Linear Algebra

Chapter 4: Determinants

Section 4.3. Computation of Determinants and Cramer's Rule—Proofs of Theorems

Table of contents

- [Page 271 Number 6](#page-2-0)
- 2 [Theorem 4.5. Cramer's Rule](#page-6-0)
- 3 [Page 272 Number 26](#page-13-0)
- [Page 272 Number 18 \(find adjoint\)](#page-16-0)
- 5 [Theorem 4.6. Property of the Adjoint](#page-21-0)
- 6 [Page 272 Number 18 \(find inverse\)](#page-26-0)
	- [Page 272 Number 22](#page-29-0)
- 8 [Page 273 Number 36](#page-33-0)
- [Page 273 Number 38](#page-39-0)

Page 271 Number 6. Find det (A) where $A =$

Solution. We state the elementary row operations and keep track of how they affect the determinant based on Theorem 4.2.A, "Properties of the Determinant." We have:

 $\sqrt{ }$

3 2 0 0 0 −1 4 1 0 0 0 −3 5 2 0 0 0 0 1 4 0 0 0 −1 2 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

 $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ I $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ ļ I $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ I $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ l

$$
\det(A) = \begin{vmatrix}\n3 & 2 & 0 & 0 & 0 \\
-1 & 4 & 1 & 0 & 0 \\
0 & -3 & 5 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & -1 & 2\n\end{vmatrix}
$$

Page 271 Number 6. Find det (A) where $A =$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

Solution. We state the elementary row operations and keep track of how they affect the determinant based on Theorem 4.2.A, "Properties of the Determinant." We have:

 $\sqrt{ }$

3 2 0 0 0 −1 4 1 0 0 0 −3 5 2 0 0 0 0 1 4 0 0 0 −1 2 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$.

$$
det(A) = \begin{vmatrix} 3 & 2 & 0 & 0 & 0 \\ -1 & 4 & 1 & 0 & 0 \\ 0 & -3 & 5 & 2 & 0 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 & 2 \end{vmatrix}
$$

Page 271 Number 6 (continued 1)

Solution (continued).

 $\overline{}$ $\Big\}$ $\Big\}$ $\Big\}$ $\Big\}$ $\Big\}$ $\bigg\}$ $\Big\}$ $\Big\}$ $\begin{array}{c} \end{array}$

$$
\begin{vmatrix}\n3 & 2 & 0 & 0 & 0 \\
-1 & 4 & 1 & 0 & 0 \\
0 & -3 & 5 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & -1 & 2\n\end{vmatrix} = - \begin{vmatrix}\n-1 & 4 & 1 & 0 & 0 \\
3 & 2 & 0 & 0 & 0 \\
0 & -3 & 5 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & -1 & 2\n\end{vmatrix}
$$
 Row Exchange:
\n
$$
= - \begin{vmatrix}\n-1 & 4 & 1 & 0 & 0 \\
0 & 14 & 3 & 0 & 0 \\
0 & -3 & 5 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 6\n\end{vmatrix}
$$
 Row Addition:
\n
$$
R_2 \rightarrow R_2 + 3R_1
$$
 and $R_5 \rightarrow R_5 + R_4$

Page 271 Number 6 (continued 2)

Solution (continued). ...

$$
-\begin{vmatrix}\n-1 & 4 & 1 & 0 & 0 \\
0 & 14 & 3 & 0 & 0 \\
0 & -3 & 5 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 6\n\end{vmatrix} = -\begin{vmatrix}\n-1 & 4 & 1 & 0 & 0 \\
0 & 14 & 3 & 0 & 0 \\
0 & 0 & 79/14 & 2 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 6\n\end{vmatrix} \xrightarrow{\text{Row Addition:}} R_{3} \rightarrow R_{3} + (3/14)R_{2}
$$

 $= -(-1)(14)(79/14)(1)(6) = 474$ by Example 4.2.4.

 \Box

Theorem 4.5. Cramer's Rule.

Consider the linear system $A\vec{x} = \vec{b}$, where $A = [a_{ii}]$ is an $n \times n$ invertible matrix,

$$
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$

.

The system has a unique solution given by

$$
x_k = \frac{\det(B_k)}{\det(A)}
$$
 for $k = 1, 2, ..., n$,

where B_k is the matrix obtained from A by replacing the kth column vector of A by the column vector b .

Proof. Since A is invertible, we know that the linear system $A\vec{x} = \vec{b}$ has a unique solution by Theorem 1.16. Let \vec{x} be this unique solution.

Theorem 4.5. Cramer's Rule.

Consider the linear system $A\vec{x} = \vec{b}$, where $A = [a_{ii}]$ is an $n \times n$ invertible matrix,

$$
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$

.

The system has a unique solution given by

$$
x_k = \frac{\det(B_k)}{\det(A)}
$$
 for $k = 1, 2, ..., n$,

where B_k is the matrix obtained from A by replacing the kth column vector of A by the column vector b .

Proof. Since A is invertible, we know that the linear system $A\vec{x} = \vec{b}$ has a unique solution by Theorem 1.16. Let \vec{x} be this unique solution.

Theorem 4.5 (continued 1)

Proof (continued). Let X_k be the matrix obtained from the $n \times n$ identity matrix by replacing its kth column vector by the column vector \vec{x} , so

$$
X_k = \left[\begin{array}{cccccc} 1 & 0 & 0 & \cdots & x_1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & x_2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & x_3 & 0 & 0 & \cdots & 0 \\ & & & & & \vdots & & & \\ 0 & 0 & 0 & \cdots & x_k & 0 & 0 & \cdots & 0 \\ & & & & & & \vdots & & \\ 0 & 0 & 0 & \cdots & x_n & 0 & 0 & \cdots & 1 \end{array}\right]
$$

We now compute the product AX_k . If $j \neq k$, then the *j*th column of AX_k is the product of A and the *j*th column of the identity matrix, which is just the *j*th column of A. If $j = k$, then the *j*th column of AX_k is $A\vec{x} = \vec{b}$. Thus AX_k is the matrix obtained from A by replacing the kth column of A by the column vector *.*

.

Theorem 4.5 (continued 1)

Proof (continued). Let X_k be the matrix obtained from the $n \times n$ identity matrix by replacing its kth column vector by the column vector \vec{x} , so

$$
X_k = \begin{bmatrix} 1 & 0 & 0 & \cdots & x_1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & x_2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & x_3 & 0 & 0 & \cdots & 0 \\ & & & & & \vdots & & & \\ 0 & 0 & 0 & \cdots & x_k & 0 & 0 & \cdots & 0 \\ & & & & & & \vdots & & \\ 0 & 0 & 0 & \cdots & x_n & 0 & 0 & \cdots & 1 \end{bmatrix}
$$

We now compute the product AX_k . If $j \neq k$, then the *j*th column of AX_k is the product of A and the j th column of the identity matrix, which is just the jth column of A. If $j = k$, then the jth column of AX_k is $A\vec{x} = \vec{b}$. Thus AX_k is the matrix obtained from A by replacing the kth column of A by the column vector \vec{b} .

.

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the **statement of the theorem.** From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

 $det(A) det(X_k) = det(B_k)$.

Computing $det(X_k)$ by expanding by minors across the kth row (applying Theorem 4.2, "General Expansion by Minors"), we see that $\det(X_k) = x_k$ and thus det(A) $x_k =$ det(B_k).

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the statement of the theorem. From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

 $det(A) det(X_k) = det(B_k)$.

Computing det (X_k) by expanding by minors across the kth row (applying Theorem 4.2, "General Expansion by Minors"), we see that $det(X_k) = x_k$ and thus $\det(A)x_k = \det(B_k)$. Because A is invertible, we know that $det(A) \neq 0$ by Theorem 4.3, "Determinant Criterion for Invertibility," and so $x_k = \det(B_k) / \det(A)$ as claimed.

Theorem 4.5 (continued 2)

Proof (continued). That is, AX_k is the matrix B_k described in the statement of the theorem. From the equation $AX_k = B_k$ and Theorem 4.4, "The Multiplicative Property," we have

$$
\det(A) \, \det(X_k) = \det(B_k).
$$

Computing det (X_k) by expanding by minors across the kth row (applying Theorem 4.2, "General Expansion by Minors"), we see that $det(X_k) = x_k$ and thus det(A) $x_k = det(B_k)$. Because A is invertible, we know that $det(A) \neq 0$ by Theorem 4.3, "Determinant Criterion for Invertibility," and so $x_k = \det(B_k) / \det(A)$ as claimed.

Page 272 Number 26. Use Cramer's Rule to solve $3x_1 + x_2 = 5$
 $2x_1 + x_2 = 0$ **Solution.** We have $A = \left[\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array}\right]$ and $\vec{b} = \left[\begin{array}{cc} 5 & 1 \\ 0 & 1 \end{array}\right]$ 0 . So $B_1 = \left[\begin{array}{cc} 5 & 1 \\ 0 & 1 \end{array} \right]$ and $B_2 = \left[\begin{array}{cc} 3 & 5 \ 2 & 0 \end{array} \right].$

Page 272 Number 26. Use Cramer's Rule to solve $3x_1 + x_2 = 5$
 $2x_1 + x_2 = 0$

Solution. We have
$$
A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}
$$
 and $\vec{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$. So $B_1 = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$. Next, $det(A) = (3)(1) - (1)(2) = 1$,
\n $det(B_1) = (5)(1) - (1)(0) = 5$, and $det(B_2) = (3)(0) - (5)(2) = -10$. So
\nby Cramer's Rule,

$$
x_1 = \frac{\det(B_1)}{\det(A)} = \frac{5}{1} = 5
$$
 and $x_2 = \frac{\det(B_2)}{\det(A)} = \frac{-10}{1} = -10.$

So
$$
x_1 = 5
$$
 and $x_2 = -10$.

Page 272 Number 26. Use Cramer's Rule to solve $3x_1 + x_2 = 5$
 $2x_1 + x_2 = 0$

Solution. We have
$$
A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}
$$
 and $\vec{b} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$. So $B_1 = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix}$ and $B_2 = \begin{bmatrix} 3 & 5 \\ 2 & 0 \end{bmatrix}$. Next, $det(A) = (3)(1) - (1)(2) = 1$,
\n $det(B_1) = (5)(1) - (1)(0) = 5$, and $det(B_2) = (3)(0) - (5)(2) = -10$. So
\nby Cramer's Rule,

$$
x_1 = \frac{\det(B_1)}{\det(A)} = \frac{5}{1} = 5
$$
 and $x_2 = \frac{\det(B_2)}{\det(A)} = \frac{-10}{1} = -10.$

So $x_1 = 5$ and $x_2 = -10$. \Box

Page 272 Number 18. Find the adjoint of $A =$

$$
\left[\begin{array}{rrr} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{array}\right].
$$

Solution. First, we compute the 9 cofactors:

$$
a'_{11} = \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = -\begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9,
$$

$$
a'_{21} = -\begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, \ a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, \ a'_{23} = -\begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3,
$$

$$
a'_{31} = \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} = -\begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3,
$$

Page 272 Number 18. Find the adjoint of $A=$ $\sqrt{ }$ $\overline{1}$

Solution. First, we compute the 9 cofactors:

$$
a'_{11} = \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = - \begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9,
$$

$$
a'_{21} = - \begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, \ a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, \ a'_{23} = - \begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3,
$$

$$
a'_{31} = \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} = - \begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3,
$$

so $A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix} \dots$

3 0 3 4 1 −2 −5 1 4 1 $\vert \cdot$

Page 272 Number 18. Find the adjoint of $A=$ $\sqrt{ }$ $\overline{1}$

Solution. First, we compute the 9 cofactors:

$$
a'_{11} = \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = 6, \ a'_{12} = - \begin{vmatrix} 4 & -2 \\ -5 & 4 \end{vmatrix} = -6, \ a'_{13} = \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 9,
$$

$$
a'_{21} = - \begin{vmatrix} 0 & 3 \\ 1 & 4 \end{vmatrix} = 3, \ a'_{22} = \begin{vmatrix} 3 & 3 \\ -5 & 4 \end{vmatrix} = 27, \ a'_{23} = - \begin{vmatrix} 3 & 0 \\ -5 & 1 \end{vmatrix} = -3,
$$

$$
a'_{31} = \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = -3, \ a'_{32} = - \begin{vmatrix} 3 & 3 \\ 4 & -2 \end{vmatrix} = 18, \ a'_{33} = \begin{vmatrix} 3 & 0 \\ 4 & 1 \end{vmatrix} = 3,
$$

so $A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix} \dots$

3 0 3 4 1 −2 −5 1 4 1 $\vert \cdot$

Page 272 Number 18 (continued)

Page 272 Number 18. Find the adjoint of
$$
A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}
$$
.
\nSolution (continued). $... A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix}$ and
\n
$$
adj(A) = (A')^{T} = \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix}.
$$

 \Box

Page 272 Number 18 (continued)

Page 272 Number 18. Find the adjoint of
$$
A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}
$$
.
\nSolution (continued). $... A' = [a'_{ij}] = \begin{bmatrix} 6 & -6 & 9 \\ 3 & 27 & -3 \\ -3 & 18 & 3 \end{bmatrix}$ and
\n
$$
adj(A) = (A')^{T} = \begin{bmatrix} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{bmatrix}.
$$

 \Box

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

 $(\text{adj}(A))A = A \text{adj}(A) = (\text{det}(A))\mathcal{I}.$

Proof. Let $A = [a_{ii}]$. Define B as the matrix which results from replacing Row *i* of *A* with Row *i* of *A*. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$
\det(B) = \begin{cases} \det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j, \text{ by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}
$$

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

$$
(\mathsf{adj}(A))A = A \mathsf{adj}(A) = (\mathsf{det}(A))\mathcal{I}.
$$

Proof. Let $A = [a_{ii}]$. Define B as the matrix which results from replacing Row j of A with Row i of A. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$
\det(B) = \begin{cases} \det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j, \text{ by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}
$$

Now we can expand det(B) about the *j*th row of B to get by Theorem 4.2, "General Expansion by Minors," that $\det(B) = \sum_{s=1}^n a_{is} a_{js}'$ and so

$$
\sum_{s=1}^{n} a_{is} a'_{js} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}
$$
 (2)

Notice that the (i, j) entry of $A(A')^{\top}$ is $\sum_{k=1}^{n} a_{ik} a'_{jk}$ where $A' = [a'_{ij}]$.

Theorem 4.6. Property of the Adjoint.

Let A be $n \times n$. Then

$$
(\mathsf{adj}(A))A = A \mathsf{adj}(A) = (\mathsf{det}(A))\mathcal{I}.
$$

Proof. Let $A = [a_{ii}]$. Define B as the matrix which results from replacing Row j of A with Row i of A. Then, by Theorem 4.2.A, "Properties of Determinants,"

$$
\det(B) = \begin{cases} \det(A) & \text{if } i = j \text{ (since } B = A) \\ 0 & \text{if } i \neq j, \text{ by Theorem 4.2.A(3), "Equal Row Property."} \end{cases}
$$

Now we can expand det(B) about the *j*th row of B to get by Theorem 4.2, "General Expansion by Minors," that $\det(B) = \sum_{s=1}^n a_{is} a_{js}'$ and so

$$
\sum_{s=1}^{n} a_{is} a'_{js} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}
$$
 (2)

Notice that the (i, j) entry of $A(A')^{\mathcal{T}}$ is $\sum_{k=1}^{n} a_{ik} a'_{jk}$ where $A' = [a'_{ij}]$.

Theorem 4.6 (continued)

Theorem 4.6. Property of the Adjoint. Let A be $n \times n$. Then

$$
(\mathsf{adj}(A))A = A \mathsf{adj}(A) = (\mathsf{det}(A))\mathcal{I}.
$$

Proof (continued). Since we can express the right-hand side of (2) as $\det(A){\cal I}$, then we have $A(A')^{\,{\sf \!{\scriptscriptstyle{T}}}}=A\, {\sf adj}(A)=\det(A){\cal I}.$

Similarly if matrix C results from replacing Column i of A with Column j of A and by computing det(C) by expanding along the *i*th column of C we get

$$
\sum_{r=1}^{n} a'_{ri} a'_{rj} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
$$

and so $(A')^T A = \mathsf{adj}(A) A = \mathsf{det}(A) \mathcal{I}$. Hence, $adj(A)A = Adj(A) = det(A)\mathcal{I}$, as claimed.

Theorem 4.6 (continued)

Theorem 4.6. Property of the Adjoint. Let A be $n \times n$. Then

$$
(\mathsf{adj}(A))A = A \mathsf{adj}(A) = (\mathsf{det}(A))\mathcal{I}.
$$

Proof (continued). Since we can express the right-hand side of (2) as $\det(A){\cal I}$, then we have $A(A')^{\,{\sf \!{\scriptscriptstyle{T}}}}=A\, {\sf adj}(A)=\det(A){\cal I}.$

Similarly if matrix C results from replacing Column i of A with Column j of A and by computing $det(C)$ by expanding along the *i*th column of C we get

$$
\sum_{r=1}^{n} a'_{ri} a'_{rj} = \begin{cases} \det(A) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases},
$$

and so $(A')^{\mathsf{T}}A = \mathsf{adj}(A)A = \mathsf{det}(A)\mathcal{I}.$ Hence, $adj(A)A = Adj(A) = det(A)I$, as claimed.

Page 272 Number 18. Find the inverse of $A=$ $\sqrt{ }$ $\overline{}$ 3 0 3 4 1 −2 −5 1 4 1 | using $adj(A)$.

Solution. First, we compute $det(A)$ by expanding along the first row:

$$
det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.
$$

Page 272 Number 18. Find the inverse of
$$
A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}
$$
 using adj(A).

Solution. First, we compute $det(A)$ by expanding along the first row:

$$
det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.
$$

So by Corollary 4.3.A, "Formula for A^{-1} ," we have (using adj (A) computed above)

$$
A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} = \frac{1}{45} \left[\begin{array}{rrr} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{array} \right] = \left[\frac{1}{15} \left[\begin{array}{rrr} 2 & 1 & -1 \\ -2 & 9 & 6 \\ 3 & -1 & 1 \end{array} \right] \right].
$$

 \Box

Page 272 Number 18. Find the inverse of
$$
A = \begin{bmatrix} 3 & 0 & 3 \\ 4 & 1 & -2 \\ -5 & 1 & 4 \end{bmatrix}
$$
 using adj(A).

Solution. First, we compute $det(A)$ by expanding along the first row:

$$
det(A) = (3) \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} - (0) + (3) \begin{vmatrix} 4 & 1 \\ -5 & 1 \end{vmatrix} = 3(6) + 3(9) = 45.
$$

So by Corollary 4.3.A, "Formula for $A^{-1},$ " we have (using adj (A) computed above)

$$
A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} = \frac{1}{45} \left[\begin{array}{rrr} 6 & 3 & -3 \\ -6 & 27 & 18 \\ 9 & -3 & 3 \end{array} \right] = \left[\frac{1}{15} \left[\begin{array}{rrr} 2 & 1 & -1 \\ -2 & 9 & 6 \\ 3 & -1 & 1 \end{array} \right].
$$

 \Box

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

Solution. We know from Corollary 4.3.A, "Formula for A^{-1} ," that $A^{-1} = \mathsf{adj}(A)/\mathsf{det}(A)$. Now $\mathsf{det}(A^{-1}) = 1/\mathsf{det}(A)$ by Exercise 4.2.31, so $\det(A)=1/\det(A^{-1})=1/3.$

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

<code>Solution.</code> We know from Corollary 4.3.A, "Formula for $A^{-1},$ " that $\mathcal{A}^{-1} = \mathsf{adj}(\mathcal{A})/\mathsf{det}(\mathcal{A})$. Now $\mathsf{det}(\mathcal{A}^{-1}) = 1/\mathsf{det}(\mathcal{A})$ by Exercise 4.2.31, so **det(A)** = 1/**det(A⁻¹)** = 1/3. If $A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}, a'_{21} = -a_{12}, \text{ and } a'_{22} = a_{11}. \text{ So } A' = \left[\begin{array}{cc} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{array} \right] \text{ and }$ $\text{\rm adj}(A) = (A')^{\mathcal T} = \left[\begin{array}{cc} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{array} \right] = \det(A) A^{-1} = \frac{1}{3}$ 3 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and so $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$.

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

<code>Solution.</code> We know from Corollary 4.3.A, "Formula for $A^{-1},$ " that $\mathcal{A}^{-1} = \mathsf{adj}(\mathcal{A})/\mathsf{det}(\mathcal{A})$. Now $\mathsf{det}(\mathcal{A}^{-1}) = 1/\mathsf{det}(\mathcal{A})$ by Exercise 4.2.31, so $\det(A) = 1/\det(A^{-1}) = 1/3.$ If $A = \left[\begin{array}{cc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array} \right]$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}, a'_{21} = -a_{12}, \text{ and } a'_{22} = a_{11}. \text{ So } A' = \left[\begin{array}{cc} a_{22} & -a_{21} \ -a_{12} & a_{11} \end{array} \right] \text{ and }$ $\mathsf{adj}(A) = (A')^{\mathcal{T}} = \left[\begin{array}{cc} \mathsf{a}_{22} & -\mathsf{a}_{12} \ -\mathsf{a}_{21} & \mathsf{a}_{11} \end{array} \right] = \mathsf{det}(A)A^{-1} = \tfrac{1}{3}$ 3 $\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]$ and so $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$. Therefore $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} d/3 & -b/3 \\ -c/3 & a/3 \end{bmatrix}$ $-c/3$ a/3 ط ∏

Page 272 Number 22. Given that $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $det(A^{-1}) = 3$, find the matrix A.

<code>Solution.</code> We know from Corollary 4.3.A, "Formula for $A^{-1},$ " that $\mathcal{A}^{-1} = \mathsf{adj}(\mathcal{A})/\mathsf{det}(\mathcal{A})$. Now $\mathsf{det}(\mathcal{A}^{-1}) = 1/\mathsf{det}(\mathcal{A})$ by Exercise 4.2.31, so $\det(A) = 1/\det(A^{-1}) = 1/3.$ If $A = \left[\begin{array}{cc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array} \right]$ then $a'_{11} = a_{22}$, $a'_{12} = -a_{21}, a'_{21} = -a_{12}, \text{ and } a'_{22} = a_{11}. \text{ So } A' = \left[\begin{array}{cc} a_{22} & -a_{21} \ -a_{12} & a_{11} \end{array} \right] \text{ and }$ $\mathsf{adj}(A) = (A')^{\mathcal{T}} = \left[\begin{array}{cc} \mathsf{a}_{22} & -\mathsf{a}_{12} \ -\mathsf{a}_{21} & \mathsf{a}_{11} \end{array} \right] = \mathsf{det}(A)A^{-1} = \tfrac{1}{3}$ 3 $\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]$ and so $a_{11} = d/3$, $a_{12} = -b/3$, $a_{21} = -c/3$, and $a_{22} = a/3$. Therefore $A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} d/3 & -b/3 \ -c/3 & a/3 \end{bmatrix}$ $-c/3$ a/3 $\big\}.\big\vert$ o

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ii}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ii} = 0$ for $i > j$. Now the minor matrix A_{ii} (obtained from A by eliminating Row *i* and Column *j* from *A*) is upper triangular for $i < j$:

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ii}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ii} = 0$ for $i > j$. Now the minor matrix A_{ii} (obtained from A by eliminating Row *i* and Column *j* from *A*) is upper triangular for $i < j$:

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution. Let $A = [a_{ii}]$ be a (square) nonsingular upper triangular matrix; that is, $a_{ii} = 0$ for $i > j$. Now the minor matrix A_{ii} (obtained from A by eliminating Row *i* and Column *j* from *A*) is upper triangular for $i < j$:

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with $i < j$, $(n-1) \times (n-1)$ minor matrix A_{ii} has a 0 in its (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for $i < j$, A_{ii} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), det $(A_{ii}) = 0$ and so cofactor $a_{ii} = (-1)^{i+j}$ det $(A_{ii}) = 0$ for $i < j$. So matrix A' has 0 in entry (i,j) whenever $i < j$. That is, A' is lower triangular.

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with $i < j$, $(n-1) \times (n-1)$ minor matrix A_{ii} has a 0 in *its* (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for $i < j$, A_{ii} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), det $(A_{ii}) = 0$ and so cofactor $a_{ii} = (-1)^{i+j}$ det $(A_{ii}) = 0$ for $i < j$. So matrix A' has 0 in entry (i,j) whenever $i < j$. That is, A' is **lower triangular.** Hence adj $(A)=(A')^\mathsf{T}$ is upper triangular. Since A is nonsingular then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. By Corollary 4.3.A, "A Formula for the Inverse of an Invertible Matrix," $A^{-1} = \frac{1}{1 + A}$ $\frac{1}{\det(A)}$ adj (A) and so A^{-1} is also upper triangular.

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular upper-triangular matrix is upper triangular.

Solution (continued). Then, with $i < j$, $(n - 1) \times (n - 1)$ minor matrix A_{ii} has a 0 in its (i, i) entry (it is element $a_{i+1,i} = 0$ in matrix A). So for $i < j$, A_{ii} is upper triangular with a 0 on the diagonal. By Example 4.2.4 (the determinant of an upper triangular square matrix is the product of the diagonal entries), det(A_{ii}) = 0 and so cofactor $a_{ii} = (-1)^{i+j}$ det(A_{ii}) = 0 for $i < j$. So matrix A' has 0 in entry (i,j) whenever $i < j$. That is, A' is lower triangular. Hence adj $(A)=(A')^\mathcal{T}$ is upper triangular. Since A is nonsingular then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. By Corollary 4.3.A, "A Formula for the Inverse of an Invertible Matrix," $A^{-1} = \frac{1}{1 + A}$ $\frac{1}{\det(A)}$ adj (A) and so A^{-1} is also upper triangular.

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $\mathsf{det}(\mathsf{adj}(A)) = \mathsf{det}(A)^{n-1}.$

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)}$ adj (A) . By Exercise 4.2.31, $\det(A^{-1}) = 1/\det(A)$, so we have

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $\mathsf{det}(\mathsf{adj}(A)) = \mathsf{det}(A)^{n-1}.$

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)}$ adj (A) . By Exercise 4.2.31, $\det(A^{-1})=1/\det(A)$, so we have

$$
\frac{1}{\det(A)} = \det(A^{-1}) = \det\left(\frac{1}{\det(A)}\text{adj}(A)\right)
$$

$$
= \frac{1}{\det(A)^n} \det(\text{adj}(A)) \text{ by Theorem 4.2.A(4), "Scalar Multiplication Property," applied to each of the n rows of $\text{adj}(A)$.
$$

So det(adj(A)) = det(A)ⁿ/det(A) = det(A)ⁿ⁻¹, as claimed.

. . .

Page 273 Number 38. Let A be an $n \times n$ nonsingular matrix. Prove that $\mathsf{det}(\mathsf{adj}(A)) = \mathsf{det}(A)^{n-1}.$

Solution. By Corollary 4.3.A, "A Formula for A^{-1} ," $A^{-1} = \frac{1}{\det(A)}$ adj (A) . By Exercise 4.2.31, $\det(A^{-1})=1/\det(A)$, so we have

$$
\frac{1}{\det(A)} = \det(A^{-1}) = \det\left(\frac{1}{\det(A)}\text{adj}(A)\right)
$$

=
$$
\frac{1}{\det(A)^n} \det(\text{adj}(A))
$$
 by Theorem 4.2.A(4), "Scalar Multiplication Property," applied to each of
the *n* rows of adj(A).

So det(adj(A)) = det(A) $^n /$ det(A) = det(A) $^{n-1}$, as claimed.

. . .

Page 273 Number 38 (continued)

- **Page 273 Number 38.** Let A be an $n \times n$ nonsingular matrix. Prove that $\mathsf{det}(\mathsf{adj}(A)) = \mathsf{det}(A)^{n-1}.$
- **Note.** This result also holds if A is an $n \times n$ singular matrix. If A is singular then $det(A) = 0$ by Theorem 4.3, "Determinant Criterion for Invertibility." By Exercise 37, A is invertible if and only if $adj(A)$ is invertible. So det(A) = 0 implies det(adj(A)) = 0 (again, by Theorem 4.3), and so Exercise 38 holds for nonsingular square matrices as well.