Linear Algebra

Chapter 4: Determinants

Section 4.3. Computation of Determinants and Cramer's Rule—Proofs of Theorems

Table of contents

- Page 271 Number 6
- 2 Theorem 4.5. Cramer's Rule
- 3 Page 272 Number 26
- Page 272 Number 18 (find adjoint)
- 5 Theorem 4.6. Property of the Adjoint
- 6 Page 272 Number 18 (find inverse)
- Page 272 Number 22
- Page 273 Number 36
- Page 273 Number 38

Page 271 Number 6. Find det(A) where $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$.

Solution. We state the elementary row operations and keep track of how they affect the determinant based on Theorem 4.2.A, "Properties of the Determinant." We have:

$$det(A) = \begin{vmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{vmatrix}$$

Page 271 Number 6. Find det(A) where $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$.

Solution. We state the elementary row operations and keep track of how they affect the determinant based on Theorem 4.2.A, "Properties of the Determinant." We have:

$$\det(A) = \begin{vmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{vmatrix}$$

Page 271 Number 6 (continued 1)

Solution (continued).

$$\begin{vmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{vmatrix} = -\begin{vmatrix} -1 & 4 & 1 & 0 & 0 \\ 3 & 2 & 0 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{vmatrix}$$
 Row Exchange:

$$R_1 \leftrightarrow R_2$$

$$= -\begin{vmatrix} -1 & 4 & 1 & 0 & 0 \\ 0 & 14 & 3 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix}$$
 Row Addition:

$$R_2 \rightarrow R_2 + 3R_1 \text{ and } R_5 \rightarrow R_5 + R_4$$

Page 271 Number 6 (continued 2)

Solution (continued). ...

$$- \begin{vmatrix} -1 & 4 & 1 & 0 & 0 \\ 0 & 14 & 3 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix} = - \begin{vmatrix} -1 & 4 & 1 & 0 & 0 \\ 0 & 14 & 3 & 0 & 0 \\ 0 & 0 & 79/14 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 6 \end{vmatrix}$$
 Row Addition:

$$R_{3} \rightarrow R_{3} + (3/14)R_{2}$$

= -(-1)(14)(79/14)(1)(6) = 474 by Example 4.2.4.

Theorem 4.5. Cramer's Rule.

Consider the linear system $A\vec{x} = \vec{b}$, where $A = [a_{ij}]$ is an $n \times n$ invertible matrix,

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

The system has a unique solution given by

$$x_k = rac{\det(B_k)}{\det(A)}$$
 for $k = 1, 2, \dots, n,$

where B_k is the matrix obtained from A by replacing the kth column vector of A by the column vector \vec{b} .

Proof. Since A is invertible, we know that the linear system $A\vec{x} = \vec{b}$ has a unique solution by Theorem 1.16. Let \vec{x} be this unique solution.

(

Theorem 4.5. Cramer's Rule.

Consider the linear system $A\vec{x} = \vec{b}$, where $A = [a_{ij}]$ is an $n \times n$ invertible matrix,

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

The system has a unique solution given by

$$x_k = rac{\det(B_k)}{\det(A)}$$
 for $k = 1, 2, \dots, n$,

where B_k is the matrix obtained from A by replacing the kth column vector of A by the column vector \vec{b} .

Proof. Since A is invertible, we know that the linear system $A\vec{x} = \vec{b}$ has a unique solution by Theorem 1.16. Let \vec{x} be this unique solution.

Theorem 4.5 (continued 1)

Proof (continued). Let X_k be the matrix obtained from the $n \times n$ identity matrix by replacing its *k*th column vector by the column vector \vec{x} , so

$$X_{k} = \begin{bmatrix} 1 & 0 & 0 & \cdots & x_{1} & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & x_{2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & x_{3} & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & & & \\ 0 & 0 & 0 & \cdots & x_{k} & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots & & \\ 0 & 0 & 0 & \cdots & x_{n} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

We now compute the product AX_k . If $j \neq k$, then the *j*th column of AX_k is the product of A and the *j*th column of the identity matrix, which is just the *j*th column of A. If j = k, then the *j*th column of AX_k is $A\vec{x} = \vec{b}$. Thus AX_k is the matrix obtained from A by replacing the *k*th column of A by the column vector \vec{b} .

()

Theorem 4.5 (continued 1)

Proof (continued). Let X_k be the matrix obtained from the $n \times n$ identity matrix by replacing its *k*th column vector by the column vector \vec{x} , so

$$X_{k} = \begin{bmatrix} 1 & 0 & 0 & \cdots & x_{1} & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & x_{2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & x_{3} & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & & & \\ 0 & 0 & 0 & \cdots & x_{k} & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots & & \\ 0 & 0 & 0 & \cdots & x_{n} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

We now compute the product AX_k . If $j \neq k$, then the *j*th column of AX_k is the product of A and the *j*th column of the identity matrix, which is just the *j*th column of A. If j = k, then the *j*th column of AX_k is $A\vec{x} = \vec{b}$. Thus AX_k is the matrix obtained from A by replacing the *k*th column of A by the column vector \vec{b} .

- (

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the statement of the theorem. From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

 $\det(A) \, \det(X_k) = \det(B_k).$

Computing det(X_k) by expanding by minors across the *k*th row (applying Theorem 4.2, "General Expansion by Minors"), we see that det(X_k) = x_k and thus det(A) x_k = det(B_k).

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the statement of the theorem. From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

 $\det(A) \, \det(X_k) = \det(B_k).$

Computing det(X_k) by expanding by minors across the *k*th row (applying Theorem 4.2, "General Expansion by Minors"), we see that det(X_k) = x_k and thus det(A) x_k = det(B_k). Because A is invertible, we know that det(A) \neq 0 by Theorem 4.3, "Determinant Criterion for Invertibility," and so $x_k = \det(B_k)/\det(A)$ as claimed.

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the statement of the theorem. From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

 $\det(A) \, \det(X_k) = \det(B_k).$

Computing det(X_k) by expanding by minors across the *k*th row (applying Theorem 4.2, "General Expansion by Minors"), we see that det(X_k) = x_k and thus det(A) x_k = det(B_k). Because *A* is invertible, we know that det(A) \neq 0 by Theorem 4.3, "Determinant Criterion for Invertibility," and so $x_k = \det(B_k)/\det(A)$ as claimed.

Page 272 Number 26. Use Cramer's Rule to solve $\begin{array}{c} 3x_1 + x_2 = 5\\ 2x_1 + x_2 = 0 \end{array}$ Solution. We have $A = \begin{bmatrix} 3 & 1\\ 2 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5\\ 0 \end{bmatrix}$. So $B_1 = \begin{bmatrix} 5 & 1\\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 3 & 5\\ 2 & 0 \end{bmatrix}$.

Page 272 Number 26. Use Cramer's Rule to solve $\begin{array}{rrrr} 3x_1 & + & x_2 & = & 5 \\ 2x_1 & + & x_2 & = & 0 \end{array}$

Solution. We have
$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$. So $B_1 = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$. Next, det $(A) = (3)(1) - (1)(2) = 1$, det $(B_1) = (5)(1) - (1)(0) = 5$, and det $(B_2) = (3)(0) - (5)(2) = -10$. So by Cramer's Rule,

$$x_1 = \frac{\det(B_1)}{\det(A)} = \frac{5}{1} = 5 \text{ and } x_2 = \frac{\det(B_2)}{\det(A)} = \frac{-10}{1} = -10.$$

So $x_1 = 5$ and $x_2 = -10$. \Box

Page 272 Number 26. Use Cramer's Rule to solve $\begin{array}{rrrr} 3x_1 & + & x_2 & = & 5 \\ 2x_1 & + & x_2 & = & 0 \end{array}$.

Solution. We have
$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$. So $B_1 = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$. Next, det $(A) = (3)(1) - (1)(2) = 1$, det $(B_1) = (5)(1) - (1)(0) = 5$, and det $(B_2) = (3)(0) - (5)(2) = -10$. So by Cramer's Rule,

$$x_1 = \frac{\det(B_1)}{\det(A)} = \frac{5}{1} = 5 \text{ and } x_2 = \frac{\det(B_2)}{\det(A)} = \frac{-10}{1} = -10.$$

$$= 5 \text{ and } x_2 = -10.$$

So $|x_1|$

Page 272 Number 18. Find the adjoint of A =

$$\begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}.$$

-

Solution. First, we compute the 9 cofactors:

$$\begin{aligned} a'_{11} &= \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = -\begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9, \\ a'_{21} &= -\begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, \ a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, \ a'_{23} = -\begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3, \\ a'_{31} &= \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} = -\begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3, \end{aligned}$$

Page 272 Number 18. Find the adjoint of A =

$$\begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}.$$

-

-

Solution. First, we compute the 9 cofactors:

$$\begin{aligned} a'_{11} &= \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = -\begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9, \\ a'_{21} &= -\begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, \ a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, \ a'_{23} = -\begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3, \\ a'_{31} &= \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} &= -\begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} &= \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3, \\ so \ A' &= [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix} \dots \end{aligned}$$

Page 272 Number 18. Find the adjoint of $A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ 5 & 1 & 4 \end{bmatrix}$.

Solution. First, we compute the 9 cofactors:

 $a'_{11} = \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = -\begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9,$ $a'_{21} = -\begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, a'_{23} = -\begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3,$ $a'_{31} = \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} = -\begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3,$ so $A' = [a'_{ij}] = \begin{vmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{vmatrix} \dots$

Page 272 Number 18 (continued)

Page 272 Number 18. Find the adjoint of
$$A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}$$
.
Solution (continued). ... $A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix}$ and
 $adj(A) = (A')^T = \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix}$.

Page 272 Number 18 (continued)

Page 272 Number 18. Find the adjoint of
$$A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}$$
.
Solution (continued). ... $A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix}$ and
 $adj(A) = (A')^T = \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix}$.

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

$(\operatorname{adj}(A))A = A\operatorname{adj}(A) = (\det(A))\mathcal{I}.$

Proof. Let $A = [a_{ij}]$. Define *B* as the matrix which results from replacing Row *j* of *A* with Row *i* of *A*. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$det(B) = \begin{cases} det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j, \text{ by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}$$

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

$$(\operatorname{adj}(A))A = A\operatorname{adj}(A) = (\operatorname{det}(A))\mathcal{I}.$$

Proof. Let $A = [a_{ij}]$. Define *B* as the matrix which results from replacing Row *j* of *A* with Row *i* of *A*. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$det(B) = \begin{cases} det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j \text{, by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}$$

Now we can expand det(*B*) about the *j*th row of *B* to get by Theorem 4.2, "General Expansion by Minors," that det(*B*) = $\sum_{s=1}^{n} a_{is}a'_{is}$ and so

$$\sum_{s=1}^{n} a_{is} a'_{js} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
(2)

Notice that the (i,j) entry of $A(A')^T$ is $\sum_{k=1}^n a_{ik}a'_{jk}$ where $A' = [a'_{ij}]$.

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

$$(\operatorname{adj}(A))A = A\operatorname{adj}(A) = (\operatorname{det}(A))\mathcal{I}.$$

Proof. Let $A = [a_{ij}]$. Define *B* as the matrix which results from replacing Row *j* of *A* with Row *i* of *A*. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$det(B) = \begin{cases} det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j \text{, by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}$$

Now we can expand det(*B*) about the *j*th row of *B* to get by Theorem 4.2, "General Expansion by Minors," that det(*B*) = $\sum_{s=1}^{n} a_{is}a'_{is}$ and so

$$\sum_{s=1}^{n} a_{is} a'_{js} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
(2)

Notice that the (i,j) entry of $A(A')^T$ is $\sum_{k=1}^n a_{ik}a'_{jk}$ where $A' = [a'_{ij}]$.

Theorem 4.6 (continued)

Theorem 4.6. Property of the Adjoint. Let *A* be $n \times n$. Then

$$(\operatorname{adj}(A))A = A\operatorname{adj}(A) = (\operatorname{det}(A))\mathcal{I}.$$

Proof (continued). Since we can express the right-hand side of (2) as $det(A)\mathcal{I}$, then we have $A(A')^{T} = A adj(A) = det(A)\mathcal{I}$.

Similarly if matrix C results from replacing Column i of A with Column j of A and by computing det(C) by expanding along the ith column of C we get

$$\sum_{r=1}^{n} a'_{ri}a'_{rj} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases},$$

and so $(A')^T A = \operatorname{adj}(A)A = \operatorname{det}(A)\mathcal{I}$. Hence, $\operatorname{adj}(A)A = A\operatorname{adj}(A) = \operatorname{det}(A)\mathcal{I}$, as claimed.

Theorem 4.6 (continued)

Theorem 4.6. Property of the Adjoint. Let *A* be $n \times n$. Then

$$(\operatorname{adj}(A))A = A\operatorname{adj}(A) = (\operatorname{det}(A))\mathcal{I}.$$

Proof (continued). Since we can express the right-hand side of (2) as $det(A)\mathcal{I}$, then we have $A(A')^{T} = A adj(A) = det(A)\mathcal{I}$.

Similarly if matrix C results from replacing Column i of A with Column j of A and by computing det(C) by expanding along the ith column of C we get

$$\sum_{r=1}^{n} a'_{ri}a'_{rj} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases},$$

and so $(A')^T A = \operatorname{adj}(A)A = \operatorname{det}(A)\mathcal{I}$. Hence, $\operatorname{adj}(A)A = A\operatorname{adj}(A) = \operatorname{det}(A)\mathcal{I}$, as claimed.

Page 272 Number 18. Find the inverse of $A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}$ using adj(A).

Solution. First, we compute det(A) by expanding along the first row:

$$det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.$$

Page 272 Number 18. Find the inverse of
$$A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}$$
 using $adj(A)$.

Solution. First, we compute det(A) by expanding along the first row:

$$det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.$$

So by Corollary 4.3.A, "Formula for A^{-1} ," we have (using adj(A) computed above)

$$A^{-1} = \frac{\operatorname{adj}(A)}{\operatorname{det}(A)} = \frac{1}{45} \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix} = \begin{vmatrix} 2 & 1 & -1 \\ -2 & 9 & 6 \\ 3 & -1 & 1 \end{vmatrix}.$$

Page 272 Number 18. Find the inverse of
$$A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}$$
 using $adj(A)$.

Solution. First, we compute det(A) by expanding along the first row:

$$det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.$$

So by Corollary 4.3.A, "Formula for A^{-1} ," we have (using adj(A) computed above)

$$A^{-1} = \frac{\operatorname{adj}(A)}{\operatorname{det}(A)} = \frac{1}{45} \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & 9 & 6 \\ 3 & -1 & 1 \end{bmatrix}.$$

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

Solution. We know from Corollary 4.3.A, "Formula for A^{-1} ," that $A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A)$. Now $\operatorname{det}(A^{-1}) = 1/\operatorname{det}(A)$ by Exercise 4.2.31, so $\operatorname{det}(A) = 1/\operatorname{det}(A^{-1}) = 1/3$.

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and det $(A^{-1}) = 3$, find the matrix A.

Solution. We know from Corollary 4.3.A, "Formula for A^{-1} ," that $A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A)$. Now $\operatorname{det}(A^{-1}) = 1/\operatorname{det}(A)$ by Exercise 4.2.31, so $\operatorname{det}(A) = 1/\operatorname{det}(A^{-1}) = 1/3$. If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}$, $a'_{21} = -a_{12}$, and $a'_{22} = a_{11}$. So $A' = \begin{bmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{bmatrix}$ and $\operatorname{adj}(A) = (A')^{T} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \operatorname{det}(A)A^{-1} = \frac{1}{3}\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and so $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$.

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and det $(A^{-1}) = 3$, find the matrix A.

Solution. We know from Corollary 4.3.A, "Formula for A^{-1} ." that $A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A)$. Now $\operatorname{det}(A^{-1}) = 1/\operatorname{det}(A)$ by Exercise 4.2.31, so $\det(A) = 1/\det(A^{-1}) = 1/3$. If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}, a'_{21} = -a_{12}, \text{ and } a'_{22} = a_{11}.$ So $A' = \begin{vmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{vmatrix}$ and $\operatorname{adj}(A) = (A')^T = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \operatorname{det}(A)A^{-1} = \frac{1}{3}\begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and so}$ $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$. Therefore $A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} d/3 & -b/3 \\ -c/3 & a/3 \end{vmatrix} . \square$

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

Solution. We know from Corollary 4.3.A, "Formula for A^{-1} ." that $A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A)$. Now $\operatorname{det}(A^{-1}) = 1/\operatorname{det}(A)$ by Exercise 4.2.31, so $\det(A) = 1/\det(A^{-1}) = 1/3$. If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}, a'_{21} = -a_{12}, \text{ and } a'_{22} = a_{11}.$ So $A' = \begin{vmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{vmatrix}$ and $\operatorname{adj}(A) = (A')^T = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \operatorname{det}(A)A^{-1} = \frac{1}{3}\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and so $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$. Therefore $\begin{vmatrix} A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{bmatrix} d/3 & -b/3 \\ -c/3 & a/3 \end{vmatrix}. \square$

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ij}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ij} = 0$ for i > j. Now the minor matrix A_{ij} (obtained from A by eliminating Row *i* and Column *j* from A) is upper triangular for i < j:

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ij}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ij} = 0$ for i > j. Now the minor matrix A_{ij} (obtained from A by eliminating Row *i* and Column *j* from A) is upper triangular for i < j:

	a_{11}	a_{12}	a_{13}		$a_{1,i-1}$	a_{1i}	$a_{1,i+1}$		$a_{1,j-1}$	a_{1j}	$a_{1,j+1}$		a_{1n}
	0	a ₂₂	a ₂₃		$a_{2,i-1}$	a_{2i}	$a_{2,i+1}$		$a_{2,j-1}$	a_{2j}	$a_{2,j+1}$		a_{2n}
	0	0	a ₃₃		$a_{3,i-1}$	a_{3i}	$a_{3,i+1}$		$a_{3,j-1}$	a _{3j}	$a_{3,j+1}$		a_{3n}
	- 1	:	:	ъ.	:	:	:	$\gamma_{\rm c}$:		:	Ν.	:
	0	0	0		$a_{i-1,i-1}$	$a_{i-1,i}$	$a_{i-1,i+1}$		$a_{i-1,j-1}$	$a_{i-1,j}$	$a_{i-1,j+1}$		$a_{i-1,n}$
Row i	0	0	0		0	a_{ii}	$a_{i,i+1}$		$a_{i,j-1}$	a_{ij}	$a_{i,j+1}$		a_{in}
	0	0	0		0	0	$a_{i+1,i+1}$		$a_{i+1,j-1}$	$a_{i+1,j}$	$a_{i+1,j+1}$		$a_{i+1,n}$
	+	:	:	Ν.	:	:	13	$\gamma_{\rm c}$:		13	Ν.	
	0	0	0		0	0	0		$a_{j-1,j-1}$	$a_{j-1,j}$	$a_{j-1,j+1}$		$a_{j-1,n}$
	0	0	0		0	0	0		0	a _{jj}	$a_{j,j+1}$		a_{jn}
	0	0	0		0	0	0		0	0	$a_{j+1,j+1}$		$a_{j+1,n}$
	- 1	:	:	Ν.	:	:	:	N	:	:	:	Ν.	:
	0	0	0		0	0	0		0	0	0		a_{nn}

Col	umn	i

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ij}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ij} = 0$ for i > j. Now the minor matrix A_{ij} (obtained from A by eliminating Row *i* and Column *j* from A) is upper triangular for i < j:

	a_{11}	a_{12}	a_{13}		$a_{1,i-1}$	a_{1i}	$a_{1,i+1}$		$a_{1,j-1}$	a_{1j}	$a_{1,j+1}$		a_{1n}
	0	a ₂₂	a ₂₃		$a_{2,i-1}$	a_{2i}	$a_{2,i+1}$		$a_{2,j-1}$	a_{2j}	$a_{2,j+1}$		a_{2n}
	0	0	a ₃₃		$a_{3,i-1}$	a_{3i}	$a_{3,i+1}$		$a_{3,j-1}$	a _{3j}	$a_{3,j+1}$		a_{3n}
	- 1	:	:	ъ.	:	:	:	$\gamma_{\rm c}$:		:	Ν.	:
	0	0	0		$a_{i-1,i-1}$	$a_{i-1,i}$	$a_{i-1,i+1}$		$a_{i-1,j-1}$	$a_{i-1,j}$	$a_{i-1,j+1}$		$a_{i-1,n}$
Row i	0	0	0		0	a_{ii}	$a_{i,i+1}$		$a_{i,j-1}$	a_{ij}	$a_{i,j+1}$		a_{in}
	0	0	0		0	0	$a_{i+1,i+1}$		$a_{i+1,j-1}$	$a_{i+1,j}$	$a_{i+1,j+1}$		$a_{i+1,n}$
	+	:	:	Ν.	:	:	13	$\gamma_{\rm e}$:		13	Ν.	
	0	0	0		0	0	0		$a_{j-1,j-1}$	$a_{j-1,j}$	$a_{j-1,j+1}$		$a_{j-1,n}$
	0	0	0		0	0	0		0	a _{jj}	$a_{j,j+1}$		a_{jn}
	0	0	0		0	0	0		0	0	$a_{j+1,j+1}$		$a_{j+1,n}$
	- 1	:	:	Ν.	:	:	:	N	:	:	:	Ν.	:
	0	0	0		0	0	0		0	0	0		a_{nn}

Col	umn	i

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with i < j, $(n-1) \times (n-1)$ minor matrix A_{ij} has a 0 in *its* (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for i < j, A_{ij} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), $det(A_{ij}) = 0$ and so cofactor $a_{ij} = (-1)^{i+j}det(A_{ij}) = 0$ for i < j. So matrix A' has 0 in entry (i, j) whenever i < j. That is, A' is lower triangular.

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with i < j, $(n-1) \times (n-1)$ minor matrix A_{ii} has a 0 in *its* (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for i < j, A_{ii} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), det $(A_{ii}) = 0$ and so cofactor $a_{ii} = (-1)^{i+j} det(A_{ii}) = 0$ for i < j. So matrix A' has 0 in entry (i, j) whenever i < j. That is, A' is lower triangular. Hence $\operatorname{adj}(A) = (A')^T$ is upper triangular. Since A is nonsingular then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. By Corollary 4.3.A, "A Formula for the Inverse of an Invertible Matrix," $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ and so A^{-1} is also upper triangular.

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with i < j, $(n-1) \times (n-1)$ minor matrix A_{ii} has a 0 in *its* (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for i < j, A_{ii} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), det $(A_{ii}) = 0$ and so cofactor $a_{ii} = (-1)^{i+j} det(A_{ii}) = 0$ for i < j. So matrix A' has 0 in entry (i, j) whenever i < j. That is, A' is lower triangular. Hence $adj(A) = (A')^T$ is upper triangular. Since A is nonsingular then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. By Corollary 4.3.A, "A Formula for the Inverse of an Invertible Matrix," $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$ and so A^{-1} is also upper triangular.

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $det(adj(A)) = det(A)^{n-1}$.

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$. By Exercise 4.2.31, $\det(A^{-1}) = 1/\det(A)$, so we have

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $det(adj(A)) = det(A)^{n-1}$.

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$. By Exercise 4.2.31, $\det(A^{-1}) = 1/\det(A)$, so we have

$$\frac{1}{\det(A)} = \det(A^{-1}) = \det\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right)$$
$$= \frac{1}{\det(A)^n}\det(\operatorname{adj}(A)) \text{ by Theorem 4.2.A(4), "Scalar Multiplication Property," applied to each of the n rows of adj(A).$$

So $det(adj(A)) = det(A)^n/det(A) = det(A)^{n-1}$, as claimed.

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $det(adj(A)) = det(A)^{n-1}$.

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$. By Exercise 4.2.31, $\det(A^{-1}) = 1/\det(A)$, so we have

$$\frac{1}{\det(A)} = \det(A^{-1}) = \det\left(\frac{1}{\det(A)}\operatorname{adj}(A)\right)$$
$$= \frac{1}{\det(A)^n}\det(\operatorname{adj}(A)) \text{ by Theorem 4.2.A(4), "Scalar Multiplication Property," applied to each of the n rows of adj(A).$$

So $det(adj(A)) = det(A)^n/det(A) = det(A)^{n-1}$, as claimed.

. . .

Page 273 Number 38 (continued)

- **Page 273 Number 38.** Let A be an $n \times n$ nonsingular matrix. Prove that $det(adj(A)) = det(A)^{n-1}$.
- **Note.** This result also holds if A is an $n \times n$ singular matrix. If A is singular then det(A) = 0 by Theorem 4.3, "Determinant Criterion for Invertibility." By Exercise 37, A is invertible if and only if adj(A) is invertible. So det(A) = 0 implies det(adj(A)) = 0 (again, by Theorem 4.3), and so Exercise 38 holds for nonsingular square matrices as well.