 Example 4

Page 255 Example 4 (continued 1)

Page 255 Example 4. Show that the determinant of an upper- or
lower-triangular square matrix is the product of its diagonal elements.

Solution (continued). We get

det(U) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u11 u12 u13 · · · u1,n−1 u1n

0 u22 u23 · · · u2,n−1 u2n

0 0 u33 · · · u3,n−1 u3n
...

...
...

. . .
...

...
0 0 0 · · · un−1,n−1 un−1,n

0 0 0 · · · 0 unn

∣∣∣∣∣∣∣∣∣∣∣∣∣

= u11

∣∣∣∣∣∣∣∣∣∣∣

u22 u23 · · · u2,n−1 u2n

0 u33 · · · u3,n−1 u3n
...

...
. . .

...
...

0 0 · · · un−1,n−1 un−1,n

0 0 · · · 0 unn

∣∣∣∣∣∣∣∣∣∣∣
. . .
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Page 255 Example 4

Page 255 Example 4 (continued 1)
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() Linear Algebra March 31, 2019 10 / 30



Page 255 Example 4

Page 255 Example 4 (continued 2)

Page 255 Example 4. Show that the determinant of an upper- or
lower-triangular square matrix is the product of its diagonal elements.

Solution (continued). . . .

= u11u22

∣∣∣∣∣∣∣∣∣∣∣

u33 u34 · · · u3,n−1 u3n

0 u44 · · · u4,n−1 u4n
...

. . .
...

...
0 0 · · · un−1,n−1 un−1,n

0 0 · · · 0 unn

∣∣∣∣∣∣∣∣∣∣∣
= u11u22u33 · · · unn.

That is, det(U) = u11u22u33 · · · unn, as claimed. �
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Page 255 Example 4 (continued 2)
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

1. The Transpose Property: det(A) = det(AT ).

2. The Row-Interchange Property: If two different rows of a
square matrix A are interchanged, the determinant of the
resulting matrix is −det(A).

3. The Equal-Rows Property: If two rows of a square matrix A
are equal, then det(A) = 0.

4. The Scalar-Multiplication Property: If a single row of a
square matrix A is multiplied by a scalar r , the determinant
of the resulting matrix if rdet(A).

5. The Row-Addition Property: If the product of one row of A
by a scalar r is added to a different row of A, the
determinant of the resulting matrix is the same as det(A).
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(1), The Transpose Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

1. The Transpose Property: det(A) = det(AT ).

Proof. (1) The result vacuously holds for a 1× 1 matrix. For 2× 2 matrix

A =

[
a1 a2

b1 b2

]
we have det(A) = (a1)(b2)− (a2)(b1),

AT =

[
a1 b1

a2 b2

]
, and det(AT ) = (a1)(b2)− (b1)(a2); hence the result

holds for all 2× 2 matrices. We use mathematical induction (see Appendix
A). Assume the property holds for all matrices of size k × j for
k = 1, 2, . . . , n − 1. We will prove that this shows that the result holds for
k = n (that is, for n × n matrices) and then the claim holds by induction.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(1) (continued)

Proof (continued). Let A be an n × n matrix. Then by Definition 4.1,
“Cofactors and Determinants,” we have

det(A) = a11|A11| − a12|A12|+ · · ·+ (−1)n+1a1n|A1n|.

With B = AT we have that a1j = bj1 and AT
1j = Bj1. So applying

Theorem 4.2, “General Expansion by Minors,” we can compute det(B) by
expanding along the first column of B to get

det(AT ) = det(B) = b11|B11| − b21|B21|+ · · ·+ (−1)n+1bn1|Bn1|
= a11|AT

11| − a12|AT
12|+ · · ·+ (−1)n+1a1n|AT

1n|
since a1j = bj1 and AT

1j = Bj1

= a11|A11| − a12|A12|+ · · ·+ (−1)n+1a1n|A1n|
since A1j is (n − 1)× (n − 1) and so,

by the induction hypothesis, |A1j
T | = |Bj1|

= det(A).
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(1) (continued)
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(2), The Row-Interchange Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

2. The Row-Interchange Property: If two different rows of a
square matrix A are interchanged, the determinant of the
resulting matrix is −det(A).

Proof (continued). So the result holds for k = n. Therefore, by
mathematical induction, (1) holds for all n × n matrices where n is a
natural number.

(2) We again use mathematical induction. For n = 2, we have∣∣∣∣ b1 b2

a1 a2

∣∣∣∣ = (b1)(a2)−(b2)(a1) = − ((a1)(b2)− (a2)(b1)) = −
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ ,

so the result holds for n = 2.

Assume the property holds for all matrices of
size k × k for k = 1, 2, . . . , n − 1. Let A be an n × n matrix and let B be
the matrix obtained from A by interchanging the ith row and the rth row.
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Theorem 4.2.A(2), The Row-Interchange Property
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square matrix A are interchanged, the determinant of the
resulting matrix is −det(A).

Proof (continued). So the result holds for k = n. Therefore, by
mathematical induction, (1) holds for all n × n matrices where n is a
natural number.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(2) (continued)

Proof (continued). Since n > 2, we can choose a kth row for expansion
by minors, where k 6∈ {r , i}. Consider the cofactors

(−1)k+j |Akj | and (−1)k+j |Bkj |.
These numbers must have opposite signs, by our induction hypothesis,
since the minor matrices Akj and Bkj have size (n − 1)× (n − 1), and Bkj

can be obtained from Akj by interchanging two rows (namely, the ith and
rth rows). That is, |Bkj | = −|Akj | and so b′kj = −a′kj .

So applying
Theorem 4.2, “General Expansion by Minors,” we can compute det(B) by
expanding along the kth row of A and the kth row of B we find:

det(A) = ak1a
′
k1 + ak2a

′
k2 + · · ·+ akna

′
kn

= bk1a
′
k1 + bk2a

′
k2 + · · ·+ bkna

′
kn

since the kth row of A is the same as the kth row of B

= bk1(−b′k1) + bk2(−b′k2) + · · ·+ bkn(−b′kn) since b′kj = −a′kj

= −(bk1b
′
k1 + bk2b

′
k2 + · · ·+ bknb

′
kn) = −det(B).
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(3), The Equal-Rows Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

3. The Equal-Rows Property: If two rows of a square matrix A
are equal, then det(A) = 0.

Proof (continued). So the result holds for k = n. Therefore, by
mathematical induction, (2) holds for all n × n matrices where n is a
natural number.

(3) Let B be the matrix obtained from A by interchanging the two equal
rows (so B = A). By the Row-Interchange Property, det(B) = −det(A).
But since B = A, this implies det(B) = det(A). Hence det(A) = −det(A)
and we must have det(A) = 0.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(4), The Scalar-Multiplication Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

4. The Scalar-Multiplication Property: If a single row of a
square matrix A is multiplied by a scalar r , the determinant
of the resulting matrix if rdet(A).

Proof (continued). (4) Let r ∈ R be a scalar and let B be the matrix
obtained from A by multiplying the kth row of A by r ; so the kth row of B
is [rak1, rak2, . . . , rakn] so bkj = rakj for j = 1, 2, . . . , n. Using Theorem
4.2, “General Expansion by Minors,” we can compute det(A) by expanding
along the kth row of A to det(A) get in terms of cofactors that

det(A) = ak1a
′
k1 + ak2a

′
k2 + · · ·+ akna

′
kn.

Since all rows of B equal the corresponding rows of A, except for the kth
row, then the minors satisfy Akj = Bkj and the cofactors satisfy a′kj = b′kj
for j = 1, 2, . . . , n.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(4), The Scalar-Multiplication Property
(continued)

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

4. The Scalar-Multiplication Property: If a single row of a
square matrix A is multiplied by a scalar r , the determinant
of the resulting matrix if rdet(A).

Proof (continued). Finding det(B) by expanding along the kth row gives

det(B) = bk1b
′
k1 + bk2b

′
k2 + · · ·+ bknb

′
kn

= rak1a
′
k1 + rak2a

′
k2 + · · ·+ rakna

′
kn

since bkj = rakj and a′kj = b′kj

= r(ak1a
′
k1 + ak2a

′
k2 + · · ·+ akna

′
kn) = rdet(A).

So the result holds for k = n. Therefore, by mathematical induction, (4)
holds for all n × n matrices where n is a natural number.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(4), The Scalar-Multiplication Property
(continued)
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(5), The Row-Addition Property

Theorem 4.2.A. Properties of the Determinant.
Let A be a square matrix.

5. The Row-Addition Property: If the product of one row of A
by a scalar r is added to a different row of A, the
determinant of the resulting matrix is the same as det(A).

Proof (continued). (5) The ith row of A is [ai1, ai2, . . . , ain] and the kth
row of A is [ak1, ak2, . . . , akn] where i 6= k. So if B is obtained from A by
adding r times Row i to Row k, that is
[rai1 + ak1, rai2 + ak2, . . . , rain + akn]. As in the proof of Property 4, the
minors satisfy Akj = Bkj and the cofactors satisfy a′kj = b′kj for
j = 1, 2, . . . , n.
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Theorem 4.2.A. Properties of the Determinant

Theorem 4.2.A(5) The Row-Addition Property (continued)

Proof (continued). Using Theorem 4.2, “General Expansion by Minors,”
and expanding all determinant along the kth row, we have

det(B) = bk1b
′
k1 + bk2b

′
k2 + · · ·+ bknb

′
kn

= (rai1 + ak1)a
′
k1 + (rai2 + ak2)a

′
k2 + · · ·+ (rain + akn)a

′
kn

since bkj = raij + akj and b′kj = akj

= r(ai1a
′
k1 + ai2a

′
k2 + · · ·+ aina

′
kn)

+(ak1a
′
k1 + ak2a

′
k2 + · · ·+ akna

′
kn)

= rdet(C ) + det(A)

where matrix C is an n× n matrix with the same rows as matrix A, except
that the kth row of C is the same as the ith row of A. Since i 6= k, then
Row i and Row k of C are the same and so by Property 3, det(C ) = 0.
Therefore, det(B) = det(A), as claimed.
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Page 261 Number 8

Page 261 Number 8

Page 261 Number 8. Use row reduction and Theorem 4.2.A to find

det(A) for A =


2 0 −1 7
6 1 0 4
8 −2 1 0
4 1 0 2

 .

Solution. Row reducing we have

A =


2 0 −1 7
6 1 0 4
8 −2 1 0
4 1 0 2


R2 → R2 − 3R1
R3 → R3 − 4R1

˜R4 → R4 − 2R1


2 0 −1 7
0 1 3 −17
0 −2 5 −28
0 1 2 −12



R3→R3+2R2

˜R4 → R4 − R2


2 0 −1 7
0 1 3 −17
0 0 11 −62
0 0 −1 5

 R3↔R4

˜


2 0 −1 7
0 1 3 −17
0 0 −1 5
0 0 11 −62
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Page 261 Number 8

Page 261 Number 8 (continued)

Page 261 Number 8. Use row reduction and Theorem 4.2.A to find

det(A) for A =


2 0 −1 7
6 1 0 4
8 −2 1 0
4 1 0 2

 .

Solution (continued). . . .
2 0 −1 7
0 1 3 −17
0 0 −1 5
0 0 11 −62

 R4→R4+11R3

˜


2 0 −1 7
0 1 3 −17
0 0 −1 5
0 0 0 −7

 = H.

So A ∼ H through a sequence of 6 row-additions and one row-interchange.
Hence, by Theorem 4.2.A (Properties 2 and 5) det(A) = −det(H). Now H
is upper-triangular, so as shown in Page 255 Example 4,

det(H) = (2)(1)(−1)(−7) = 14. Hence, det(A) = −det(H) = −14. �
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Theorem 4.3. Determinant Criterion for Invertibility

Theorem 4.3

Theorem 4.3. Determinant Criterion for Invertibility.
A square matrix A is invertible if and only if det(A) 6= 0. Equivalently, A is
singular if and only if det(A) = 0.

Proof. As commented above, A can be reduced to an echelon form H
without multiplying rows by scalars (i.e., “row scaling”) so
det(A) = ±det(H). The H is upper triangular and so by Page 255
Example 4, the determinant of A is the product of its diagonal entries.

Now A is invertible if and only if A has only nonzero entries on its main
diagonal since by Theorem 1.12, “Conditions for A−1 to Exist,” A is
invertible if and only if it is row equivalent to I. So
det(A) = ±det(H) 6= 0 if and only if A is invertible.
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Theorem 4.4. The Multiplicative Property

Theorem 4.4

Theorem 4.4. The Multiplicative Property.
If A and B are n × n matrices, then det(AB) = det(A)det(B).

Proof. First, if A is a diagonal matrix then

AB =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn



=


a11b11 a11b12 · · · a11b1n

a22b21 a22b22 · · · a22b2n
...

...
. . .

...
annbn1 annbn2 · · · annbnn


and so by Theorem 4.2.A(4), “The Scalar-Multiplication Property,”
det(AB) = a11a22 · · · anndet(B) = det(A)det(B) because A upper
triangular implies det(A) = a11a22 · · · ann by Page 255 Example 4.
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Theorem 4.4. The Multiplicative Property

Theorem 4.4 (continued 1)

Proof (continued). Second, if A is not invertible then AB is not
invertible by Exercise 30, so by Theorem 4.1, “Determinant Criterion for
Invertibility,” det(A) = det(AB) = 0.

Third, for A invertible then as seen in the proof of Theorem 4.3,
“Determinant Criterion for Invertibility,” A can be row reduced through
row-interchange and row-addition elementary row operations to an
upper-triangular matrix with nonzero entries on the diagonal. We can then
use row-interchange and row-addition, as we would in the Gauss-Jordan
Method, to reduce A to a diagonal matrix where no diagonal entries are 0.
So there is a matrix E , a product of elementary matrices corresponding to
row-interchange and row-addition, such that D = EA where D is the
diagonal matrix just described. Then Theorem 4.2.A(2) and (5),
“Row-Interchange Property” and “Row-Addition Property,” imply that
det(A) = (−1)rdet(D) where r is the number of row interchanges used in
the row reduction of A to D.
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Theorem 4.4. The Multiplicative Property

Theorem 4.4 (continued 2)

Theorem 4.4. The Multiplicative Property.
If A and B are n × n matrices, then det(AB) = det(A)det(B).

Proof (continued). The same sequence of elementary row operations will
reduce the matrix AB to the matrix E (AB) = (EA)B = DB. So, similar to
the determinant of A, we have det(AB) = (−1)rdet(DB). Therefore,

det(AB) = (−1)rdet(DB)

= (−1)rdet(D)det(B) since we showed that

the theorem holds if the first matrix is diagonal

= ((−1)rdet(D))det(B)

= det(A)det(B) since det(A) = (−1)rdet(D).

Hence, det(AB) = det(A)det(B) in general.
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Page 262 Number 28

Page 262 Number 28

Page 262 Number 28. Find the values of λ for which the matrix

A =

 2− λ 0 0
0 1− λ 4
0 1 1− λ

 is singular.

Solution. By Theorem 4.3, “Determinant Criterion for Invertibility,” A is
singular if and only if det(A) = 0. We have by the definition of
determinant of a 3× 3 matrix that

det(A) = (2− λ)

∣∣∣∣ 1− λ 4
1 1− λ

∣∣∣∣− (0) + (0)

= (2− λ) ((1− λ)(1− λ)− (4)(1)) = (2− λ)(1− 2λ + λ2 − 4)

= (2− λ)(λ2 − 2λ− 3) = (2− λ)(λ− 3)(λ + 1).

So det(A) = 0 if and only if λ = −1, λ = 2, or λ = 3. That is, A is

singular if and only if λ = −1, λ = 2, or λ = 3.

Note. We’ll see why this type of problem is of interest in the next chapter.
�
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Page 262 Number 30

Page 262 Number 30

Page 262 Number 30. If A and B are n× n matrices and if A is singular,
prove (without using Theorem 4.4) that AB is also singular.

Solution. We give a proof by contradiction. Let A be singular and
ASSUME that AB is nonsingular. Then there is (AB)−1 where
(AB)(AB)−1 = I.

But then by Theorem 1.3.A, “Associativity of Matrix
Multiplication,” A(B(AB)−1) = I and so B(AB)−1 is the inverse of A (by
Theorem 1.11, “A Commutative Property,” we have (B(AB)−1)A = I
also). But this CONTRADICTS the hypothesis that A is singular. So the
assumption that AB is nonsingular is false and hence AB is singular, as
claimed.
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Page 262 Number 32

Page 262 Number 32

Page 262 Number 32. If A and C are n × n matrices with C invertible,
prove that det(A) = det(C−1AC ). HINT: By Exercise 31, for invertible C
we have det(C−1) = 1/det(C ).

Prove. By Theorem 4.4, “The Multiplicative Property,”

det(C−1AC ) = det(C−1(AC )) = det(C−1)det(AC ) = det(C−1)det(A)det(C ).

By Exercise 31, det(C−1) = 1/det(C ), so

det(C−1AC ) = (1/det(C ))det(A)det(C ) = det(A),

as claimed.
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