Linear Algebra

Chapter 5: Eigenvalues and Eigenvectors

Section 5.1. Eigenvalues and Eigenvectors—Proofs of Theorems

Linear Algebra

April 10, 2020

Page 300 Number 8 (continued 1)

Solution (continued). So the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$ (see Note 5.1.A): $\lambda_1 = -1$. With $\vec{v}_1 = [v_1, v_2, v_3]^T$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - \lambda_1 \mathcal{I})\vec{v}_1 = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} -1 - (-1) & 0 & 0 & 0 & 0 \\ -4 & 2 - (-1) & -1 & 0 \\ 4 & 0 & 3 - (-1) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -4 & 3 & -1 & 0 \\ 4 & 0 & 4 & 0 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} + R_{2} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -4 & 3 & -1 & 0 \\ 0 & 3 & 3 & 0 \end{bmatrix} \xrightarrow{R_{2} \rightarrow R_{2} - R_{3}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -4 & 0 & -4 & 0 \\ 0 & 3 & 3 & 0 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} / (-4) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
()
$$C_{1} = C_{1} - C_{1} - C_{2} - C_{3} - C_{4} - C_{4}$$

Page 300 Number 8

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 2 & -1 \\ 4 & 0 & 3 \end{bmatrix}$. Solution. We have

$$A - \lambda \mathcal{I} = \left[egin{array}{cccc} -1 & 0 & 0 \ -4 & 2 & -1 \ 4 & 0 & 3 \end{array}
ight] - \lambda \left[egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} -1 - \lambda & 0 & 0 \ -4 & 2 - \lambda & -1 \ 4 & 0 & 3 - \lambda \end{array}
ight].$$

So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} -1 - \lambda & 0 & 0 \\ -4 & 2 - \lambda & -1 \\ 4 & 0 & 3 - \lambda \end{vmatrix}$$
$$= (-1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 0 & 3 - \lambda \end{vmatrix} - (0) + (0)$$
$$= (-1 - \lambda) ((2 - \lambda)(3 - \lambda) - (-1)(0)) = \boxed{(-1 - \lambda)(2 - \lambda)(3 - \lambda)}.$$

Linear Algebra

Page 300 Number 8 (continued 2)

Solution (continued).

$$\left[\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right] \xrightarrow{R_2 \leftrightarrow R_3} \left[\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

as a free variable, $v_2 = -r$. So the collection of all eigenvectors of

$$\lambda_1=-1$$
 is $egin{bmatrix} ec{v}_1=r egin{bmatrix} -1 \ -1 \ 1 \end{bmatrix}$ where $r\in\mathbb{R}$, $r
eq 0$.

Page 300 Number 8 (continued 3)

Solution (continued).

 $\lambda_2 = 2$. As above, we consider $(A - 2\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -1 - (2) & 0 & 0 & 0 \\ -4 & 2 - (2) & -1 & 0 \\ 4 & 0 & 3 - (2) & 0 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 & 0 \\ -4 & 0 & -1 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix}$$

Linear Algebra

April 10, 2020

April 10, 2020 7 / 23

Page 300 Number 8 (continued 5)

Solution (continued).

 $\lambda_3 = 3$. As above, we consider $(A - 3\mathcal{I})\vec{v}_3 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -1 - (3) & 0 & 0 & 0 \\ -4 & 2 - (3) & -1 & 0 \\ 4 & 0 & 3 - (3) & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 & 0 & 0 \\ -4 & -1 & -1 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}$$

Page 300 Number 8 (continued 4)

Solution (continued). So we need $v_3 = 0$, or $v_2 = v_2$ or, with 0 = 0 $v_3 = 0$

 $v_1 = 0$ $s = v_2$ as a free variable, $v_2 = s$. So the collection of all eigenvectors

of
$$\lambda_2=2$$
 is $egin{array}{c} ec{v}_2=s \left[egin{array}{c} 0 \ 1 \ 0 \end{array}
ight]$ where $s\in\mathbb{R}$, $s
eq 0$.

Page 300 Number 8 (continued 5)

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $A=\begin{bmatrix} -1 & 0 & 0 \\ -4 & 2 & -1 \\ 4 & 0 & 2 \end{bmatrix}$.

 $v_1 = 0$ Solution (continued). . . . $v_2 = -v_3$ or, with $t = v_3$ as a free

variable, $v_2 = -t$. So the collection of all eigenvectors of $\lambda_3 = 3$ is

$$egin{bmatrix} ec{v}_3 = t egin{bmatrix} 0 \ -1 \ 1 \end{bmatrix}$$
 where $t \in \mathbb{R},\ t
eq 0.$ \Box

Page 300 Number 14

Page 300 Number 14. Find the characteristic polynomial, the real

eigenvalues, and the corresponding eigenvectors for $A = \begin{bmatrix} 4 & 0 & 0 \\ 8 & 4 & 8 \\ 0 & 0 & 4 \end{bmatrix}$. **Solution.** We have **Solution.** We have

$$A - \lambda \mathcal{I} = \left[egin{array}{ccc} 4 & 0 & 0 \\ 8 & 4 & 8 \\ 0 & 0 & 4 \end{array} \right] - \lambda \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[egin{array}{ccc} 4 - \lambda & 0 & 0 \\ 8 & 4 - \lambda & 8 \\ 0 & 0 & 4 - \lambda \end{array} \right].$$

So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} 4 - \lambda & 0 & 0 \\ 8 & 4 - \lambda & 8 \\ 0 & 0 & 4 - \lambda \end{vmatrix}$$
$$= (4 - \lambda) \begin{vmatrix} 4 - \lambda & 8 \\ 0 & 4 - \lambda \end{vmatrix} - 0 + 0 = (4 - \lambda) ((4 - \lambda)(4 - \lambda) - (8)(0))$$
$$= \boxed{(4 - \lambda)^3}.$$

Page 300 Number 14 (continued 1)

 $v_2 = v_2$. With $r = v_2$ and $s = v_3$ as free variables, $v_2 = v_3$ $V_3 = V_3$

So the collection of all eigenvectors of $\lambda = 4$ is

 $\left| ec{v} = r \left[egin{array}{c} 0 \ 1 \ 0 \end{array}
ight] + s \left[egin{array}{c} -1 \ 0 \ 1 \end{array}
ight] ext{ where } r,s \in \mathbb{R} ext{ and not both } r = 0 ext{ and } s = 0.$

Page 300 Number 14 (continued 1)

Solution (continued). The eigenvalues can be found from the characteristic equation $p(\lambda) = 0$: $(4 - \lambda)^3 = 0$. By Note 5.1.A, the only eigenvalue is $\lambda = 4$. To find the eigenvector corresponding to $\overline{\lambda} = 4$ we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. This leads to the augmented matrix

$$\begin{bmatrix} 4 - (4) & 0 & 0 & 0 \\ 8 & 4 - (4) & 8 & 0 \\ 0 & 0 & 4 - (4) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 8 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem 5.1

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.

Let A be an $n \times n$ matrix.

2. If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, then $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with \vec{v} as a corresponding eigenvector.

Proof. Page 301 Number 28. If $\lambda = 0$ is an eigenvalue of matrix A then there is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v} = \vec{0}$. But then the homogeneous system of equations associated with $A\vec{v} = \vec{0}$ has a nontrivial solution. This implies that A is not invertible (by Theorem 1.16). But λ is given to be an eigenvalue of an invertible matrix, so it must be that, in fact, $\lambda \neq 0$. If λ is an eigenvalue of A with eigenvector \vec{v} , then $A\vec{v} = \lambda \vec{v}$. Therefore $A^{-1}A\vec{v} = A^{-1}\lambda\vec{v}$ or, by Theorem 1.3.A(7), "Scalars Pull Through," $\vec{v} = \lambda A^{-1} \vec{v}$. So $A^{-1} \vec{v} = (1/\lambda) \vec{v}$ and $1/\lambda$ is an eigenvalue of A^{-1} .

Page 298 Example 8

Page 298 Example 8. Let D_{∞} be the vector space of all functions mapping $\mathbb R$ into $\mathbb R$ and having derivatives of all order. Let $T:D_{\infty}\to D_{\infty}$ be the differentiation map so that T(f)=f'. Describe all eigenvalues and eigenvectors of T. (Notice that by Example 3.4.5, T actually is linear.) Solution. We need scalars λ and nonzero functions f where $T(f)=\lambda f$. Case 1. If $\lambda=0$, then we need T(f)=0 or f'=0. So f must be a constant function. Eigenvectors are nonzero by definition, so the eigenvectors associated with eigenvalue 0 are

all f(x) = k where $k \in \mathbb{R}$, $k \neq 0$. Case 2. If $\lambda \neq 0$, then we need $T(f) = \lambda f$ or $f' = \lambda f$. That is, $dy/dx = \lambda y$ or (as a separable differential equation), $dy/y = \lambda dx$ and so $\int \frac{1}{y} dy = \int \lambda dx$ or $\ln |y| = \lambda x + c$ or $e^{\ln |y|} = e^{\lambda x + c}$ or $|y| = e^c e^{\lambda x}$ or $y = \pm e^c e^{\lambda x}$ or $y = ke^{\lambda x}$ where we set $k = e^c$ or $k = -e^c$ (so $k \neq 0$). So the eigenvectors associated with eigenvalue $\lambda \neq 0$ are

Linear Algebra

all
$$y = ke^{\lambda x}$$
 where $k \neq 0$. \square

Page 300 Number 18 (continued 1)

Solution (continued). Denote the eigenvalues as $\lambda_1=0$ and $\lambda_2=2$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v}=\lambda\vec{v}$ or $(A-\lambda\mathcal{I})\vec{v}=\vec{0}$.

 $\underline{\lambda_1 = 0}$. With $\vec{v}_1 = [v_1, v_2]^T$ an eigenvector corresponding to eigenvalue $\overline{\lambda_1 = 0}$ we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix

$$\left[\begin{array}{cc|c} 1-(0) & -1 & 0 \\ -1 & 1-(0) & 0 \end{array}\right] = \left[\begin{array}{cc|c} 1 & -1 & 0 \\ -1 & 1 & 0 \end{array}\right] \stackrel{R_2 \to R_2 + R_1}{\longleftarrow} \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

variable, $egin{array}{cccc} v_1 &=& r \\ v_2 &=& r \end{array}$. So the collection of all eigenvalues of $\lambda_1=0$ is

$$ec{v}_1=r\left[egin{array}{c}1\1\end{array}
ight]$$
 where $r\in\mathbb{R}$, $r
eq0$.

Page 300 Number 18

Page 300 Number 18. Find the eigenvalues and corresponding eigenvectors for the linear transformation T([x,y]) = [x-y,-x+y]). **Solution.** We apply Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," to find the matrix representing T. We have $T(\hat{\imath}) = T([1,0]) = [(1)-(0),(-1)+(0)] = [1,-1]$ and $T(\hat{\jmath}) = T([0,1]) = [(0)-(1),-(0)+(1)] = [-1,1]$. Hence the standard matrix representation of T is $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. By Note 5.1.B, the eigenvalues and eigenvectors of T are the same as those of T. So we consider the characteristic polynomial

$$p(\lambda) = \det(A - \lambda \mathcal{I}) = \det\left(\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(1 - \lambda) - (-1)(-1) = 1 - 2\lambda + \lambda^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2).$$

We find the eigenvalues from the characteristic polynomial

$$p(\lambda) = \lambda(\lambda - 2) = 0$$
. So the eigenvalues of T are $\lambda_1 = 0$ and $\lambda_2 = 2$.

Page 300 Number 18 (continued 2)

Solution (continued).

 $\underline{\lambda_2=2}$. As above, we need $(A-2\mathcal{I})\vec{v}_2=\vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} 1 - (2) & -1 & 0 \\ -1 & 1 - (2) & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \to -R_1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

variable, $egin{array}{cccc} v_1 &=& -s \\ v_2 &=& s \end{array}$. So the collection of all eigenvalues of $\lambda_2=2$ is

$$ec{v}_2=s\left[egin{array}{c} -1 \ 1 \end{array}
ight]$$
 where $s\in\mathbb{R}$, $s
eq 0$.

Page 301 Number 30

Page 301 Number 30. Prove that a square matrix is invertible if and only if no eigenvalue is zero.

Proof. Suppose A is invertible. Then by Theorem 4.3. "Determinant Criterion for Invertibility," $det(A) \neq 0$. Now if $\lambda = 0$ is an eigenvalue then

$$\det(A - \lambda \mathcal{I}) = \det(A - 0\mathcal{I}) = \det(A) = 0,$$

so 0 cannot be an eigenvalue.

Suppose $\lambda = 0$ is an eigenvalue. Then, again,

$$\det(A - \lambda \mathcal{I}) = \det(A - 0\mathcal{I}) = \det(A) = 0.$$

So by Theorem 4.3, A is not invertible.

Linear Algebra

18 / 23

Page 302 Number 38

Page 302 Number 38. Let A be an $n \times n$ matrix and let C be an invertible $n \times n$ matrix. Prove that the eigenvalues of A and of $C^{-1}AC$ are the same.

Solution. Notice that

$$C^{-1}AC - \lambda \mathcal{I} = C^{-1}AC - \lambda C^{-1}C$$

$$= C^{-1}AC - C^{-1}(\lambda C) \text{ by Theorem 1.3.A(7),}$$
"Scalars Pull Through"
$$= C^{-1}(AC - \lambda C) \text{ by Theorem 1.3.A(10),}$$
"Distribution Law of Matrix Multiplication"
$$= C^{-1}(A - \lambda \mathcal{I})C \text{ by Theorem 1.3.A(10).}$$

Page 301 Number 32

Page 301 Number 32. Let A be an $n \times n$ matrix and let \mathcal{I} be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of $A + r\mathcal{I}$ for a scalar r.

Solution. Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} . Then $A\vec{v} = \lambda \vec{v}$. So

$$(A + r\mathcal{I})\vec{v} = A\vec{v} + r\mathcal{I}\vec{v} = A\vec{v} + r\vec{v} = \lambda\vec{v} + r\vec{v} = (\lambda + r)\vec{v}.$$

So $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with \vec{v} as a corresponding eigenvector. Conversely, if $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with eigenvector \vec{w} then $(A+r\mathcal{I})\vec{w}=(\lambda+r)\vec{w}$ or $A\vec{w}+r\vec{w}=\lambda\vec{w}+r\vec{w}$ or $A\vec{w}=\lambda\vec{w}$ so \vec{w} is an eigenvector of A corresponding to eigenvalues λ .

So the eigenvalues of $A + r\mathcal{I}$ are precisely those of the form $\lambda + r$ where λ is an eigenvalue of A. The corresponding eigenvectors of $A + r\mathcal{I}$ corresponding to $\lambda + r$ are precisely the eigenvectors of A corresponding to λ . \square

Linear Algebra

Page 302 Number 38 (continued)

Solution (continued). Recall that $det(C^{-1}) = 1/det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $C^{-1}AC$ is

$$\det(C^{-1}AC - \lambda \mathcal{I}) = \det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}$$

$$= \det(C^{-1})\det(A - \lambda \mathcal{I})\det(C) \text{ by Theorem 4.4,}$$
"The Multiplicative Property"
$$= (1/\det(C))\det(A - \lambda \mathcal{I})\det(C)$$

$$= \det(A - \lambda \mathcal{I}).$$

Now det $(A - \lambda \mathcal{I})$ is the characteristic polynomial of A, so A and $C^{-1}AC$ have the same characteristic polynomials. These polynomials have the same roots (of course) and since the eigenvalues of a matrix are the roots of the characteristic polynomial (see Note 5.1.A), A and $C^{-1}AC$ have the same eigenvalues, as claimed. П

Page 302 Number 40

Page 302 Number 40. The Cayley-Hamilton Theorem states:

Cayley-Hamilton Theorem. Every square matrix A satisfies its characteristic equation. That is, if $p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0$ is the characteristic polynomial of A then $p(A) = a_n A^n + a_{n-1} A^{n-1} +$ $\cdots + a_1 A + a_0 \mathcal{I} = O$ (where O is the $n \times n$ zero matrix).

Use the Cayley-Hamilton Theorem to prove that, for invertible $n \times n$ matrix A, A^{-1} can be computed as a linear combination of $A^0 = \mathcal{I}, A, A^2, \dots, A^{n-1}$.

Proof. Let A be an invertible $n \times n$ matrix and let $p(\lambda)$ be the characteristic polynomial of A. Then by the Cayley-Hamilton Theorem,

$$p(A) = a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 \mathcal{I} = O.$$

So $a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A = -a_0\mathcal{I}$. Multiplying both sides of this equation on the right be A^{-1} gives

$$(a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A)A^{-1} = (-a_0\mathcal{I})A^{-1}...$$

Page 302 Number 40 (continued)

Proof (continued). ... or, by Theorem 1.3.A(1), "Distribution Law of Matrix Multiplication."

$$a_n A^n A^{-1} + a_{n-1} A^{n-1} A^{-1} + \dots + a_2 A^2 A^{-1} + a_1 A A^{-1} = (-a_0 \mathcal{I}) A^{-1}$$

or by Theorem 1.3.A(10), "Associativity Law of Matrix Multiplication," and Theorem 1.3.A(6), "Associative Law of Matrix Multiplication,"

$$a_n A^{n-1}(AA^{-1}) + a_{n-1}A^{n-2}(AA^{-1}) + \dots + a_2A(AA^{-1}) + a_1(AA^{-1}) = -a_0\mathcal{I}A^{-1}$$

or

$$a_n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_2 A + a_1 \mathcal{I} = -a_0 A^{-1}.$$

Since A is invertible, then 0 is not an eigenvalue of A by Exercise 30, so $p(0) = a_0 \neq 0$. We then have

$$A^{-1} = -\frac{a_n}{a_0}A^{n-1} - \frac{a_{n-1}}{a_0}A^{n-2} - \dots - \frac{a_2}{a_0}A - \frac{a_1}{a_0}\mathcal{I}.$$

Linear Algebra

23 / 23

So A^{-1} is a linear combination of $A^{n-1}, A^{n-2}, \ldots, A, \mathcal{I}$, as claimed.

Linear Algebra April 10, 2020