Linear Algebra

Chapter 5: Eigenvalues and Eigenvectors Section 5.1. Eigenvalues and Eigenvectors—Proofs of Theorems

- [Page 300 Number 8](#page-2-0)
- [Page 300 Number 14](#page-19-0)
- [Theorem 5.1. Properties of Eigenvalues and Eigenvectors](#page-27-0)
- [Page 298 Example 8](#page-30-0)
- [Page 300 Number 18](#page-34-0)
- [Page 301 Number 30](#page-43-0)
	- [Page 301 Number 32](#page-46-0)
- [Page 302 Number 38](#page-50-0)
	- [Page 302 Number 40](#page-55-0)

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ -1 0 0 -4 2 -1 4 0 3 1 $|\cdot$ Solution. We have $A-\lambda\mathcal{I}=$ Т $\overline{}$ −1 0 0 -4 2 -1 4 0 3 1 $\vert -\lambda$ Т $\overline{}$ 1 0 0 0 1 0 0 0 1 l \vert = Т $\overline{}$ $-1-\lambda$ 0 0 -4 2 − λ -1 4 0 $3 - \lambda$ ı $\vert \cdot$

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ -1 0 0 -4 2 -1 4 0 3 1 $|\cdot$ Solution. We have $A-\lambda \mathcal{I}=$ \lceil $\overline{1}$ −1 0 0 -4 2 -1 4 0 3 1 $\vert -\lambda$ \lceil $\overline{1}$ 1 0 0 0 1 0 0 0 1 1 \vert = $\sqrt{ }$ $\overline{1}$ $-1 - \lambda$ 0 0 -4 2 − λ -1 4 0 $3 - \lambda$ 1 $|\cdot$

So the characteristic polynomial is

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} -1 - \lambda & 0 & 0 \\ -4 & 2 - \lambda & -1 \\ 4 & 0 & 3 - \lambda \end{vmatrix}
$$

= $(-1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 0 & 3 - \lambda \end{vmatrix} - (0) + (0)$
= $(-1 - \lambda) ((2 - \lambda)(3 - \lambda) - (-1)(0)) = \boxed{(-1 - \lambda)(2 - \lambda)(3 - \lambda)}$.

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ -1 0 0 -4 2 -1 4 0 3 1 $|\cdot$ Solution. We have

$$
A-\lambda\mathcal{I}=\left[\begin{array}{rrr} -1 & 0 & 0 \\ -4 & 2 & -1 \\ 4 & 0 & 3 \end{array}\right]-\lambda\left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{rrr} -1-\lambda & 0 & 0 \\ -4 & 2-\lambda & -1 \\ 4 & 0 & 3-\lambda \end{array}\right].
$$

So the characteristic polynomial is

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} -1 - \lambda & 0 & 0 \\ -4 & 2 - \lambda & -1 \\ 4 & 0 & 3 - \lambda \end{vmatrix}
$$

= $(-1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 0 & 3 - \lambda \end{vmatrix} - (0) + (0)$
= $(-1 - \lambda) ((2 - \lambda)(3 - \lambda) - (-1)(0)) = \boxed{(-1 - \lambda)(2 - \lambda)(3 - \lambda)}$.

Page 300 Number 8 (continued 1)

Solution (continued). So the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$ (see Note 5.1.A):

Solution (continued). So the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$ (see Note 5.1.A): $\lambda_1 = -1$. With $\vec{v}_1 = [v_1, v_2, v_3]^T$ an eigenvector corresponding to the

eigenvalue $\lambda_1 = -1$ we need $(A - \lambda_1 \mathcal{I}) \vec{v}_1 = \vec{0}$.

Solution (continued). So the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$ (see Note 5.1.A): $\lambda_1 = -1$. With $\vec{\mathsf{v}}_1 = [\mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3]^{\mathsf{T}}$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - \lambda_1 \mathcal{I}) \vec{v}_1 = \vec{0}$. So we consider the augmented matrix

Solution (continued). So the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$ (see Note 5.1.A): $\lambda_1 = -1$. With $\vec{\mathsf{v}}_1 = [\mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3]^{\mathsf{T}}$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - \lambda_1 \mathcal{I})\vec{v}_1 = \vec{0}$. So we consider the augmented matrix

$$
\begin{bmatrix}\n-1 - (-1) & 0 & 0 & 0 & 0 \\
-4 & 2 - (-1) & -1 & 0 & -1 & 0 \\
4 & 0 & 3 - (-1) & 0 & 0 & 4 & 0\n\end{bmatrix} = \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 \\
-4 & 3 & -1 & 0 & 0 \\
4 & 0 & 4 & 0 & 0\n\end{bmatrix}
$$
\n
$$
R_{3 \to R_{3} + R_{2}} \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 \\
-4 & 3 & -1 & 0 & 0 \\
0 & 3 & 3 & 0 & 0\n\end{bmatrix} R_{2 \to R_{2} - R_{3}} \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 \\
-4 & 0 & -4 & 0 & 0 \\
0 & 3 & 3 & 0 & 0 \\
0 & 3 & 3 & 0 & 0\n\end{bmatrix}
$$
\n
$$
R_{2 \to R_{2} / (-4)} \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0\n\end{bmatrix} R_{1 \to R_{2}} \begin{bmatrix}\n1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0\n\end{bmatrix}
$$

Page 300 Number 8 (continued 2)

Solution (continued).

$$
\begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

So we need
$$
\begin{aligned}\nv_1 + v_3 &= 0 & v_1 &= -v_3 \\
v_2 + v_3 &= 0 & v_2 &= -v_3 \text{ or, with } r &= v_3 \\
0 &= 0 & v_3 &= v_3\n\end{aligned}
$$
as a free variable,
$$
\begin{aligned}\nv_1 &= -r \\
v_2 &= -r \\
v_3 &= r\n\end{aligned}
$$

Page 300 Number 8 (continued 2)

Solution (continued).

$$
\begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

\n
$$
v_1 + v_3 = 0 \t v_1 = -v_3
$$

\nSo we need $v_2 + v_3 = 0$, or $v_2 = -v_3$ or, with $r = v_3$
\n
$$
v_1 = -r
$$

\nas a free variable, $v_2 = -r$. So the collection of all eigenvectors of $v_3 = r$
\n
$$
v_3 = r
$$

\n
$$
\lambda_1 = -1
$$
 is $\overline{v_1} = r \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ where $r \in \mathbb{R}$, $r \neq 0$.

Page 300 Number 8 (continued 2)

Solution (continued).

 \lceil $\overline{1}$ 1 0 1 0 0 0 0 0 0 1 1 0 1 $\left[\begin{array}{c} R_2 \leftrightarrow R_3 \\ \hline \end{array}\right]$ $\overline{}$ $1 \t0 \t1 \t0$ 0 1 1 0 0 0 0 0 1 $|\cdot$ So we need $v_1 + v_3 = 0$ $v_2 + v_3 = 0$, or $0 = 0$ $v_3 = v_3$ $v_1 = -v_3$ $v_2 = -v_3$ or, with $r = v_3$ as a free variable, $\mathcal{v}_2 = -r$. So the collection of all eigenvectors of $v_1 = -r$ $v_3 = r$ $\lambda_1 = -1$ is $| \vec{v}_1 = r$ $\sqrt{ }$ $\overline{}$ −1 −1 1 1 where $r \in \mathbb{R}$, $r \neq 0$.

Page 300 Number 8 (continued 3)

Solution (continued).

 $\lambda_2 = 2$. As above, we consider $(A - 2\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$
\begin{bmatrix} -1 - (2) & 0 & 0 & 0 \ -4 & 2 - (2) & -1 & 0 \ 4 & 0 & 3 - (2) & 0 \ \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 & 0 \ -4 & 0 & -1 & 0 \ 4 & 0 & 1 & 0 \ \end{bmatrix}
$$

$$
R_1 \rightarrow R_1 / (-3) \begin{bmatrix} 1 & 0 & 0 & 0 \ -4 & 0 & -1 & 0 \ 4 & 0 & 1 & 0 \ \end{bmatrix} \begin{bmatrix} R_2 \rightarrow R_2 + 4R_1 \ R_3 \rightarrow R_3 - R_3 - 4R_1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 1 & 0 \ \end{bmatrix}
$$

$$
R_3 \rightarrow R_3 + R_2 \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix} \begin{bmatrix} R_2 \rightarrow -R_2 \ R_3 \rightarrow R_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix}.
$$

Page 300 Number 8 (continued 4)

Solution (continued). So we need
$$
v_3 = 0
$$
, or $v_2 = v_2$ or, with $0 = 0$ $v_3 = 0$
\n
$$
s = v_2 \text{ as a free variable, } v_2 = s. \text{ So the collection of all eigenvectors}
$$
\n
$$
v_3 = 0
$$
\n
$$
v_4 = 0
$$
\n
$$
s = v_2 \text{ as a free variable, } v_2 = s. \text{ So the collection of all eigenvectors}
$$
\n
$$
v_3 = 0
$$
\n
$$
v_4 = 0
$$
\n
$$
v_5 = 0
$$

Solution (continued). So we need
$$
v_3 = 0
$$
, or $v_2 = v_2$ or, with
\n $0 = 0$ $v_3 = 0$
\n $s = v_2$ as a free variable, $v_2 = s$. So the collection of all eigenvectors
\n $v_3 = 0$
\nof $\lambda_2 = 2$ is $\begin{bmatrix} 0 \\ \vec{v}_2 = s \end{bmatrix}$ where $s \in \mathbb{R}$, $s \neq 0$.

Page 300 Number 8 (continued 5)

Solution (continued).

 $\lambda_3 = 3$. As above, we consider $(A - 3\mathcal{I})\vec{v}_3 = \vec{0}$ and consider the augmented matrix

$$
\begin{bmatrix}\n-1 - (3) & 0 & 0 & 0 \\
-4 & 2 - (3) & -1 & 0 \\
4 & 0 & 3 - (3) & 0\n\end{bmatrix} = \begin{bmatrix}\n-4 & 0 & 0 & 0 \\
-4 & -1 & -1 & 0 \\
4 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\begin{array}{c}\nR_2 \rightarrow R_2 - R_1 \\
R_3 \rightarrow R_3 + R_1\n\end{array} \begin{bmatrix}\n-4 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0\n\end{bmatrix} \begin{bmatrix}\nR_1 \rightarrow R_1/(-4) \\
R_2 \rightarrow -R_2\n\end{bmatrix} \begin{bmatrix}\n1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0\n\end{bmatrix}.
$$
\nSo we need\n
$$
\begin{array}{rcl}\nV_1 & = & 0 \\
V_2 & + V_3 & = & 0 \\
0 & = & 0\n\end{array}, \text{ or } V_2 = -V_3 \quad \dots
$$
\n
$$
\begin{array}{rcl}\n0 & V_3 & = & V_3\n\end{array}
$$

Page 300 Number 8 (continued 5)

Solution (continued).

 $\lambda_3 = 3$. As above, we consider $(A - 3\mathcal{I})\vec{v}_3 = \vec{0}$ and consider the augmented matrix

$$
\begin{bmatrix} -1 - (3) & 0 & 0 & 0 \ -4 & 2 - (3) & -1 & 0 \ 4 & 0 & 3 - (3) & 0 \end{bmatrix} = \begin{bmatrix} -4 & 0 & 0 & 0 \ -4 & -1 & -1 & 0 \ 4 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\begin{array}{c} R_{2} \rightarrow R_{2} - R_{1} \ R_{3} \rightarrow R_{3} + R_{1} \end{array} \begin{bmatrix} -4 & 0 & 0 \ 0 & -1 & -1 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \ R_{1} \rightarrow R_{1}/(-4) \ R_{2} \rightarrow -R_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

So we need
$$
\begin{array}{c} v_{1} = 0 & v_{1} = 0 \ v_{2} + v_{3} = 0, \text{ or } v_{2} = -v_{3} \dots \\ 0 = 0 & v_{3} = v_{3} \end{array}
$$

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ -1 0 0 -4 2 -1 4 0 3 1 $|\cdot$

Solution (continued). . . . $v_1 = 0$ $v_2 = -v_3$ or, with $t = v_3$ as a free $v_3 = v_3$

variable, $v_2 = -t$. So the collection of all eigenvectors of $\lambda_3 = 3$ is $v_1 = 0$ $v_3 = t$

 $\vec{v}_3 = t$ Г $\overline{1}$ 0 −1 1 1 where $t \in \mathbb{R}, t \neq 0.$

Page 300 Number 8. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ -1 0 0 -4 2 -1 4 0 3 1 $|\cdot$

Solution (continued). . . . $v_1 = 0$ $v_2 = -v_3$ or, with $t = v_3$ as a free $v_3 = v_3$

variable, $\quad_2\quad =\quad -t\,$. So the collection of all eigenvectors of $\lambda_3=3$ is $v_1 = 0$ $v_3 = t$

$$
\overline{v_3} = t \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array}\right]
$$
 where $t \in \mathbb{R}$, $t \neq 0$.

Page 300 Number 14. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ 4 0 0 8 4 8 0 0 4 1 $|\cdot$ Solution. We have $A - \lambda \mathcal{I} =$ Т $\overline{}$ 4 0 0 8 4 8 0 0 4 l $\vert -\lambda$ Г $\overline{}$ 1 0 0 0 1 0 0 0 1 1 $\Big\} =$ Г $\overline{}$ $4 - \lambda$ 0 0 8 $4 - \lambda$ 8 0 0 $4 - \lambda$ ı .

Page 300 Number 14. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ 4 0 0 8 4 8 0 0 4 1 $|\cdot$ Solution. We have $A - \lambda \mathcal{I} =$ \lceil $\overline{1}$ 4 0 0 8 4 8 0 0 4 1 $\vert -\lambda$ $\sqrt{ }$ $\overline{1}$ 1 0 0 0 1 0 0 0 1 1 \vert = $\sqrt{ }$ $\overline{1}$ $4 - \lambda$ 0 0 8 $4 - \lambda$ 8 0 0 $4 - \lambda$ 1 $|\cdot$

So the characteristic polynomial is

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} 4 - \lambda & 0 & 0 \\ 8 & 4 - \lambda & 8 \\ 0 & 0 & 4 - \lambda \end{vmatrix}
$$

 $=\left(4-\lambda\right)\bigg|$ $4 - \lambda$ 8 0 $4 - \lambda$ $\Big| -0 + 0 = (4 - \lambda) ((4 - \lambda) (4 - \lambda) - (8)(0))$

$$
= \boxed{(4-\lambda)^3}.
$$

Page 300 Number 14. Find the characteristic polynomial, the real eigenvalues, and the corresponding eigenvectors for $\mathcal{A}=$ $\sqrt{ }$ $\overline{1}$ 4 0 0 8 4 8 0 0 4 1 $|\cdot$ Solution. We have \lceil 4 0 0 1 $\sqrt{ }$ 1 0 0 1 $\sqrt{ }$ $4 - \lambda$ 0 0 1

$$
A - \lambda \mathcal{I} = \left[\begin{array}{ccc} 8 & 4 & 8 \\ 0 & 0 & 4 \end{array} \right] - \lambda \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{ccc} 8 & 4 - \lambda & 8 \\ 0 & 0 & 4 - \lambda \end{array} \right].
$$

So the characteristic polynomial is

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} 4 - \lambda & 0 & 0 \\ 8 & 4 - \lambda & 8 \\ 0 & 0 & 4 - \lambda \end{vmatrix}
$$

$$
= (4 - \lambda) \begin{vmatrix} 4 - \lambda & 8 \\ 0 & 4 - \lambda \end{vmatrix} - 0 + 0 = (4 - \lambda) ((4 - \lambda)(4 - \lambda) - (8)(0))
$$

$$
= \boxed{(4 - \lambda)^3}
$$

Solution (continued). The eigenvalues can be found from the characteristic equation $p(\lambda)=0$: $(4-\lambda)^3=0$. By Note 5.1.A, the only eigenvalue is $\lambda = 4$. To find the eigenvector corresponding to

 $\lambda = 4$ we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

Solution (continued). The eigenvalues can be found from the characteristic equation $p(\lambda)=0$: $(4-\lambda)^3=0$. By Note 5.1.A, the only eigenvalue is $\lambda = 4$. To find the eigenvector corresponding to $\lambda = 4$ we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. This leads to the augmented matrix

$$
\begin{bmatrix} 4 - (4) & 0 & 0 & 0 \ 8 & 4 - (4) & 8 & 0 \ 0 & 0 & 4 - (4) & 0 \ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \ 8 & 0 & 8 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix}
$$

$$
\xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 8 & 0 & 8 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix} \xrightarrow{R_1 \to R_1/8} \begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix}.
$$

Solution (continued). The eigenvalues can be found from the characteristic equation $p(\lambda)=0$: $(4-\lambda)^3=0$. By Note 5.1.A, the only eigenvalue is $\lambda = 4$. To find the eigenvector corresponding to $\lambda = 4$ we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. This leads to the augmented matrix

$$
\begin{bmatrix} 4-(4) & 0 & 0 & 0 \ 8 & 4-(4) & 8 & 0 \ 0 & 0 & 4-(4) & 0 \ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \ 8 & 0 & 8 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix}
$$

$$
\xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 8 & 0 & 8 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix} \xrightarrow{R_1 \to R_1/8} \begin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{bmatrix}.
$$

$$
v_1 + v_3 = 0
$$

\nSolution (continued). So we need
\n
$$
0 = 0
$$
, or
\n
$$
0 = 0
$$

\n
$$
v_1 = -v_3
$$

\n
$$
v_2 = v_2
$$
. With $r = v_2$ and $s = v_3$ as free variables, $v_2 = r$.
\n
$$
v_3 = v_3
$$

\nSo the collection of all eigenvectors of $\lambda = 4$ is
\n
$$
\vec{v} = r \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}
$$
 where $r, s \in \mathbb{R}$ and not both $r = 0$ and $s = 0$.

Theorem 5.1

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.

Let A be an $n \times n$ matrix.

2. If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, then $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with $\vec{\nu}$ as a corresponding eigenvector.

Proof. Page 301 Number 28. If $\lambda = 0$ is an eigenvalue of matrix A then there is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v} = \vec{0}$. But then the homogeneous system of equations associated with $A\vec{v} = \vec{0}$ has a nontrivial solution. This implies that A is not invertible (by Theorem 1.16). But λ is given to be an eigenvalue of an invertible matrix, so it must be that, in fact, $\lambda \neq 0$.

Theorem 5.1

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.

Let A be an $n \times n$ matrix.

2. If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, then $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with $\vec{\nu}$ as a corresponding eigenvector.

Proof. Page 301 Number 28. If $\lambda = 0$ is an eigenvalue of matrix A then there is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v} = \vec{0}$. But then the homogeneous system of equations associated with $A\vec{v} = \vec{0}$ has a nontrivial solution. This implies that A is not invertible (by Theorem 1.16). But λ is given to be an eigenvalue of an invertible matrix, so it must be that, in **fact,** $\lambda \neq 0$ **.** If λ is an eigenvalue of A with eigenvector \vec{v} , then $A\vec{v} = \lambda \vec{v}$. Therefore $A^{-1}A\vec{v}=A^{-1}\lambda\vec{v}$ or, by Theorem 1.3.A(7), "Scalars Pull Through," $\vec{v} = \lambda A^{-1} \vec{v}$. So $A^{-1} \vec{v} = (1/\lambda) \vec{v}$ and $1/\lambda$ is an eigenvalue of A^{-1} .

Theorem 5.1

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.

Let A be an $n \times n$ matrix.

2. If λ is an eigenvalue of an invertible matrix A with \vec{v} as a corresponding eigenvector, then $\lambda \neq 0$ and $1/\lambda$ is an eigenvalue of A^{-1} , again with $\vec{\nu}$ as a corresponding eigenvector.

Proof. Page 301 Number 28. If $\lambda = 0$ is an eigenvalue of matrix A then there is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v} = \vec{0}$. But then the homogeneous system of equations associated with $A\vec{v} = \vec{0}$ has a nontrivial solution. This implies that A is not invertible (by Theorem 1.16). But λ is given to be an eigenvalue of an invertible matrix, so it must be that, in fact, $\lambda \neq 0$. If λ is an eigenvalue of A with eigenvector \vec{v} , then $A\vec{v} = \lambda \vec{v}$. Therefore $A^{-1}A\vec{v}=A^{-1}\lambda\vec{v}$ or, by Theorem 1.3.A(7), "Scalars Pull Through," $\vec{v} = \lambda A^{-1} \vec{v}$. So $A^{-1} \vec{v} = (1/\lambda) \vec{v}$ and $1/\lambda$ is an eigenvalue of A^{-1} .

Page 298 Example 8. Let D_{∞} be the vector space of all functions mapping R into R and having derivatives of all order. Let $T: D_{\infty} \to D_{\infty}$ be the differentiation map so that $T(f) = f'.$ Describe all eigenvalues and eigenvectors of T . (Notice that by Example 3.4.5, T actually is linear.) **Solution.** We need scalars λ and nonzero functions f where $T(f) = \lambda f$.

Page 298 Example 8. Let D_{∞} be the vector space of all functions mapping R into R and having derivatives of all order. Let $T: D_{\infty} \to D_{\infty}$ be the differentiation map so that $T(f) = f'.$ Describe all eigenvalues and eigenvectors of T. (Notice that by Example 3.4.5, T actually is linear.) **Solution.** We need scalars λ and nonzero functions f where $T(f) = \lambda f$. <u>Case 1.</u> If $\lambda = 0$, then we need $T(f) = 0f = 0$ or $f' = 0$. So f must be a constant function. Eigenvectors are nonzero by definition, so the eigenvectors associated with eigenvalue 0 are all $f(x) = k$ where $k \in \mathbb{R}$, $k \neq 0$.

Page 298 Example 8. Let D_{∞} be the vector space of all functions mapping R into R and having derivatives of all order. Let $T: D_{\infty} \to D_{\infty}$ be the differentiation map so that $T(f) = f'.$ Describe all eigenvalues and eigenvectors of T. (Notice that by Example 3.4.5, T actually is linear.) **Solution.** We need scalars λ and nonzero functions f where $T(f) = \lambda f$. <u>Case 1.</u> If $\lambda = 0$, then we need $\mathcal{T}(f) = 0$ = 0 or $f' = 0$. So f must be a constant function. Eigenvectors are nonzero by definition, so the eigenvectors associated with eigenvalue 0 are

$$
all f(x) = k where k \in \mathbb{R}, k \neq 0.
$$

Case 2. If $\lambda \neq 0$, then we need $\overline{T(f)} = \lambda f$ or $f' = \lambda f$. That is, $dy/dx = \lambda y$ or (as a separable differential equation), $dy/y = \lambda dx$ and so $\int \frac{1}{\sqrt{2}}$ $\frac{1}{y}$ dy $= \int \lambda dx$ or $\ln|y| = \lambda x + c$ or $e^{\ln|y|} = e^{\lambda x + c}$ or $|y| = e^c e^{\lambda x}$ or $y=\pm e^c e^{\lambda x}$ or $y=ke^{\lambda x}$ where we set $k=e^c$ or $k=-e^c$ (so $k\neq 0).$ So the eigenvectors associated with eigenvalue $\lambda \neq 0$ are

all
$$
y = ke^{\lambda x}
$$
 where $k \neq 0$.

Page 298 Example 8. Let D_{∞} be the vector space of all functions mapping R into R and having derivatives of all order. Let $T: D_{\infty} \to D_{\infty}$ be the differentiation map so that $T(f) = f'.$ Describe all eigenvalues and eigenvectors of T. (Notice that by Example 3.4.5, T actually is linear.) **Solution.** We need scalars λ and nonzero functions f where $T(f) = \lambda f$. <u>Case 1.</u> If $\lambda = 0$, then we need $\mathcal{T}(f) = 0$ = 0 or $f' = 0$. So f must be a constant function. Eigenvectors are nonzero by definition, so the eigenvectors associated with eigenvalue 0 are all $f(x) = k$ where $k \in \mathbb{R}$, $k \neq 0$. <u>Case 2.</u> If $\lambda \neq 0$, then we need $\overline{T(f)} = \lambda f$ or $f' = \lambda f$. That is, $dy/dx = \lambda y$ or (as a separable differential equation), $dy/y = \lambda dx$ and so $\int \frac{1}{\nu}$ $\frac{1}{y}$ dy $= \int \lambda$ dx or $\ln |y| = \lambda x + c$ or $e^{\ln |y|} = e^{\lambda x + c}$ or $|y| = e^c e^{\lambda x}$ or $y=\pm e^c e^{\lambda x}$ or $y=ke^{\lambda x}$ where we set $k=e^c$ or $k=-e^c$ (so $k\neq 0).$ So the eigenvectors associated with eigenvalue $\lambda \neq 0$ are all $y = ke^{\lambda x}$ where $k \neq 0$. \Box

Page 300 Number 18. Find the eigenvalues and corresponding eigenvectors for the linear transformation $T([x, y]) = [x - y, -x + y]$. Solution. We apply Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," to find the matrix representing T . We have $T(\hat{i}) = T([1, 0]) = [(1) - (0), (-1) + (0)] = [1, -1]$ and $T(\hat{j}) = T([0, 1]) = [(0) - (1), -(0) + (1)] = [-1, 1]$. Hence the standard matrix representation of T is $A = \begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$.

Page 300 Number 18. Find the eigenvalues and corresponding eigenvectors for the linear transformation $T([x, y]) = [x - y, -x + y]$. Solution. We apply Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," to find the matrix representing T . We have $T(\hat{i}) = T([1, 0]) = [(1) - (0), (-1) + (0)] = [1, -1]$ and $T(\hat{j}) = T([0, 1]) = [(0) - (1), -(0) + (1)] = [-1, 1]$. Hence the standard **matrix representation of T is** $A = \begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}$ **.** By Note 5.1.B, the eigenvalues and eigenvectors of T are the same as those of A. So we

consider the characteristic polynomial

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \det\left(\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix}
$$

$$
= (1 - \lambda)(1 - \lambda) - (-1)(-1) = 1 - 2\lambda + \lambda^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2).
$$

Page 300 Number 18. Find the eigenvalues and corresponding eigenvectors for the linear transformation $T([x, y]) = [x - y, -x + y]$. Solution. We apply Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," to find the matrix representing T . We have $T(\hat{i}) = T([1, 0]) = [(1) - (0), (-1) + (0)] = [1, -1]$ and $T(\hat{j}) = T([0,1]) = [(0) - (1), -(0) + (1)] = [-1,1]$. Hence the standard matrix representation of $\mathcal T$ is $A=\left[\begin{array}{cc} 1 & -1\ -1 & 1 \end{array}\right]$. By Note 5.1.B, the eigenvalues and eigenvectors of T are the same as those of A. So we consider the characteristic polynomial

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \det\left(\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix}
$$

= $(1 - \lambda)(1 - \lambda) - (-1)(-1) = 1 - 2\lambda + \lambda^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2).$
We find the eigenvalues from the characteristic polynomial
 $p(\lambda) = \lambda(\lambda - 2) = 0$. So the eigenvalues of T are $\lambda_1 = 0$ and $\lambda_2 = 2$.

Page 300 Number 18. Find the eigenvalues and corresponding eigenvectors for the linear transformation $T([x, y]) = [x - y, -x + y]$. Solution. We apply Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," to find the matrix representing T . We have $T(\hat{i}) = T([1, 0]) = [(1) - (0), (-1) + (0)] = [1, -1]$ and $T(\hat{j}) = T([0, 1]) = [(0) - (1), -(0) + (1)] = [-1, 1]$. Hence the standard matrix representation of $\mathcal T$ is $A=\left[\begin{array}{cc} 1 & -1\ -1 & 1 \end{array}\right]$. By Note 5.1.B, the eigenvalues and eigenvectors of T are the same as those of A. So we consider the characteristic polynomial

$$
p(\lambda) = \det(A - \lambda \mathcal{I}) = \det\left(\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix}
$$

= $(1 - \lambda)(1 - \lambda) - (-1)(-1) = 1 - 2\lambda + \lambda^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2).$
We find the eigenvalues from the characteristic polynomial
 $p(\lambda) = \lambda(\lambda - 2) = 0$. So [the eigenvalues of T are $\lambda_1 = 0$ and $\lambda_2 = 2$.]

Solution (continued). Denote the eigenvalues as $\lambda_1 = 0$ and $\lambda_2 = 2$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\lambda_1=$ 0. With $\vec{v}_1=[v_1,v_2]^T$ an eigenvector corresponding to eigenvalue $\lambda_1 = 0$ we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix

$$
\begin{bmatrix} 1 - (0) & -1 & 0 \ -1 & 1 - (0) & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \ -1 & 1 & 0 \end{bmatrix} \stackrel{R_2 \to R_2 + R_1}{\sim} \begin{bmatrix} 1 & -1 & 0 \ 0 & 0 & 0 \end{bmatrix}
$$

So we need
$$
\begin{aligned} v_1 - v_2 &= 0 \\ 0 &= 0 \end{aligned} \text{ or } \begin{aligned} v_1 &= v_2 \\ v_2 &= v_2 \end{aligned} \text{ or, with } r = v_2 \text{ as a free variable, } \begin{aligned} v_1 &= r \\ v_2 &= r \end{aligned}
$$

.

Solution (continued). Denote the eigenvalues as $\lambda_1 = 0$ and $\lambda_2 = 2$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\lambda_1=$ 0. With $\vec{v}_1=[v_1,v_2]^{\mathcal{T}}$ an eigenvector corresponding to eigenvalue $\lambda_1 = 0$ we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix

$$
\begin{bmatrix} 1 - (0) & -1 & 0 \ -1 & 1 - (0) & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \ -1 & 1 & 0 \end{bmatrix} \stackrel{R_2 \rightarrow R_2 + R_1}{\longrightarrow} \begin{bmatrix} 1 & -1 & 0 \ 0 & 0 & 0 \end{bmatrix}
$$

So we need
$$
\begin{aligned} v_1 - v_2 &= 0 \\ 0 &= 0 \end{aligned} \text{ or } \begin{aligned} v_1 &= v_2 \\ v_2 &= v_2 \end{aligned} \text{ or, with } r = v_2 \text{ as a free}
$$

variable, $\begin{array}{rcl} v_1 &= r \\ v_2 &= r \end{array}$. So the collection of all eigenvalues of $\lambda_1 = 0$ is

 $\vec{v}_1 = r \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 where $r \in \mathbb{R}$, $r \neq 0$. .

Solution (continued). Denote the eigenvalues as $\lambda_1 = 0$ and $\lambda_2 = 2$. To find the eigenvectors corresponding to each eigenvalue, we consider the formula $A\vec{v} = \lambda \vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\lambda_1=$ 0. With $\vec{v}_1=[v_1,v_2]^{\mathcal{T}}$ an eigenvector corresponding to eigenvalue $\lambda_1 = 0$ we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix

$$
\left[\begin{array}{cc|c}1-(0)&-1&0\\-1&1-(0)&0\end{array}\right]=\left[\begin{array}{cc|c}1&-1&0\\-1&1&0\end{array}\right]^{\begin{array}{c}R_2\rightarrow R_2+R_1\\0&0\end{array}}\left[\begin{array}{cc|c}1&-1&0\\0&0&0\end{array}\right]
$$

So we need $\begin{array}{rcl} v_1 - v_2 &=& 0 \\ 0 &=& 0 \end{array}$ or $\begin{array}{rcl} v_1 &=& v_2 \\ v_2 &=& v_2 \end{array}$ $v_1 = v_2$ or, with $r = v_2$ as a free
 $v_2 = v_2$

variable, $\begin{array}{rcl} v_1 &=& r \\ v_2 &=& r \end{array}$. So the collection of all eigenvalues of $\lambda_1 = 0$ is

$$
\vec{v}_1=r\left[\begin{array}{c}1\\1\end{array}\right]
$$
 where $r \in \mathbb{R}$, $r \neq 0$.

.

Page 300 Number 18 (continued 2)

Solution (continued).

 $\lambda_2 = 2$. As above, we need $(A - 2\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$
\begin{bmatrix} 1 - (2) & -1 & 0 \ -1 & 1 - (2) & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \ -1 & -1 & 0 \end{bmatrix}
$$

\n
$$
\begin{array}{c} R_2 \rightarrow R_2 - R_1 \\ R_2 \rightarrow R_2 - R_1 \\ R_1 \rightarrow R_1 \end{array} \begin{bmatrix} -1 & -1 & 0 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_1 \rightarrow -R_1 \\ R_2 \rightarrow R_1 \\ R_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} .
$$

\nSo we need
$$
\begin{array}{c} v_1 + v_2 = 0 & v_1 = -v_2 \ v_2 = v_2 \end{array}
$$
or with $s = v_2$ as a free variable,
$$
\begin{array}{c} v_1 = -s \\ v_2 = s \end{array}
$$
. So the collection of all eigenvalues of $\lambda_2 = 2$ is

$$
\overline{\vec{v}_2} = s \left[\begin{array}{c} -1 \\ 1 \end{array} \right]
$$
 where $s \in \mathbb{R}$, $s \neq 0$.

Page 300 Number 18 (continued 2)

Solution (continued).

 $\lambda_2 = 2$. As above, we need $(A - 2\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$
\begin{bmatrix} 1 - (2) & -1 & 0 \ -1 & 1 - (2) & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 0 \ -1 & -1 & 0 \end{bmatrix}
$$

\n
$$
\begin{array}{c} R_2 \rightarrow R_2 - R_1 \\ \begin{bmatrix} 1 & -1 & -1 \ 0 & 0 & 0 \end{bmatrix} \end{array} \begin{bmatrix} R_1 \rightarrow -R_1 \\ \begin{bmatrix} 1 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} \end{bmatrix}.
$$

\nSo we need
$$
\begin{array}{c} v_1 + v_2 &= 0 \\ 0 &= 0 \end{array} \text{ or } \begin{array}{c} v_1 &= -v_2 \\ v_2 &= v_2 \end{array} \text{ or with } s = v_2 \text{ as a free variable,}
$$

\nvariable,
$$
\begin{array}{c} v_1 &= -s \\ v_2 &= s \end{array}.
$$
 So the collection of all eigenvalues of $\lambda_2 = 2$ is

$$
\vec{v}_2 = s \left[\begin{array}{c} -1 \\ 1 \end{array} \right]
$$
 where $s \in \mathbb{R}$, $s \neq 0$.

Page 301 Number 30. Prove that a square matrix is invertible if and only if no eigenvalue is zero.

Proof. Suppose A is invertible. Then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. Now if $\lambda = 0$ is an eigenvalue then

$$
\det(A - \lambda \mathcal{I}) = \det(A - 0\mathcal{I}) = \det(A) = 0,
$$

so 0 cannot be an eigenvalue.

Page 301 Number 30. Prove that a square matrix is invertible if and only if no eigenvalue is zero.

Proof. Suppose A is invertible. Then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. Now if $\lambda = 0$ is an eigenvalue then

$$
\det(\mathcal{A}-\lambda \mathcal{I})=\det(\mathcal{A}-0\mathcal{I})=\det(\mathcal{A})=0,
$$

so 0 cannot be an eigenvalue.

Suppose $\lambda = 0$ is an eigenvalue. Then, again,

$$
\det(A - \lambda \mathcal{I}) = \det(A - 0\mathcal{I}) = \det(A) = 0.
$$

So by Theorem 4.3, A is not invertible.

Page 301 Number 30. Prove that a square matrix is invertible if and only if no eigenvalue is zero.

Proof. Suppose A is invertible. Then by Theorem 4.3, "Determinant Criterion for Invertibility," $det(A) \neq 0$. Now if $\lambda = 0$ is an eigenvalue then

$$
\det(\mathcal{A}-\lambda \mathcal{I})=\det(\mathcal{A}-0\mathcal{I})=\det(\mathcal{A})=0,
$$

so 0 cannot be an eigenvalue.

Suppose $\lambda = 0$ is an eigenvalue. Then, again,

$$
\det(A-\lambda\mathcal{I})=\det(A-0\mathcal{I})=\det(A)=0.
$$

So by Theorem 4.3, A is not invertible.

Page 301 Number 32. Let A be an $n \times n$ matrix and let T be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of $A + r\mathcal{I}$ for a scalar r.

Solution. Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} . Then $A\vec{v} = \lambda \vec{v}$. So

$$
(A + r\mathcal{I})\vec{v} = A\vec{v} + r\mathcal{I}\vec{v} = A\vec{v} + r\vec{v} = \lambda\vec{v} + r\vec{v} = (\lambda + r)\vec{v}.
$$

So $\lambda + r$ is an eigenvalue of $A + rI$ with \vec{v} as a corresponding eigenvector.

Page 301 Number 32. Let A be an $n \times n$ matrix and let T be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of $A + r\mathcal{I}$ for a scalar r.

Solution. Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} . Then $A\vec{v} = \lambda \vec{v}$. So

$$
(A + r\mathcal{I})\vec{v} = A\vec{v} + r\mathcal{I}\vec{v} = A\vec{v} + r\vec{v} = \lambda\vec{v} + r\vec{v} = (\lambda + r)\vec{v}.
$$

So $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with \vec{v} as a corresponding eigenvector. Conversely, if $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with eigenvector \vec{w} then $(A + rI)\vec{w} = (\lambda + r)\vec{w}$ or $A\vec{w} + r\vec{w} = \lambda\vec{w} + r\vec{w}$ or $A\vec{w} = \lambda\vec{w}$ so \vec{w} is an eigenvector of A corresponding to eigenvalues λ .

Page 301 Number 32. Let A be an $n \times n$ matrix and let T be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of $A + r\mathcal{I}$ for a scalar r.

Solution. Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} . Then $A\vec{v} = \lambda \vec{v}$. So

$$
(A + r\mathcal{I})\vec{v} = A\vec{v} + r\mathcal{I}\vec{v} = A\vec{v} + r\vec{v} = \lambda\vec{v} + r\vec{v} = (\lambda + r)\vec{v}.
$$

So $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with \vec{v} as a corresponding eigenvector. Conversely, if $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with eigenvector \vec{w} then $(A + rI)\vec{w} = (\lambda + r)\vec{w}$ or $A\vec{w} + r\vec{w} = \lambda\vec{w} + r\vec{w}$ or $A\vec{w} = \lambda\vec{w}$ so \vec{w} is an eigenvector of A corresponding to eigenvalues λ .

So the eigenvalues of $A + r\mathcal{I}$ are precisely those of the form $\lambda + r$ where λ is an eigenvalue of A. The corresponding eigenvectors of $A + r\mathcal{I}$ corresponding to $\lambda + r$ are precisely the eigenvectors of A corresponding to λ.

Page 301 Number 32. Let A be an $n \times n$ matrix and let T be the $n \times n$ identity matrix. Compare the eigenvectors and eigenvalues of A with those of $A + r\mathcal{I}$ for a scalar r.

Solution. Suppose λ is an eigenvalue of A with corresponding eigenvector \vec{v} . Then $A\vec{v} = \lambda \vec{v}$. So

$$
(A + r\mathcal{I})\vec{v} = A\vec{v} + r\mathcal{I}\vec{v} = A\vec{v} + r\vec{v} = \lambda\vec{v} + r\vec{v} = (\lambda + r)\vec{v}.
$$

So $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with \vec{v} as a corresponding eigenvector. Conversely, if $\lambda + r$ is an eigenvalue of $A + r\mathcal{I}$ with eigenvector \vec{w} then $(A + rI)\vec{w} = (\lambda + r)\vec{w}$ or $A\vec{w} + r\vec{w} = \lambda\vec{w} + r\vec{w}$ or $A\vec{w} = \lambda\vec{w}$ so \vec{w} is an eigenvector of A corresponding to eigenvalues λ .

So the eigenvalues of $A + r\mathcal{I}$ are precisely those of the form $\lambda + r$ where λ is an eigenvalue of A. The corresponding eigenvectors of $A + rI$ corresponding to $\lambda + r$ are precisely the eigenvectors of A corresponding to λ . \Box

Page 302 Number 38. Let A be an $n \times n$ matrix and let C be an invertible $n \times n$ matrix. Prove that the eigenvalues of A and of $C^{-1}AC$ are the same.

Solution. Notice that

$$
C^{-1}AC - \lambda \mathcal{I} = C^{-1}AC - \lambda C^{-1}C
$$

= $C^{-1}AC - C^{-1}(\lambda C)$ by Theorem 1.3.A(7),
"Scalars Pull Through"
= $C^{-1}(AC - \lambda C)$ by Theorem 1.3.A(10),
"Distribution Law of Matrix Multiplication"
= $C^{-1}(A - \lambda \mathcal{I})C$ by Theorem 1.3.A(10).

Page 302 Number 38. Let A be an $n \times n$ matrix and let C be an invertible $n \times n$ matrix. Prove that the eigenvalues of A and of $C^{-1}AC$ are the same.

Solution. Notice that

$$
C^{-1}AC - \lambda \mathcal{I} = C^{-1}AC - \lambda C^{-1}C
$$

= $C^{-1}AC - C^{-1}(\lambda C)$ by Theorem 1.3.A(7),
"Scalars Pull Through"
= $C^{-1}(AC - \lambda C)$ by Theorem 1.3.A(10),
"Distribution Law of Matrix Multiplication"
= $C^{-1}(A - \lambda \mathcal{I})C$ by Theorem 1.3.A(10).

Page 302 Number 38 (continued)

 ${\sf Solution}$ (continued). Recall that $\det(C^{-1})=1/\det(C)$ by Exercise **4.2.31.** So the characteristic polynomial for $C^{-1}AC$ is

$$
det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}
$$

= det(C^{-1})det(A - \lambda \mathcal{I})det(C) by Theorem 4.4,
"The Multiplicative Property"
= (1/det(C))det(A - \lambda \mathcal{I})det(C)
= det(A - \lambda \mathcal{I}).

Page 302 Number 38 (continued)

 ${\sf Solution}$ (continued). Recall that $\det(C^{-1})=1/\det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $\mathcal{C}^{-1} A \mathcal{C}$ is

$$
det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}
$$

= det(C^{-1})det(A - \lambda \mathcal{I})det(C) by Theorem 4.4,
"The Multiplicative Property"
= (1/det(C))det(A - \lambda \mathcal{I})det(C)
= det(A - \lambda \mathcal{I}).

Now det $(A - \lambda \mathcal{I})$ is the characteristic polynomial of A, so A and $C^{-1}AC$ have the same characteristic polynomials. These polynomials have the same roots (of course) and since the eigenvalues of a matrix are the roots of the characteristic polynomial (see Note 5.1.A), A and $C^{-1}AC$ have the same eigenvalues, as claimed.

Page 302 Number 38 (continued)

 ${\sf Solution}$ (continued). Recall that $\det(C^{-1})=1/\det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $\mathsf{C}^{-1}\mathsf{A}\mathsf{C}$ is

$$
det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}
$$

= det(C^{-1})det(A - \lambda \mathcal{I})det(C) by Theorem 4.4,
"The Multiplicative Property"
= (1/det(C))det(A - \lambda \mathcal{I})det(C)
= det(A - \lambda \mathcal{I}).

Now det $(A-\lambda\mathcal{I})$ is the characteristic polynomial of A , so A and $C^{-1}AC$ have the same characteristic polynomials. These polynomials have the same roots (of course) and since the eigenvalues of a matrix are the roots of the characteristic polynomial (see Note 5.1.A), A and $C^{-1}AC$ have the same eigenvalues, as claimed.

Page 302 Number 40. The Cayley-Hamilton Theorem states:

Cayley-Hamilton Theorem. Every square matrix A satisfies its characteristic equation. That is, if $p(\lambda)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0$ is the characteristic polynomial of A then $p(A)=a_nA^n+a_{n-1}A^{n-1}+a_n$ $\cdots + a_1A + a_0I = O$ (where O is the $n \times n$ zero matrix). Use the Cayley-Hamilton Theorem to prove that, for invertible $n \times n$ matrix A, A^{-1} can be computed as a linear combination of $A^0 = \mathcal{I}, A, A^2, \ldots, A^{n-1}.$

Proof. Let A be an invertible $n \times n$ matrix and let $p(\lambda)$ be the characteristic polynomial of A. Then by the Cayley-Hamilton Theorem,

$$
p(A) = a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 \mathcal{I} = 0.
$$

Page 302 Number 40. The Cayley-Hamilton Theorem states:

Cayley-Hamilton Theorem. Every square matrix A satisfies its characteristic equation. That is, if $p(\lambda)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0$ is the characteristic polynomial of A then $p(A)=a_nA^n+a_{n-1}A^{n-1}+a_n$ $\cdots + a_1A + a_0I = O$ (where O is the $n \times n$ zero matrix). Use the Cayley-Hamilton Theorem to prove that, for invertible $n \times n$ matrix A, A^{-1} can be computed as a linear combination of $A^0 = \mathcal{I}, A, A^2, \ldots, A^{n-1}.$

Proof. Let A be an invertible $n \times n$ matrix and let $p(\lambda)$ be the characteristic polynomial of A. Then by the Cayley-Hamilton Theorem,

$$
p(A) = a_nA^n + a_{n-1}A^{n-1} + \cdots + a_1A + a_0I = O.
$$

So $a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A = -a_0\mathcal{I}$. Multiplying both sides of this equation on the right be A^{-1} gives

 $(a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A)A^{-1} = (-a_0\mathcal{I})A^{-1} \ldots$

Page 302 Number 40. The Cayley-Hamilton Theorem states:

Cayley-Hamilton Theorem. Every square matrix A satisfies its characteristic equation. That is, if $p(\lambda)=a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0$ is the characteristic polynomial of A then $p(A)=a_nA^n+a_{n-1}A^{n-1}+a_n$ $\cdots + a_1A + a_0I = O$ (where O is the $n \times n$ zero matrix). Use the Cayley-Hamilton Theorem to prove that, for invertible $n \times n$ matrix A, A^{-1} can be computed as a linear combination of $A^0 = \mathcal{I}, A, A^2, \ldots, A^{n-1}.$

Proof. Let A be an invertible $n \times n$ matrix and let $p(\lambda)$ be the characteristic polynomial of A. Then by the Cayley-Hamilton Theorem,

$$
p(A) = a_nA^n + a_{n-1}A^{n-1} + \cdots + a_1A + a_0I = O.
$$

So $a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A = -a_0\mathcal{I}$. Multiplying both sides of this equation on the right be A^{-1} gives

$$
(a_nA^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A)A^{-1} = (-a_0\mathcal{I})A^{-1} \ldots
$$

Proof (continued). ... or, by Theorem 1.3.A(1), "Distribution Law of Matrix Multiplication,"

$$
a_nA^nA^{-1} + a_{n-1}A^{n-1}A^{-1} + \cdots + a_2A^2A^{-1} + a_1AA^{-1} = (-a_0\mathcal{I})A^{-1}
$$

or by Theorem 1.3.A(10), "Associativity Law of Matrix Multiplication," and Theorem 1.3.A(6), "Associative Law of Matrix Multiplication,"

$$
a_nA^{n-1}(AA^{-1})+a_{n-1}A^{n-2}(AA^{-1})+\cdots+a_2A(AA^{-1})+a_1(AA^{-1})=-a_0JA^{-1}
$$

or

$$
a_nA^{n-1} + a_{n-1}A^{n-2} + \cdots + a_2A + a_1\mathcal{I} = -a_0A^{-1}.
$$

Since A is invertible, then 0 is not an eigenvalue of A by Exercise 30, so $p(0) = a_0 \neq 0$. We then have

$$
A^{-1} = -\frac{a_n}{a_0} A^{n-1} - \frac{a_{n-1}}{a_0} A^{n-2} - \cdots - \frac{a_2}{a_0} A - \frac{a_1}{a_0} \mathcal{I}.
$$

So A^{-1} is a linear combination of $A^{n-1},A^{n-2},\ldots,A, \mathcal{I}$, as claimed.

Proof (continued). ... or, by Theorem 1.3.A(1), "Distribution Law of Matrix Multiplication,"

$$
a_nA^nA^{-1} + a_{n-1}A^{n-1}A^{-1} + \cdots + a_2A^2A^{-1} + a_1AA^{-1} = (-a_0\mathcal{I})A^{-1}
$$

or by Theorem 1.3.A(10), "Associativity Law of Matrix Multiplication," and Theorem 1.3.A(6), "Associative Law of Matrix Multiplication,"

$$
a_nA^{n-1}(AA^{-1})+a_{n-1}A^{n-2}(AA^{-1})+\cdots+a_2A(AA^{-1})+a_1(AA^{-1})=-a_0IA^{-1}
$$

or

$$
a_nA^{n-1} + a_{n-1}A^{n-2} + \cdots + a_2A + a_1\mathcal{I} = -a_0A^{-1}.
$$

Since A is invertible, then 0 is not an eigenvalue of A by Exercise 30, so $p(0) = a_0 \neq 0$. We then have

$$
A^{-1} = -\frac{a_n}{a_0}A^{n-1} - \frac{a_{n-1}}{a_0}A^{n-2} - \cdots - \frac{a_2}{a_0}A - \frac{a_1}{a_0}\mathcal{I}.
$$

So A^{-1} is a linear combination of $A^{n-1},A^{n-2},\ldots,A, \mathcal{I}$, as claimed.