Linear Algebra

Chapter 4: Determinants

Section 4.4. Linear Transformations and Determinants—Proofs of Theorems

Linear Algebra

December 16, 2018 1 /

Linear Algel

December 16, 2018 3 / 15

Theorem B.2. Property of $det(A^TA$

Theorem B.2 (continued)

Theorem B.2. Property of $det(A^TA)$.

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with jth column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof (continued). Then

$$det(B^T B) = det((AE)^T (AE)) = det(E^T A^T AE) = detE^T (A^T A)E)$$

$$= det(E^T) det(A^T A) det(E) \text{ by Theorem 4.4}$$

$$= 1 det(A^T A) a = det(A^T A),$$

Linear Algebra

as claimed.

Theorem B.2. Property of $det(A^TA)$

Theorem B.2

Theorem B.2. Property of $det(A^TA)$.

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with jth column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof. Matrix B can be obtained from matrix A by a sequence of n-1 elementary *column*-addition operations. Each of the elementary column operations can be performed on A by multiplying A on the *right* by an elementary matrix formed by exerting the same elementary *column*-addition on the identity matrix \mathcal{I} by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has the same determinant as the identity matrix (namely, 1) by Theorem 4.2.A(1) and (5). Let E by the product of these elementary matrices so that B = AE. By Theorem 4.4, "The Multiplicative Property," $\det(E) = 1$.

Theorem 4.7. Volume of an n-Bo

Theorem 4.7

Theorem 4.7. Volume of an n-Box.

The volume of the *n*-box in \mathbb{R}^m determined by independent vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ is given by (Volume) = $\sqrt{\det(A^T A)}$ where A is the $m \times n$ matrix with \vec{a}_i as its jth column vector.

Proof. We give a proof based on mathematical induction. As argued above, the result holds for n=1 and n=2 (and for n=3 if we interchange \vec{a}_1 and \vec{a}_3). Let n>2 and assume (the induction hypothesis) that the claim holds for all k-boxes where $1 \leq k \leq n-1$. With $\vec{b}=\vec{a}_1-\vec{p}=\vec{a}_1-\operatorname{proj}_{\operatorname{sp}(\vec{a}_2,\vec{a}_3,\ldots,\vec{a}_n)}(\vec{a}_1)$ then $\vec{p}\in\operatorname{sp}(\vec{a}_2,\vec{a}_3,\ldots,\vec{a}_n)$ so that $\vec{p}=r_2\vec{a}_2+r_3\vec{a}_3+\cdots+r_n\vec{a}_n$ for some scalars r_2,r_3,\ldots,r_n , so $\vec{b}=\vec{a}_1-\vec{p}=\vec{a}_1-r_2\vec{a}_2-r_3\vec{a}_3-\cdots-r_n\vec{a}_n$. Let B be the matrix obtained from A by replacing the first column vector \vec{a}_1 of A by the vector \vec{b} (as in Theorem B.2). Now $\vec{b}\in W^\perp$ where $W=\operatorname{sp}(\vec{a}_2,\vec{a}_3,\ldots,\vec{a}_n)$, so $\vec{b}\cdot\vec{a}_i=0$ for $i=2,3,\ldots,n$ and \ldots

Theorem 4.7 (continued 1)

Proof (continued).

$$B^{T}B = \begin{bmatrix} \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{a}_{2} & \vec{b} \cdot \vec{a}_{3} & \cdots & \vec{b} \cdot \vec{a}_{n} \\ \vec{a}_{2} \cdot \vec{b} & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} & \cdots & \vec{a}_{2} \cdot \vec{a}_{n} \\ \vec{a}_{3} \cdot \vec{b} & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3} & \cdots & \vec{a}_{3} \cdot \vec{a}_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vec{a}_{n} \cdot \vec{b} & \vec{a}_{n} \cdot \vec{a}_{2} & \vec{a}_{n} \cdot \vec{a}_{3} & \cdots & \vec{a}_{n} \cdot \vec{a}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \vec{b} \cdot \vec{b} & 0 & 0 & \cdots & 0 \\ 0 & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} & \cdots & \vec{a}_{2} \cdot \vec{a}_{n} \\ 0 & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3} & \cdots & \vec{a}_{3} \cdot \vec{a}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vec{a}_{n} \cdot \vec{a}_{2} & \vec{a}_{n} \cdot \vec{a}_{3} & \cdots & \vec{a}_{n} \cdot \vec{a}_{n} \end{bmatrix}$$

So expanding along the first row we have . . .

Page 284 Number 4

Page 284 Number 4. Find the volume of the 4-box in \mathbb{R}^5 determined by the vectors [1, 1, 1, 0, 1], [0, 1, 1, 0, 0], [3, 0, 1, 0, 0], and [1, -1, 0, 0, 1].

Solution. We let

$$A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \text{ and } A^T = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}.$$

Then, by Theorem 4.7,

(Volume) =
$$\sqrt{\det(A^T A)} = \begin{vmatrix} 4 & 2 & 4 & 1 \\ 2 & 2 & 1 & -1 \\ 4 & 1 & 10 & 3 \\ 1 & -1 & 3 & 3 \end{vmatrix}^{1/2}$$

Theorem 4.7 Volume of an n-Box

Theorem 4.7 (continued 2)

Proof (continued).

$$\det(B^T B) = \|\vec{b}\|^2 \begin{bmatrix} \vec{a}_2 \cdot \vec{a}_2 & \vec{a}_2 \cdot \vec{a}_3 & \cdots & \vec{a}_2 \cdot \vec{a}_n \\ \vec{a}_3 \cdot \vec{a}_2 & \vec{a}_3 \cdot \vec{a}_3 & \cdots & \vec{a}_3 \cdot \vec{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a}_n \cdot \vec{a}_2 & \vec{a}_n \cdot \vec{a}_3 & \cdots & \vec{a}_n \cdot \vec{a}_n \end{bmatrix}.$$

By the induction hypothesis, the square of the volume of the base of the n-box is the (n-1)-box determined by the (n-1) vectors $\vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n$ and so

$$det(B^T B) = ||\vec{b}||^2 (Volume of the base)^2$$
= (Volume of *n*-box)² by Definition B.1
= det(A^T A) by Theorem B.2.

So the claim holds for k = n and by induction holds for all $n \in \mathbb{N}$, as claimed.

Page 284 Number

Page 284 Number 4

Solution (continued).

(Volume) =
$$\begin{vmatrix} 0 & 6 & -8 & -11 \\ 0 & 4 & -5 & -7 \\ 0 & 5 & -2 & -9 \\ 1 & -1 & 3 & 3 \end{vmatrix}$$
 using the row operations
$$R_1 \rightarrow R_1 - 4R_4, R_2 \rightarrow R_2 - 2R_2, R_3 \rightarrow R_3 - 4R_4$$
$$= -\begin{vmatrix} 6 & -8 & -11 \\ 4 & -5 & -7 \\ 5 & -2 & -9 \end{vmatrix}$$
$$= -\left(6\begin{vmatrix} -5 & -7 \\ -2 & -9 \end{vmatrix} - (-8)\begin{vmatrix} 4 & -7 \\ 5 & -9 \end{vmatrix} + (-11)\begin{vmatrix} 4 & -5 \\ 5 & -2 \end{vmatrix}\right)$$
$$= -6(31) - 8(-1) + 11(17(= -186 + 8 + 187 = 9).$$

December 16, 2018

Corollary

Corollary. Independence of Order.

The volume of a box determined by the independent vectors $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ (as defined in Definition B.1) is independent of the order of the vectors.

Proof. A rearrangement of the sequence $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ of vectors corresponds to the same rearrangement of the columns of matrix A. This rearrangement of columns can be performed on A by multiplying A on the right by a sequence of elementary matrices formed by interchanging two columns of an identity matrix, by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has a determinant of -1 times the determinant of the identity matrix (namely, 1) by Theorem 4.2.A(1) and (2). Let E be the product of these elementary matrices so that B = AE where B has the same columns as A, only rearranged. Then $det(E) = \pm 1$ and so $\det(E^T)\det(E) = (\pm 1)^2 = 1.$

Linear Algebra

December 16, 2018

Corollary (continued)

Corollary. Independence of Order.

The volume of a box determined by the independent vectors $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ (as defined in Definition B.1) is independent of the order of the vectors.

Proof (continued). Then

$$det(B^T B) = det((AE)^T (AE)) = det(E^T A^T AE)$$

$$= det(E^T) det(A^T A) det(E) \text{ by Theorem 4.4}$$

$$= det(A^T A) = (Volume \text{ of the } n\text{-box}) \text{ by Theorem 4.7.}$$

Since B has the same columns as A, but in an arbitrary order, the result follows.

Linear Algebra

Corollary

Corollary. Volume of an *n*-Box in \mathbb{R}^n .

If A is an $n \times n$ matrix with independent column vectors $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ then $|\det(A)|$ is the volume of the *n*-box in \mathbb{R}^n determined by these *n* vectors.

Proof. We have

(Volume of *n*-box) =
$$\sqrt{\det(A^T A)}$$
 by Theorem 4.7
= $\sqrt{\det(A^T)\det(A)}$ by Theorem 4.4
= $\sqrt{\det(A)\det(A)}$ by Theorem 4.2.A(1)
= $|\det(A)|$.

Page 284 Number 8.

Page 284 Number 8. Find the volume of the 3-box determined by [-1, 4, 7], [3, -2, -1], and [4, 0, 2] in \mathbb{R}^3 .

Solution. Applying the second Corollary to Theorem 4.7, we let

$$A = \begin{bmatrix} -1 & 3 & 4 \\ 4 & -2 & 0 \\ 7 & -1 & 2 \end{bmatrix}$$
 and then we have

(Volume of 3-box) =
$$|\det(A)| = \begin{vmatrix} -1 & 3 & 4 \\ 4 & -2 & 0 \\ 7 & -1 & 2 \end{vmatrix}$$

= $|(-1)| \begin{vmatrix} -2 & 0 \\ -1 & 2 \end{vmatrix} - (3) \begin{vmatrix} 4 & 0 \\ 7 & 2 \end{vmatrix} + (4) \begin{vmatrix} 4 & -2 \\ 7 & -1 \end{vmatrix}$
= $|(-1)(-4) - (3)(8) + (4)(10)| = \boxed{20}$.

December 16, 2018

Page 284 Number 22.

Page 284 Number 22. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T([x,y,z]) = [x-2y,3x+z,4x+3y]. Find the volume of the image of the 3-box $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ under T.

Solution. The 3-box is determined by $\vec{b}_1 = [1,0,0]$, $\vec{b}_2 = [0,1,0]$,

$$\vec{b}_3 = [0,0,1]$$
 so we take $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Next,

 $T(\hat{\imath}) = T([1,0,0]) = [1,3,4], \ T(\hat{\jmath}) = T([0,1,0]) = [-2,0,3], \text{ and } T(\hat{k}) = T([0,0,1]) = [0,1,0] \text{ so the standard matrix representation of } T(\hat{k}) = T([0,0,1]) = [0,1,0]$

is
$$A = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 0 & 1 \\ 4 & 3 & 0 \end{bmatrix}$$
. Now

 $\det(A) = 0 - (-1) \begin{vmatrix} 1 & -2 \\ 4 & 3 \end{vmatrix} + 0 = -(1)(11) = -11$. Since the volume of

the 3-cube is 1, then the volume of the image is $|\det(A)\det(B)| = \boxed{11}$.

Page 284 Number 32.

Page 284 Number 32. Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be defined by T([x,y,z]) = [x-y,x,-y,2x+y]. Find the area of the image under T of the region $x^2 + y^2 \le 0$ in \mathbb{R}^2 .

Solution. The area of $x^2+y^2\leq 9$ in \mathbb{R}^2 is $V=9\pi$. The standard matrix representation of T is $A=\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{bmatrix}$ and so $A^T=\begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & 0 & -1 & 1 \end{bmatrix}$.

Now $A^TA = \begin{bmatrix} 6 & 1 \\ 1 & 3 \end{bmatrix}$ and $\det(A^TA) = 17$. So the volume of the image under T of the region is $\sqrt{\det(A^TA)}V = \sqrt{17}9\pi = \boxed{9\pi\sqrt{17}$. \Box

() Linear Algebra December 16, 2018 14 / 15

Linear Algebra December 16, 2018 15 /