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Page 271 Number 6

Page 271 Number 6

Page 271 Number 6. Find det(A) where A =


3 2 0 0 0

−1 4 1 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 −1 2

.

Solution. We state the elementary row operations and keep track of how
they affect the determinant based on Theorem 4.2.A, “Properties of the
Determinant.” We have:

det(A) =

∣∣∣∣∣∣∣∣∣∣
3 2 0 0 0

−1 4 1 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣
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Page 271 Number 6

Page 271 Number 6 (continued 1)

Solution (continued).∣∣∣∣∣∣∣∣∣∣
3 2 0 0 0

−1 4 1 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣
−1 4 1 0 0

3 2 0 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 −1 2

∣∣∣∣∣∣∣∣∣∣
Row Exchange:

R1 ↔ R2

= −

∣∣∣∣∣∣∣∣∣∣
−1 4 1 0 0

0 14 3 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 0 6

∣∣∣∣∣∣∣∣∣∣
Row Addition:

R2 → R2 + 3R1 and R5 → R5 + R4
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Page 271 Number 6

Page 271 Number 6 (continued 2)

Solution (continued). . . .

−

∣∣∣∣∣∣∣∣∣∣
−1 4 1 0 0

0 14 3 0 0
0 −3 5 2 0
0 0 0 1 4
0 0 0 0 6

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣
−1 4 1 0 0

0 14 3 0 0
0 0 79/14 2 0
0 0 0 1 4
0 0 0 0 6

∣∣∣∣∣∣∣∣∣∣
Row Addition:

R3 → R3 + (3/14)R2

= −(−1)(14)(79/14)(1)(6) = 474 by Example 4.2.4.

�
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Theorem 4.5. Cramer’s Rule

Theorem 4.5

Theorem 4.5. Cramer’s Rule.
Consider the linear system A~x = ~b, where A = [aij ] is an n × n invertible
matrix,

~x =


x1

x2
...
xn

 and ~b =


b1

b2
...

bn

 .

The system has a unique solution given by

xk =
det(Bk)

det(A)
for k = 1, 2, . . . , n,

where Bk is the matrix obtained from A by replacing the kth column
vector of A by the column vector ~b.

Proof. Since A is invertible, we know that the linear system A~x = ~b has a
unique solution by Theorem 1.16. Let ~x be this unique solution.
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Theorem 4.5. Cramer’s Rule

Theorem 4.5 (continued 1)

Proof (continued). Let Xk be the matrix obtained from the n× n identity
matrix by replacing its kth column vector by the column vector ~x , so

Xk =



1 0 0 · · · x1 0 0 · · · 0
0 1 0 · · · x2 0 0 · · · 0
0 0 1 · · · x3 0 0 · · · 0

...
0 0 0 · · · xk 0 0 · · · 0

...
0 0 0 · · · xn 0 0 · · · 1


.

We now compute the product AXk . If j 6= k, then the jth column of AXk

is the product of A and the jth column of the identity matrix, which is just
the jth column of A. If j = k, then the jth column of AXk is A~x = ~b.
Thus AXk is the matrix obtained from A by replacing the kth column of A
by the column vector ~b.
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Theorem 4.5. Cramer’s Rule

Theorem 4.5 (continued 2)

Proof (continued). That is, AXk is the matrix Bk described in the
statement of the theorem. From the equation AXk = Bk and Theorem
4.4, “The Multiplicative Property,” we have

det(A) det(Xk) = det(Bk).

Computing det(Xk) by expanding by minors across the kth row (applying
Theorem 4.2, “General Expansion by Minors”), we see that det(Xk) = xk

and thus det(A)xk = det(Bk).

Because A is invertible, we know that
det(A) 6= 0 by Theorem 4.3, “Determinant Criterion for Invertibility,” and
so xk = det(Bk)/ det(A) as claimed.
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Page 272 Number 26

Page 272 Number 26

Page 272 Number 26. Use Cramer’s Rule to solve
3x1 + x2 = 5
2x1 + x2 = 0

.

Solution. We have A =

[
3 1
2 1

]
and ~b =

[
5
0

]
. So B1 =

[
5 1
0 1

]
and

B2 =

[
3 5
2 0

]
.

Next, det(A) = (3)(1)− (1)(2) = 1,

det(B1) = (5)(1)− (1)(0) = 5, and det(B2) = (3)(0)− (5)(2) = −10. So
by Cramer’s Rule,

x1 =
det(B1)

det(A)
=

5

1
= 5 and x2 =

det(B2)

det(A)
=
−10

1
= −10.

So x1 = 5 and x2 = −10. �
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Page 272 Number 18 (find adjoint)

Page 272 Number 18

Page 272 Number 18. Find the adjoint of A =

 3 0 3
4 1 −2

−5 1 4

.

Solution. First, we compute the 9 cofactors:

a′11 =

∣∣∣∣ 1 −2
1 4

∣∣∣∣ = 6, a′12 = −
∣∣∣∣ 4 −2
−5 4

∣∣∣∣ = −6, a′13 =

∣∣∣∣ 4 1
−5 1

∣∣∣∣ = 9,

a′21 = −
∣∣∣∣ 0 3

1 4

∣∣∣∣ = 3, a′22 =

∣∣∣∣ 3 3
−5 4

∣∣∣∣ = 27, a′23 = −
∣∣∣∣ 3 0
−5 1

∣∣∣∣ = −3,

a′31 =

∣∣∣∣ 0 3
1 −2

∣∣∣∣ = −3, a′32 = −
∣∣∣∣ 3 3

4 −2

∣∣∣∣ = 18, a′33 =

∣∣∣∣ 3 0
4 1

∣∣∣∣ = 3,

so A′ = [a′ij ] =

 6 −6 9
3 27 −3

−3 18 3

 . . .
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Page 272 Number 18 (find adjoint)

Page 272 Number 18 (continued)

Page 272 Number 18. Find the adjoint of A =

 3 0 3
4 1 −2

−5 1 4

.

Solution (continued). . . .A′ = [a′ij ] =

 6 −6 9
3 27 −3

−3 18 3

 and

adj(A) = (A′)T =

 6 3 −3
−6 27 18

9 −3 3

 .

�
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Page 272 Number 18 (find adjoint)
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Theorem 4.6. Property of the Adjoint

Theorem 4.6

Theorem 4.6. Property of the Adjoint.
Let A be n × n. Then

(adj(A))A = A adj(A) = (det(A))I.

Proof. Let A = [aij ]. Define B as the matrix which results from replacing
Row j of A with Row i of A. Then, by Theorem 4.2.A, “Properties of
Determinants,”

det(B) =

{
det(A) if i = j (since B = A)

0 if i 6= j , by Theorem 4.2.A(3), “Equal Row Property.”

Now we can expand det(B) about the jth row of B to get by Theorem
4.2, “General Expansion by Minors,” that det(B) =

∑n
s=1 aisa

′
js and so

n∑
s=1

aisa
′
js =

{
det(A) if i = j

0 if i 6= j .
(2)

Notice that the (i , j) entry of A(A′)T is
∑n

k=1 aika′jk where A′ = [a′ij ].
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Theorem 4.6. Property of the Adjoint

Theorem 4.6 (continued)

Theorem 4.6. Property of the Adjoint.
Let A be n × n. Then

(adj(A))A = A adj(A) = (det(A))I.

Proof (continued). Since we can express the right-hand side of (2) as
det(A)I, then we have A(A′)T = A adj(A) = det(A)I.

Similarly if matrix C results from replacing Column i of A with Column j
of A and by computing det(C ) by expanding along the ith column of C we
get

n∑
r=1

a′ria
′
rj =

{
det(A) if i = j

0 if i 6= j
,

and so (A′)TA = adj(A)A = det(A)I. Hence,
adj(A)A = A adj(A) = det(A)I, as claimed.
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Page 272 Number 18 (find inverse)

Page 272 Number 18

Page 272 Number 18. Find the inverse of A =

 3 0 3
4 1 −2

−5 1 4

 using

adj(A).

Solution. First, we compute det(A) by expanding along the first row:

det(A) = (3)

∣∣∣∣ 1 −2
1 4

∣∣∣∣− (0) + (3)

∣∣∣∣ 4 1
−5 1

∣∣∣∣ = 3(6) + 3(9) = 45.

So by Corollary 4.3.A, “Formula for A−1,” we have (using adj(A)
computed above)

A−1 =
adj(A)

det(A)
=

1

45

 6 3 −3
−6 27 18

9 −3 3

 = 1
15

 2 1 −1
−2 9 6

3 −1 1

 .

�
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Page 272 Number 22

Page 272 Number 22

Page 272 Number 22. Given that A−1 =

[
a b
c d

]
and det(A−1) = 3,

find the matrix A.

Solution. We know from Corollary 4.3.A, “Formula for A−1,” that
A−1 = adj(A)/det(A). Now det(A−1) = 1/det(A) by Exercise 4.2.31, so

det(A) = 1/det(A−1) = 1/3.

If A =

[
a11 a12

a21 a22

]
then a′11 = a22,

a′12 = −a21, a′21 = −a12, and a′22 = a11. So A′ =

[
a22 −a21

−a12 a11

]
and

adj(A) = (A′)T =

[
a22 −a12

−a21 a11

]
= det(A)A−1 = 1

3

[
a b
c d

]
and so

a11 = d/3, a12 = −b/3, a21 = −c/3, and a22 = a/3. Therefore

A =

[
a11 a12

a21 a22

]
=

[
d/3 −b/3
−c/3 a/3

]
. �
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Page 273 Number 36

Page 273 Number 36

Page 273 Number 36. Prove that the inverse of a nonsingular
upper-triangular matrix is upper triangular.

Solution. Let A = [aij ] be a (square) nonsingular upper triangular matrix;
that is, aij = 0 for i > j . Now the minor matrix Aij (obtained from A by
eliminating Row i and Column j from A) is upper triangular for i < j :
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Page 273 Number 36

Page 273 Number 36 (continued)

Page 273 Number 36. Prove that the inverse of a nonsingular
upper-triangular matrix is upper triangular.

Solution (continued). Then, with i < j , (n − 1)× (n − 1) minor matrix
Aij has a 0 in its (i , i) entry (it is element ai+1,i = 0 in matrix A). So for
i < j , Aij is upper triangular with a 0 on the diagonal. By Example 4.2.4
(the determinant of an upper triangular square matrix is the product of the
diagonal entries), det(Aij) = 0 and so cofactor aij = (−1)i+jdet(Aij) = 0
for i < j . So matrix A′ has 0 in entry (i , j) whenever i < j . That is, A′ is
lower triangular.

Hence adj(A) = (A′)T is upper triangular. Since A is
nonsingular then by Theorem 4.3, “Determinant Criterion for Invertibility,”
det(A) 6= 0. By Corollary 4.3.A, “A Formula for the Inverse of an Invertible

Matrix,” A−1 =
1

det(A)
adj(A) and so A−1 is also upper triangular.
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Page 273 Number 38

Page 273 Number 38

Page 273 Number 38. Let A be an n× n nonsingular matrix. Prove that
det(adj(A)) = det(A)n−1.

Solution. By Corollary 4.3.A, “A Formula for A−1,” A−1 = 1
det(A)

adj(A).

By Exercise 4.2.31, det(A−1) = 1/det(A), so we have

1

det(A)
= det(A−1) = det

(
1

det(A)
adj(A)

)
=

1

det(A)n
det(adj(A)) by Theorem 4.2.A(4), “Scalar

Multiplication Property,” applied to each of

the n rows of adj(A).

So det(adj(A)) = det(A)n/det(A) = det(A)n−1, as claimed.
. . .
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Page 273 Number 38

Page 273 Number 38 (continued)

Page 273 Number 38. Let A be an n× n nonsingular matrix. Prove that
det(adj(A)) = det(A)n−1.

Note. This result also holds if A is an n × n singular matrix. If A is
singular then det(A) = 0 by Theorem 4.3, “Determinant Criterion for
Invertibility.” By Exercise 37, A is invertible if and only if adj(A) is
invertible. So det(A) = 0 implies det(adj(A)) = 0 (again, by Theorem
4.3), and so Exercise 38 holds for nonsingular square matrices as well.
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