Linear Algebra

Chapter 4: Determinants

Section 4.4. Linear Transformations and Determinants—Proofs of Theorems

Table of contents

- 1 Theorem B.2. Property of $det(A^T A)$
- 2 [Theorem 4.7. Volume of an](#page-6-0) n-Box
- 3 [Page 284 Number 4](#page-12-0)
- 4 [Corollary. Independence of Order](#page-15-0)
	- 5 [Corollary. Volume of an](#page-19-0) n -Box in \mathbb{R}^n
- 6 [Page 284 Number 8.](#page-21-0)
- [Page 284 Number 22.](#page-23-0)
- 8 [Page 284 Number 32.](#page-26-0)

Theorem B₂

Theorem B.2. Property of $\det(A^T A)$.

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with j th column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof. Matrix B can be obtained from matrix A by a sequence of $n-1$ elementary column-addition operations. Each of the elementary column operations can be performed on A by multiplying A on the right by an elementary matrix formed by exerting the same elementary column-addition on the identity matrix I by Exercises 1.5.36 and 1.5.37.

Theorem B₂

Theorem B.2. Property of $\det(A^T A)$.

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with j th column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof. Matrix B can be obtained from matrix A by a sequence of $n-1$ elementary column-addition operations. Each of the elementary column operations can be performed on A by multiplying A on the *right* by an elementary matrix formed by exerting the same elementary column-addition on the identity matrix $\mathcal I$ by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has the same determinant as the identity matrix (namely, 1) by Theorem 4.2. $A(1)$ and (5). Let E by the product of these elementary matrices so that $B = AE$. By Theorem 4.4, "The Multiplicative Property," $det(E) = 1$.

Theorem B₂

Theorem B.2. Property of $\det(A^T A)$.

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with j th column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof. Matrix B can be obtained from matrix A by a sequence of $n-1$ elementary column-addition operations. Each of the elementary column operations can be performed on A by multiplying A on the *right* by an elementary matrix formed by exerting the same elementary column-addition on the identity matrix $\mathcal I$ by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has the same determinant as the identity matrix (namely, 1) by Theorem 4.2. $A(1)$ and (5). Let E by the product of these elementary matrices so that $B = AE$. By Theorem 4.4, "The Multiplicative Property," $det(E) = 1$.

Theorem B.2 (continued)

Theorem B.2. Property of $\mathsf{det}(A^\mathcal{T} A).$

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix with j th column \vec{a}_j . Let B be the $m \times n$ matrix obtained from A by replacing the first column of A by the vector $\vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$ for scalars r_2, r_3, \ldots, r_n . Then $\det(A^T A) = \det(B^T B)$.

Proof (continued). Then

$$
det(BTB) = det((AE)T(AE)) = det(ETATAE) = detET(ATA)E)
$$

= det(E^T)det(A^TA)det(E) by Theorem 4.4
= 1det(A^TA)a = det(A^TA),

as claimed.

Theorem 4.7

Theorem 4.7. Volume of an n-Box.

The volume of the *n*-box in \mathbb{R}^m determined by independent vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ is given by (Volume) $= \sqrt{\det(A^T A)}$ where A is the $m \times n$ matrix with \vec{a}_i as its *j*th column vector.

Proof. We give a proof based on mathematical induction. As argued above, the result holds for $n = 1$ and $n = 2$ (and for $n = 3$ if we interchange \vec{a}_1 and \vec{a}_3). Let $n > 2$ and assume (the induction hypothesis) that the claim holds for all k-boxes where $1 \leq k \leq n-1$. With $\vec{b}=\vec{a}_1-\vec{p}=\vec{a}_1-{\rm proj}_{\rm sp(\vec{a}_2,\vec{a}_3,...,\vec{a}_n)}(\vec{a}_1)$ then $\vec{p}\in{\rm sp}(\vec{a}_2,\vec{a}_3,\ldots,\vec{a}_n)$ so that $\vec{p} = r_2\vec{a}_2 + r_3\vec{a}_3 + \cdots + r_n\vec{a}_n$ for some scalars r_2, r_3, \ldots, r_n , so $\vec{b} = \vec{a}_1 - \vec{b} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n.$

Theorem 4.7

Theorem 4.7. Volume of an n-Box.

The volume of the *n*-box in \mathbb{R}^m determined by independent vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ is given by (Volume) $= \sqrt{\det(A^T A)}$ where A is the $m \times n$ matrix with \vec{a}_i as its *i*th column vector.

Proof. We give a proof based on mathematical induction. As argued above, the result holds for $n = 1$ and $n = 2$ (and for $n = 3$ if we interchange \vec{a}_1 and \vec{a}_3). Let $n > 2$ and assume (the induction hypothesis) that the claim holds for all k-boxes where $1 \leq k \leq n-1$. With $\vec{b}=\vec{a}_1-\vec{p}=\vec{a}_1-{\rm proj}_{\mathsf{sp}(\vec{a}_2,\vec{a}_3,...,\vec{a}_n)}(\vec{a}_1)$ then $\vec{p}\in\mathsf{sp}(\vec{a}_2,\vec{a}_3,\dots,\vec{a}_n)$ so that $\vec{p} = r_2\vec{a}_2 + r_3\vec{a}_3 + \cdots + r_n\vec{a}_n$ for some scalars r_2, r_3, \ldots, r_n , so $\vec{b} = \vec{a}_1 - \vec{p} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$. Let B be the matrix obtained from A by replacing the first column vector \vec{a}_1 of A by the vector \vec{b} (as in Theorem B.2). Now $\vec{b} \in W^{\perp}$ where $W = sp(\vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n)$, so $\vec{b} \cdot \vec{a}_i = 0$ for $i = 2, 3, ..., n$ and ...

Theorem 4.7

Theorem 4.7. Volume of an n-Box.

The volume of the *n*-box in \mathbb{R}^m determined by independent vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ is given by (Volume) $= \sqrt{\det(A^T A)}$ where A is the $m \times n$ matrix with \vec{a}_i as its *j*th column vector.

Proof. We give a proof based on mathematical induction. As argued above, the result holds for $n = 1$ and $n = 2$ (and for $n = 3$ if we interchange \vec{a}_1 and \vec{a}_3). Let $n > 2$ and assume (the induction hypothesis) that the claim holds for all k-boxes where $1 \leq k \leq n-1$. With $\vec{b}=\vec{a}_1-\vec{p}=\vec{a}_1-{\rm proj}_{\mathsf{sp}(\vec{a}_2,\vec{a}_3,...,\vec{a}_n)}(\vec{a}_1)$ then $\vec{p}\in\mathsf{sp}(\vec{a}_2,\vec{a}_3,\dots,\vec{a}_n)$ so that $\vec{p} = r_2\vec{a}_2 + r_3\vec{a}_3 + \cdots + r_n\vec{a}_n$ for some scalars r_2, r_3, \ldots, r_n , so $\vec{b} = \vec{a}_1 - \vec{p} = \vec{a}_1 - r_2\vec{a}_2 - r_3\vec{a}_3 - \cdots - r_n\vec{a}_n$. Let B be the matrix obtained from A by replacing the first column vector \vec{a}_1 of A by the vector \vec{b} (as in Theorem B.2). Now $b \in W^{\perp}$ where $W = sp(\vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n)$, so $\vec{b} \cdot \vec{a}_i = 0$ for $i = 2, 3, ..., n$ and ...

Theorem 4.7 (continued 1)

Proof (continued).

So expanding along the first row we have . . .

Theorem 4.7 (continued 2)

Proof (continued).

$$
\det(B^T B) = \|\vec{b}\|^2 \begin{bmatrix} \vec{a}_2 \cdot \vec{a}_2 & \vec{a}_2 \cdot \vec{a}_3 & \cdots & \vec{a}_2 \cdot \vec{a}_n \\ \vec{a}_3 \cdot \vec{a}_2 & \vec{a}_3 \cdot \vec{a}_3 & \cdots & \vec{a}_3 \cdot \vec{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a}_n \cdot \vec{a}_2 & \vec{a}_n \cdot \vec{a}_3 & \cdots & \vec{a}_n \cdot \vec{a}_n \end{bmatrix}
$$

By the induction hypothesis, the square of the volume of the base of the *n*-box is the $(n - 1)$ -box determined by the $(n - 1)$ vectors \vec{a}_2 , \vec{a}_3 , ..., \vec{a}_n and so

$$
det(BTB) = ||\vec{b}||^2 (Volume of the base)^2
$$

= (Volume of *n*-box)² by Definition B.1
= det(ATA) by Theorem B.2.

So the claim holds for $k = n$ and by induction holds for all $n \in \mathbb{N}$, as claimed.

.

Theorem 4.7 (continued 2)

Proof (continued).

$$
\det(B^T B) = \|\vec{b}\|^2 \begin{bmatrix} \vec{a}_2 \cdot \vec{a}_2 & \vec{a}_2 \cdot \vec{a}_3 & \cdots & \vec{a}_2 \cdot \vec{a}_n \\ \vec{a}_3 \cdot \vec{a}_2 & \vec{a}_3 \cdot \vec{a}_3 & \cdots & \vec{a}_3 \cdot \vec{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ \vec{a}_n \cdot \vec{a}_2 & \vec{a}_n \cdot \vec{a}_3 & \cdots & \vec{a}_n \cdot \vec{a}_n \end{bmatrix}
$$

By the induction hypothesis, the square of the volume of the base of the n-box is the $(n - 1)$ -box determined by the $(n - 1)$ vectors $\vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n$ and so

$$
det(BTB) = ||\vec{b}||^2 (Volume of the base)^2
$$

= (Volume of *n*-box)² by Definition B.1
= det(ATA) by Theorem B.2.

So the claim holds for $k = n$ and by induction holds for all $n \in \mathbb{N}$, as claimed.

.

Page 284 Number 4

Page 284 Number 4. Find the volume of the 4-box in \mathbb{R}^5 determined by the vectors $[1, 1, 1, 0, 1]$, $[0, 1, 1, 0, 0]$, $[3, 0, 1, 0, 0]$, and $[1, -1, 0, 0, 1]$.

Solution. We let

$$
A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \text{ and } A^T = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}
$$

Then, by Theorem 4.7,

$$
(\text{Volume}) = \sqrt{\det(A^T A)} = \begin{vmatrix} 4 & 2 & 4 & 1 \\ 2 & 2 & 1 & -1 \\ 4 & 1 & 10 & 3 \\ 1 & -1 & 3 & 3 \end{vmatrix}^{1/2}
$$

.

Page 284 Number 4

Page 284 Number 4. Find the volume of the 4-box in \mathbb{R}^5 determined by the vectors $[1, 1, 1, 0, 1]$, $[0, 1, 1, 0, 0]$, $[3, 0, 1, 0, 0]$, and $[1, -1, 0, 0, 1]$.

Solution. We let

$$
A = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \text{ and } A^T = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}.
$$

Then, by Theorem 4.7,

$$
(\text{Volume}) = \sqrt{\det(A^T A)} = \begin{vmatrix} 4 & 2 & 4 & 1 \\ 2 & 2 & 1 & -1 \\ 4 & 1 & 10 & 3 \\ 1 & -1 & 3 & 3 \end{vmatrix}^{1/2}
$$

Page 284 Number 4

Solution (continued). ...

$$
\begin{array}{rcl}\n\text{(Volume)} & = & \begin{vmatrix} 0 & 6 & -8 & -11 \\ 0 & 4 & -5 & -7 \\ 0 & 5 & -2 & -9 \\ 1 & -1 & 3 & 3 \end{vmatrix} & R_1 \rightarrow R_1 - 4R_4, \\
& R_2 \rightarrow R_2 - 2R_2, \\
& R_3 \rightarrow R_3 - 4R_4\n\end{array}
$$
\n
$$
= & -\begin{vmatrix} 6 & -8 & -11 \\ 4 & -5 & -7 \\ 5 & -2 & -9 \end{vmatrix}
$$
\n
$$
= & -\begin{pmatrix} 6 & -5 & -7 \\ -2 & -9 & -6 \end{pmatrix} - (-8) \begin{vmatrix} 4 & -7 \\ 5 & -9 \end{vmatrix} + (-11) \begin{vmatrix} 4 & -5 \\ 5 & -2 \end{vmatrix}
$$
\n
$$
= & -6(31) - 8(-1) + 11(17(=-186 + 8 + 187 = 9).
$$

Corollary. Independence of Order.

The volume of a box determined by the independent vectors \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n (as defined in Definition B.1) is independent of the order of the vectors.

Proof. A rearrangement of the sequence \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n of vectors corresponds to the same rearrangement of the columns of matrix A. This rearrangement of columns can be performed on \overline{A} by multiplying \overline{A} on the right by a sequence of elementary matrices formed by interchanging two columns of an identity matrix, by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has a determinant of -1 times the determinant of the identity matrix (namely, 1) by Theorem $4.2.A(1)$ and (2) .

Corollary. Independence of Order.

The volume of a box determined by the independent vectors \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n (as defined in Definition B.1) is independent of the order of the vectors.

Proof. A rearrangement of the sequence \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n of vectors corresponds to the same rearrangement of the columns of matrix A. This rearrangement of columns can be performed on \overline{A} by multiplying \overline{A} on the right by a sequence of elementary matrices formed by interchanging two columns of an identity matrix, by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has a determinant of -1 times the determinant of the identity matrix (namely, 1) by Theorem 4.2. $A(1)$ and (2). Let E be the product of these elementary matrices so that $B = AE$ where B has the same columns as A, only rearranged. Then $\det(E) = \pm 1$ and so $\det(E^\mathcal{T})\det(E) = (\pm 1)^2 = 1.$

Corollary. Independence of Order.

The volume of a box determined by the independent vectors \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n (as defined in Definition B.1) is independent of the order of the vectors.

Proof. A rearrangement of the sequence \vec{a}_1 , \vec{a}_2 , ..., \vec{a}_n of vectors corresponds to the same rearrangement of the columns of matrix A. This rearrangement of columns can be performed on \overline{A} by multiplying \overline{A} on the right by a sequence of elementary matrices formed by interchanging two columns of an identity matrix, by Exercises 1.5.36 and 1.5.37. Each such elementary matrix has a determinant of -1 times the determinant of the identity matrix (namely, 1) by Theorem $4.2.A(1)$ and (2) . Let E be the product of these elementary matrices so that $B = AE$ where B has the same columns as A, only rearranged. Then $\det(E) = \pm 1$ and so $\det(E^\mathcal{T})\det(E) = (\pm 1)^2 = 1.$

Corollary (continued)

Corollary. Independence of Order.

The volume of a box determined by the independent vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ (as defined in Definition B.1) is independent of the order of the vectors.

Proof (continued). Then

$$
det(BTB) = det((AE)T(AE)) = det(ETATAE)
$$

= det(E^T)det(A^TA)det(E) by Theorem 4.4
= det(A^TA) = (Volume of the *n*-box) by Theorem 4.7.

Since B has the same columns as A, but in an arbitrary order, the result follows.

Corollary. Volume of an n -Box in \mathbb{R}^n .

If A is an $n \times n$ matrix with independent column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ then $|\text{det}(A)|$ is the volume of the *n*-box in \mathbb{R}^n determined by these *n* vectors.

Proof. We have

(Volume of *n*-box) =
$$
\sqrt{\det(A^T A)}
$$
 by Theorem 4.7
\n= $\sqrt{\det(A^T) \det(A)}$ by Theorem 4.4
\n= $\sqrt{\det(A) \det(A)}$ by Theorem 4.2.A(1)
\n= $|\det(A)|$.

Corollary. Volume of an n -Box in \mathbb{R}^n .

If A is an $n \times n$ matrix with independent column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n$ then $|\text{det}(A)|$ is the volume of the *n*-box in \mathbb{R}^n determined by these *n* vectors.

Proof. We have

(Volume of *n*-box) =
$$
\sqrt{\det(A^T A)}
$$
 by Theorem 4.7
\n= $\sqrt{\det(A^T) \det(A)}$ by Theorem 4.4
\n= $\sqrt{\det(A) \det(A)}$ by Theorem 4.2.A(1)
\n= $|\det(A)|$.

Page 284 Number 8.

Page 284 Number 8. Find the volume of the 3-box determined by $[-1, 4, 7]$, $[3, -2, -1]$, and $[4, 0, 2]$ in \mathbb{R}^3 .

Solution. Applying the second Corollary to Theorem 4.7, we let $A =$ $\overline{1}$ $\overline{}$ −1 3 4 $4 -2 0$ 7 −1 2 T and then we have

(Volume of 3-box) =
$$
|det(A)| = \begin{vmatrix} -1 & 3 & 4 \\ 4 & -2 & 0 \\ 7 & -1 & 2 \end{vmatrix}
$$

= $\begin{vmatrix} (-1) \begin{vmatrix} -2 & 0 \\ -1 & 2 \end{vmatrix} - (3) \begin{vmatrix} 4 & 0 \\ 7 & 2 \end{vmatrix} + (4) \begin{vmatrix} 4 & -2 \\ 7 & -1 \end{vmatrix}$
= $\left| (-1)(-4) - (3)(8) + (4)(10) \right| = 20$.

Page 284 Number 8.

Page 284 Number 8. Find the volume of the 3-box determined by $[-1, 4, 7]$, $[3, -2, -1]$, and $[4, 0, 2]$ in \mathbb{R}^3 .

Solution. Applying the second Corollary to Theorem 4.7, we let $A =$ $\sqrt{ }$ $\overline{1}$ −1 3 4 4 −2 0 7 −1 2 1 and then we have

(Volume of 3-box) =
$$
|det(A)| = \begin{vmatrix} -1 & 3 & 4 \\ 4 & -2 & 0 \\ 7 & -1 & 2 \end{vmatrix} \Big|
$$

= $|(-1)| \begin{vmatrix} -2 & 0 \\ -1 & 2 \end{vmatrix} - (3)| \begin{vmatrix} 4 & 0 \\ 7 & 2 \end{vmatrix} + (4)| \begin{vmatrix} 4 & -2 \\ 7 & -1 \end{vmatrix} \Big|$
= $|(-1)(-4) - (3)(8) + (4)(10)| = 20.$

Page 284 Number 22.

Page 284 Number 22. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T([x, y, z]) = [x - 2y, 3x + z, 4x + 3y]$. Find the volume of the image of the 3-box $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ under T.

Solution. The 3-box is determined by $\vec{b}_1 = [1, 0, 0], \vec{b}_2 = [0, 1, 0],$ $\vec{b}_3 = [0, 0, 1]$ so we take $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Next, $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $0 0 1$ $T(\hat{i}) = T([1, 0, 0]) = [1, 3, 4], T(\hat{j}) = T([0, 1, 0]) = [-2, 0, 3],$ and $T(\hat{k}) = T([0, 0, 1]) = [0, 1, 0]$ so the standard matrix representation of T is A = Г $\overline{}$ $1 -2 0$ 3 0 1 4 3 0 1 .

Page 284 Number 22.

Page 284 Number 22. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T([x, y, z]) = [x - 2y, 3x + z, 4x + 3y]$. Find the volume of the image of the 3-box $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ under T.

Solution. The 3-box is determined by $\vec{b}_1 = [1, 0, 0], \vec{b}_2 = [0, 1, 0],$ $\vec{b}_3 = [0, 0, 1]$ so we take $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 0 1 0 0 0 1 1 \vert . Next, $T(\hat{i}) = T([1, 0, 0]) = [1, 3, 4], T(\hat{j}) = T([0, 1, 0]) = [-2, 0, 3],$ and $T(\hat{k}) = T([0, 0, 1]) = [0, 1, 0]$ so the standard matrix representation of T is $A =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 3 0 1 4 3 0 1 . Now det(*A*) = 0 – (−1) $1 -2$ 4 3 $+ 0 = -(1)(11) = -11$. Since the volume of the 3-cube is 1, then the volume of the image is $|det(A)det(B)| = |11.|\square$

Page 284 Number 22.

Page 284 Number 22. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T([x, y, z]) = [x - 2y, 3x + z, 4x + 3y]$. Find the volume of the image of the 3-box $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ under T.

Solution. The 3-box is determined by $\vec{b}_1 = [1, 0, 0], \vec{b}_2 = [0, 1, 0],$ $\vec{b}_3 = [0, 0, 1]$ so we take $B =$ $\sqrt{ }$ $\overline{1}$ 1 0 0 0 1 0 0 0 1 1 \vert . Next, $T(\hat{i}) = T([1, 0, 0]) = [1, 3, 4], T(\hat{j}) = T([0, 1, 0]) = [-2, 0, 3],$ and $T(\tilde{k}) = T([0, 0, 1]) = [0, 1, 0]$ so the standard matrix representation of T is $A =$ $\sqrt{ }$ $\overline{1}$ $1 -2 0$ 3 0 1 4 3 0 1 \vert . Now $\mathsf{det}(\mathcal{A}) = 0 - (-1)$ $1 -2$ 4 3 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $+$ 0 $=$ $- (1)(11) = -11.$ Since the volume of

the 3-cube is 1, then the volume of the image is $|det(A)det(B)| = |\overline{11}| \square$

Page 284 Number 32.

Page 284 Number 32. Let $T : \mathbb{R}^2 \to \mathbb{R}^4$ be defined by $T([x, y, z]) = [x - y, x, -y, 2x + y]$. Find the area of the image under T of the region $x^2+y^2\leq 0$ in \mathbb{R}^2 .

Solution. The area of $x^2 + y^2 \le 9$ in \mathbb{R}^2 is $V = 9\pi$. The standard matrix representation of $\mathcal T$ is $\mathcal A=$ Т $\overline{}$ $1 -1$ 1 0 $0 -1$ 2 1 l $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ and so $A^T = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & 0 & -1 & 1 \end{bmatrix}$.

Now $A^T A = \left[\begin{array}{cc} 6 & 1 \ 1 & 3 \end{array} \right]$ and $\det(A^T A) = 17$. So the volume of the image under T of the region is $\sqrt{\det(A^T A)}V =$ $179\pi = |9\pi$ $\sqrt{17}$.

Page 284 Number 32.

Page 284 Number 32. Let $T : \mathbb{R}^2 \to \mathbb{R}^4$ be defined by $T([x, y, z]) = [x - y, x, -y, 2x + y]$. Find the area of the image under T of the region $x^2+y^2\leq 0$ in \mathbb{R}^2 .

Solution. The area of $x^2 + y^2 \le 9$ in \mathbb{R}^2 is $V = 9\pi$. The standard matrix representation of $\mathcal T$ is $\mathcal A=$ $\sqrt{ }$ $\Big\}$ 1 −1 1 0 $0 -1$ 2 1 1 \parallel and so $A^T = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -1 & 0 & -1 & 1 \end{bmatrix}$. Now $A^T A = \left[\begin{array}{cc} 6 & 1 \ 1 & 3 \end{array}\right]$ and $\det(A^T A) = 17$. So the volume of the image √

under $\mathcal T$ of the region is $\sqrt{\det(A^\mathcal T A)}V=0$ $|179\pi=|9\pi|$ $\overline{\sqrt{17}}$.