Linear Algebra

Chapter 5: Eigenvalues and Eigenvectors Section 5.2. Diagonalization—Proofs of Theorems

Table of contents

- 1 Theorem 5.2. Matrix Summary of Eigenvalues of A
- 2 Corollary 1. A Criterion for Diagonalization
- 3 Corollary 2. Computation of A^k
 - Example 5.2.A
- 5 Theorem 5.3. Independence of Eigenvectors
- 6 Page 315 Number 6
- Page 315 Number 18
- Page 315 Number 10
- Page 316 Number 22
- Page 316 Number 24
- Page 316 Number 26

Theorem 5.2. Matrix Summary of Eigenvalues of A.

Let A be an $n \times n$ matrix and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be (possibly complex) scalars and $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ be nonzero vectors in *n*-space. Let C be the $n \times n$ matrix having $\vec{v_j}$ as *j*th column vector and let

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then AC = CD if and only if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are eigenvalues of A and $\vec{v_j}$ is an eigenvector of A corresponding to λ_j for $j = 1, 2, \ldots, n$.

Theorem 5.2. Matrix Summary of Eigenvalues of A

Theorem 5.2 (continued)

Proof. We have

$$CD = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
$$= \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \lambda_1 \vec{v_1} & \lambda_2 \vec{v_2} & \cdots & \lambda_n \vec{v_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$
Also, $AC = A \begin{bmatrix} \vdots & \vdots & \vdots \\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$. Therefore, $AC = CD$ if and only if $A\vec{v_j} = \lambda_j \vec{v_j}$.

Linear Algebra

Corollary 1. A Criterion for Diagonalization.

An $n \times n$ matrix A is diagonalizable if and only if n-space has a basis consisting of eigenvectors of A.

Proof. Suppose A is diagonalizable. Then by Definition 5.3, "Diagonalizable Matrix," $C^{-1}AC = D$ for some invertible $n \times n$ matrix C.

Corollary 1. A Criterion for Diagonalization.

An $n \times n$ matrix A is diagonalizable if and only if *n*-space has a basis consisting of eigenvectors of A.

Proof. Suppose A is diagonalizable. Then by Definition 5.3, "Diagonalizable Matrix," $C^{-1}AC = D$ for some invertible $n \times n$ matrix C. Then $C(C^{-1}AC) = CD$ or AC = CD and so by Theorem 5.3, "Matrix Summary of Eigenvalues of A," the *j*th column of C is an eigenvector of A corresponding to eigenvalue λ_j , where the *n* (possibly complex) eigenvalues of A are $\lambda_1, \lambda_2, \dots, \lambda_n$.

Corollary 1. A Criterion for Diagonalization.

An $n \times n$ matrix A is diagonalizable if and only if *n*-space has a basis consisting of eigenvectors of A.

Proof. Suppose A is diagonalizable. Then by Definition 5.3, "Diagonalizable Matrix," $C^{-1}AC = D$ for some invertible $n \times n$ matrix C. Then $C(C^{-1}AC) = CD$ or AC = CD and so by Theorem 5.3, "Matrix Summary of Eigenvalues of A," the *j*th column of C is an eigenvector of A corresponding to eigenvalue λ_j , where the *n* (possibly complex) eigenvalues of A are $\lambda_1, \lambda_2, \ldots, \lambda_n$. Since C is invertible then by Theorem 1.12, "Conditions for A^{-1} to Exist" (see part (v)) the span of the column vectors of C span *n*-space (that is, span either \mathbb{R}^n as addressed in Theorem 1.12, or span \mathbb{C}^n if we use complex scalars; we need a result like Theorem 1.12 valid in the complex setting, but such a result holds).

Corollary 1. A Criterion for Diagonalization.

An $n \times n$ matrix A is diagonalizable if and only if *n*-space has a basis consisting of eigenvectors of A.

Proof. Suppose A is diagonalizable. Then by Definition 5.3, "Diagonalizable Matrix," $C^{-1}AC = D$ for some invertible $n \times n$ matrix C. Then $C(C^{-1}AC) = CD$ or AC = CD and so by Theorem 5.3, "Matrix Summary of Eigenvalues of A," the *j*th column of C is an eigenvector of A corresponding to eigenvalue λ_j , where the *n* (possibly complex) eigenvalues of A are $\lambda_1, \lambda_2, \ldots, \lambda_n$. Since C is invertible then by Theorem 1.12, "Conditions for A^{-1} to Exist" (see part (v)) the span of the column vectors of C span *n*-space (that is, span either \mathbb{R}^n as addressed in Theorem 1.12, or span \mathbb{C}^n if we use complex scalars; we need a result like Theorem 1.12 valid in the complex setting, but such a result holds).

Corollary 1 (continued)

Proof (continued). Since *n*-space is dimension *n* and the column vectors of *C* form a set of *n* vectors which span *n*-space then the vectors must be linearly independent (by Theorem 2.3(3a), "Existence and Determination of Bases") and so are a basis for *n*-space by Definition 3.6, "Basis of a Vector Space."

Conversely, suppose *n*-space has a basis consisting of eigenvectors of A, say $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ where $\vec{v_j}$ is an eigenvector corresponding to eigenvalue λ_j . Then by Definition 3.6, "Basis of a Vector Space," the vectors are linearly independent. So if we form matrix C where the *j*th column of C is $\vec{v_j}$ then C is invertible by Theorem 1.12, "Conditions for A^{-1} to Exist."

Corollary 1 (continued)

Proof (continued). Since *n*-space is dimension *n* and the column vectors of *C* form a set of *n* vectors which span *n*-space then the vectors must be linearly independent (by Theorem 2.3(3a), "Existence and Determination of Bases") and so are a basis for *n*-space by Definition 3.6, "Basis of a Vector Space."

Conversely, suppose *n*-space has a basis consisting of eigenvectors of *A*, say $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ where \vec{v}_j is an eigenvector corresponding to eigenvalue λ_j . Then by Definition 3.6, "Basis of a Vector Space," the vectors are linearly independent. So if we form matrix *C* where the *j*th column of *C* is \vec{v}_j then *C* is invertible by Theorem 1.12, "Conditions for A^{-1} to Exist." By Theorem 5.2, "Matrix Summary of Eigenvalues of *A*," with *D* as a diagonal matrix with $d_{jj} = \lambda_j$, then AC = CD. Since *C* is invertible, $C^{-1}AC = C^{-1}CD$ or $C^{-1}AC = D$. So *A* is diagonalizable.

Corollary 1 (continued)

Proof (continued). Since *n*-space is dimension *n* and the column vectors of *C* form a set of *n* vectors which span *n*-space then the vectors must be linearly independent (by Theorem 2.3(3a), "Existence and Determination of Bases") and so are a basis for *n*-space by Definition 3.6, "Basis of a Vector Space."

Conversely, suppose *n*-space has a basis consisting of eigenvectors of *A*, say $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ where \vec{v}_j is an eigenvector corresponding to eigenvalue λ_j . Then by Definition 3.6, "Basis of a Vector Space," the vectors are linearly independent. So if we form matrix *C* where the *j*th column of *C* is \vec{v}_j then *C* is invertible by Theorem 1.12, "Conditions for A^{-1} to Exist." By Theorem 5.2, "Matrix Summary of Eigenvalues of *A*," with *D* as a diagonal matrix with $d_{jj} = \lambda_j$, then AC = CD. Since *C* is invertible, $C^{-1}AC = C^{-1}CD$ or $C^{-1}AC = D$. So *A* is diagonalizable.

Corollary 2. Computation of A^k .

Let an $n \times n$ matrix A have n eigenvectors and eigenvalues, giving rise to the matrices C and D so that AC = CD, as described in Theorem 5.2. If the eigenvectors are independent, then C is an invertible matrix and $C^{-1}AC = D$. Under these conditions, we have $A^k = CD^kC^{-1}$.

Proof. By Corollary 1, if the eigenvectors of A are independent, then A is diagonalizable and so C is invertible. Now consider

$$A^{k} = \underbrace{(CDC^{-1})(CDC^{-1})\cdots(CDC^{-1})}_{k \text{ factors}}$$

= $CD(C^{-1}C)D(C^{-1}C)D(C^{-1}C)\cdots(C^{-1}C)DC^{-1}$
= $CDIDID\cdots IDC^{-1}$
= $C\underbrace{DDD\cdots}_{k \text{ factors}}C^{-1} = CD^{k}C^{-1}$

Corollary 2. Computation of A^k .

Let an $n \times n$ matrix A have n eigenvectors and eigenvalues, giving rise to the matrices C and D so that AC = CD, as described in Theorem 5.2. If the eigenvectors are independent, then C is an invertible matrix and $C^{-1}AC = D$. Under these conditions, we have $A^k = CD^kC^{-1}$.

Proof. By Corollary 1, if the eigenvectors of A are independent, then A is diagonalizable and so C is invertible. Now consider

$$A^{k} = \underbrace{(CDC^{-1})(CDC^{-1})\cdots(CDC^{-1})}_{k \text{ factors}}$$

= $CD(C^{-1}C)D(C^{-1}C)D(C^{-1}C)\cdots(C^{-1}C)DC^{-1}$
= $CDIDID\cdots IDC^{-1}$
= $C\underbrace{DDD\cdots}_{k \text{ factors}}C^{-1} = CD^{k}C^{-1}$

Example 5.2.A

Example 5.2.A. Diagonalize $A = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix}$ and calculate A^k . **Solution.** We have $A - \lambda \mathcal{I} = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{bmatrix}$. So the

characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{vmatrix}$$

 $= (5-\lambda)(2-\lambda) - (-3)(-6) = 10 - 7\lambda + \lambda^2 - 18 = \lambda^2 - 7\lambda - 8 = (\lambda+1)(\lambda-8).$

Example 5.2.A

1 4 /

Example 5.2.A. Diagonalize $A = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix}$ and calculate A^k .

Solution. We have
$$A - \lambda \mathcal{I} = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{bmatrix}$$
. So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{vmatrix}$$

 $= (5-\lambda)(2-\lambda) - (-3)(-6) = 10 - 7\lambda + \lambda^2 - 18 = \lambda^2 - 7\lambda - 8 = (\lambda+1)(\lambda-8).$

So the eigenvalues of A are $\lambda_1 = -1$ and $\lambda_2 = 8$. To find the eigenvectors corresponding to each eigenvalue we consider the formula $A\vec{v} = \lambda\vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

Example 5.2.A

Example 5.2.A. Diagonalize $A = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix}$ and calculate A^k .

Solution. We have $A - \lambda \mathcal{I} = \begin{bmatrix} 5 & -3 \\ -6 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{bmatrix}$. So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -3 \\ -6 & 2 - \lambda \end{vmatrix}$$

 $= (5-\lambda)(2-\lambda) - (-3)(-6) = 10 - 7\lambda + \lambda^2 - 18 = \lambda^2 - 7\lambda - 8 = (\lambda+1)(\lambda-8).$

So the eigenvalues of A are $\lambda_1 = -1$ and $\lambda_2 = 8$. To find the eigenvectors corresponding to each eigenvalue we consider the formula $A\vec{v} = \lambda\vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

Example 5.2.A (continued 1)

Solution (continued). $\underline{\lambda_1 = -1}$. With $\vec{v_1} = [v_1, v_2]$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - (-1)\mathcal{I})\vec{v_1} = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} 5 - (-1) & -3 & | & 0 \\ -6 & 2 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} 6 & -3 & | & 0 \\ -6 & 3 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 6 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Example 5.2.A (continued 1)

Solution (continued). $\underline{\lambda_1 = -1}$. With $\vec{v_1} = [v_1, v_2]$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - (-1)\mathcal{I})\vec{v_1} = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} 5 - (-1) & -3 & | & 0 \\ -6 & 2 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} 6 & -3 & | & 0 \\ -6 & 3 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 6 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

a free variable, $\begin{array}{cc} v_1 &= & r \\ v_2 &= & 2r \end{array}$. So the collection of all eigenvectors of $\lambda_1 = -1$ is $\vec{v_1} = r \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ where $r \in \mathbb{R}, r \neq 0$.

Example 5.2.A (continued 1)

Solution (continued). $\underline{\lambda_1 = -1}$. With $\vec{v_1} = [v_1, v_2]$ an eigenvector corresponding to the eigenvalue $\lambda_1 = -1$ we need $(A - (-1)\mathcal{I})\vec{v_1} = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} 5 - (-1) & -3 & | & 0 \\ -6 & 2 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} 6 & -3 & | & 0 \\ -6 & 3 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} 6 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

a free variable, $\begin{array}{ccc} v_1 &=& r\\ v_2 &=& 2r \end{array}$. So the collection of all eigenvectors of $\lambda_1 = -1$ is $\vec{v}_1 = r \begin{bmatrix} 1\\ 2 \end{bmatrix}$ where $r \in \mathbb{R}, r \neq 0$.

Example 5.2.A (continued 2)

Solution (continued).

 $\lambda_2 = 8$. As above, we consider $(A - 8I)\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} 5 - (8) & -3 & | & 0 \\ -6 & 2 - (8) & | & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 & | & 0 \\ -6 & -6 & | & 0 \end{bmatrix}$$

$$\stackrel{R_2 \to R_2 - 2R_1}{\longrightarrow} \begin{bmatrix} -3 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \stackrel{R_1 \to R_1/(-3)}{\longrightarrow} \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$
So we need
$$\stackrel{v_1 + v_2 = 0}{\longrightarrow} \stackrel{or}{\longrightarrow} \stackrel{v_1 = -v_2}{\bigvee} \stackrel{or, with s = v_2 as a free}{\longrightarrow} \stackrel{v_1 = -s}{\bigvee} \stackrel{v_2 = s}{\longrightarrow}$$

Example 5.2.A (continued 2)

Solution (continued).

 $\underline{\lambda_2=8.}$ As above, we consider $(A-8\mathcal{I})\vec{v_2}=\vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} 5-(8) & -3 & | & 0 \\ -6 & 2-(8) & | & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 & | & 0 \\ -6 & -6 & | & 0 \end{bmatrix}$$

$$\stackrel{R_2 \to R_2 - 2R_1}{\longrightarrow} \begin{bmatrix} -3 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \stackrel{R_1 \to R_1/(-3)}{\longrightarrow} \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$
So we need
$$\begin{array}{c} v_1 + v_2 &= & 0 \\ 0 &= & 0 \end{array} \quad \text{or} \quad \begin{array}{c} v_1 &= & -v_2 \\ v_2 &= & v_2 \end{array} \text{ or, with } s = v_2 \text{ as a free} \\ \text{variable,} \quad \begin{array}{c} v_1 &= & -s \\ v_2 &= & s \end{array}.$$
So the collection of all eigenvectors of $\lambda_2 = 8$ is
$$\vec{v}_2 = s \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ where } s \in \mathbb{R}, \ s \neq 0.$$

Example 5.2.A (continued 2)

Solution (continued).

So

 $\lambda_2 = 8$. As above, we consider $(A - 8\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} 5-(8) & -3 & | & 0 \\ -6 & 2-(8) & | & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 & | & 0 \\ -6 & -6 & | & 0 \end{bmatrix}$$

$$\stackrel{R_2 \to R_2 - 2R_1}{\longrightarrow} \begin{bmatrix} -3 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \stackrel{R_1 \to R_1/(-3)}{\longrightarrow} \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$
So we need
$$\begin{array}{c} v_1 + v_2 &= & 0 \\ 0 &= & 0 \end{array} \text{ or } \begin{array}{c} v_1 &= & -v_2 \\ v_2 &= & v_2 \end{array} \text{ or, with } s = v_2 \text{ as a free}$$
variable,
$$\begin{array}{c} v_1 &= & -s \\ v_2 &= & s \end{array}.$$
So the collection of all eigenvectors of $\lambda_2 = 8$ is
$$\vec{v}_2 = s \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ where } s \in \mathbb{R}, \ s \neq 0.$$

Example 5.2.A (continued 3)

Solution (continued). If we take r = s = 1 then we have the eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 8$ with corresponding eigenvectors $\vec{v}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ and $ec{v}_2 = igg| egin{array}{c} -1 \\ 1 \end{array} igg|$, respectively. So by Theorem 5.2, "Matrix Summary of Eigenvalues of A," with $C = \begin{vmatrix} \vdots & \vdots \\ \vec{v_1} & \vec{v_2} \\ \vdots & \vdots \end{vmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$ we have AC = CD. We find C^{-1} (by Note 1.5.A, "Computation of Inverses"):

$$\begin{bmatrix} C | \mathcal{I} \end{bmatrix} = \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 2 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 3 & | & -2 & 1 \end{bmatrix}$$

Example 5.2.A (continued 3)

Solution (continued). If we take r = s = 1 then we have the eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 8$ with corresponding eigenvectors $ec{v}_1 = \left| egin{array}{c} 1 \\ 2 \end{array}
ight|$ and $\vec{v}_2 = \begin{vmatrix} -1 \\ 1 \end{vmatrix}$, respectively. So by Theorem 5.2, "Matrix Summary of Eigenvalues of A," with $C = \begin{vmatrix} \vdots & \vdots \\ \vec{v_1} & \vec{v_2} \\ \vdots & \vdots \end{vmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$ we have AC = CD. We find C^{-1} (by Note 1.5.A, "Computation of Inverses"):

$$\begin{bmatrix} C | \mathcal{I} \end{bmatrix} = \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 2 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 3 & | & -2 & 1 \end{bmatrix}$$

Example 5.2.A (continued 4)

Solution (continued).

$$\begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 3 & | & -2 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2/3} \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 1 & | & -2/3 & 1/3 \end{bmatrix}$$
$$\xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 0 & | & 1/3 & 1/3 \\ 0 & 1 & | & -2/3 & 1/3 \end{bmatrix},$$
so $C^{-1} = \begin{bmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$. So $A = CDC^{-1}$ where $\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$, and $C^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$.

Example 5.2.A (continued 4)

Solution (continued).

$$\begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 3 & | & -2 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2/3} \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 1 & | & -2/3 & 1/3 \end{bmatrix}$$
$$\xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 0 & | & 1/3 & 1/3 \\ 0 & 1 & | & -2/3 & 1/3 \end{bmatrix},$$
so $C^{-1} = \begin{bmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$. So $\boxed{A = CDC^{-1} \text{ where}}$
$$\boxed{C = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, D = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}, \text{ and } C^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}.$$

Example 5.2.A (continued 5)

Solution (continued). As in Corollary 2,

$$A^{k} = CD^{k}C^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}^{k} \left(\frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}\right)$$
$$= \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{k} & 0 \\ 0 & 8^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} (-1)^{k} & -8^{k} \\ 2(-1)^{k} & 8^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} (-1)^{k} + 2(8^{k}) & (-1)^{k} - 8^{k} \\ 2(-1)^{k} - 2(8^{k}) & 2(-1)^{k} + 8^{k} \end{bmatrix}.$$

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof. We prove this by contradiction. Suppose that the conclusion is false and the hypotheses are true. That is, suppose the eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are linearly dependent.

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof. We prove this by contradiction. Suppose that the conclusion is false and the hypotheses are true. That is, suppose the eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are linearly dependent. Then one of them is a linear combination of its predecessors (see page 203 number 37). Let $\vec{v_k}$ be the first such vector, so that

$$\vec{v_k} = d_1 \vec{v_1} + d_2 \vec{v_2} + \dots + d_{k-1} \vec{v}_{k-1}$$
(2)

and $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_{k-1}}\}$ is independent.

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof. We prove this by contradiction. Suppose that the conclusion is false and the hypotheses are true. That is, suppose the eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are linearly dependent. Then one of them is a linear combination of its predecessors (see page 203 number 37). Let $\vec{v_k}$ be the first such vector, so that

$$\vec{v_k} = d_1 \vec{v_1} + d_2 \vec{v_2} + \dots + d_{k-1} \vec{v}_{k-1}$$
(2)

and $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_{k-1}}\}$ is independent. Multiplying (2) by λ_k , we obtain

$$\lambda_k \vec{v_k} = d_1 \lambda_k \vec{v_1} + d_2 \lambda_k \vec{v_2} + \dots + d_{k-1} \lambda_k \vec{v}_{k-1}.$$
(3)

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof. We prove this by contradiction. Suppose that the conclusion is false and the hypotheses are true. That is, suppose the eigenvectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are linearly dependent. Then one of them is a linear combination of its predecessors (see page 203 number 37). Let $\vec{v_k}$ be the first such vector, so that

$$\vec{v_k} = d_1 \vec{v_1} + d_2 \vec{v_2} + \dots + d_{k-1} \vec{v}_{k-1}$$
(2)

and $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_{k-1}}\}$ is independent. Multiplying (2) by λ_k , we obtain

$$\lambda_k \vec{v_k} = d_1 \lambda_k \vec{v_1} + d_2 \lambda_k \vec{v_2} + \dots + d_{k-1} \lambda_k \vec{v_{k-1}}.$$
(3)

Theorem 5.3 (continued)

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof (continued). Also, multiplying (2) on the left by the matrix *A* yields

$$\lambda_k \vec{v_k} = d_1 \lambda_1 \vec{v_1} + d_2 \lambda_2 \vec{v_2} + \dots + d_{k-1} \lambda_{k-1} \vec{v_{k-1}}$$
(4),

since $A\vec{v_i} = \lambda_i \vec{v_i}$. Subtracting (4) from (3), we see that

$$ec{\mathsf{D}} = d_1(\lambda_k - \lambda_1)ec{\mathsf{v}_1} + d_2(\lambda_k - \lambda_2)ec{\mathsf{v}_2} + \cdots + d_{k-1}(\lambda_k - \lambda_{k-1})ec{\mathsf{v}_{k-1}}.$$

But this equation is a dependence relation since not all d_i 's are 0 and the λ 's are hypothesized to be different. This contradicts the linear independence of the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_{k-1}}\}$. This contradiction shows that $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is independent. From Corollary 1 of Theorem 5.2 we see that A is diagonalizable.

0

Theorem 5.3 (continued)

Theorem 5.3. Independence of Eigenvectors.

Let A be an $n \times n$ matrix. If $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}$ are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, respectively, the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is linearly independent and A is diagonalizable.

Proof (continued). Also, multiplying (2) on the left by the matrix *A* yields

$$\lambda_k \vec{v_k} = d_1 \lambda_1 \vec{v_1} + d_2 \lambda_2 \vec{v_2} + \dots + d_{k-1} \lambda_{k-1} \vec{v_{k-1}}$$
(4),

since $A\vec{v_i} = \lambda_i \vec{v_i}$. Subtracting (4) from (3), we see that

$$ec{\mathcal{D}} = d_1(\lambda_k - \lambda_1)ec{v_1} + d_2(\lambda_k - \lambda_2)ec{v_2} + \cdots + d_{k-1}(\lambda_k - \lambda_{k-1})ec{v_{k-1}}.$$

But this equation is a dependence relation since not all d_i 's are 0 and the λ 's are hypothesized to be different. This contradicts the linear independence of the set $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_{k-1}}\}$. This contradiction shows that $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n}\}$ is independent. From Corollary 1 of Theorem 5.2 we see that A is diagonalizable.

()

Page 315 Number 6

Page 315 Number 6. Find the eigenvalues λ_i and corresponding eigenvectors \vec{v}_i of $A = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix}$. Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$.

Solution. We show all computations and details, so this will take a while...

Page 315 Number 6

Page 315 Number 6. Find the eigenvalues λ_i and corresponding eigenvectors \vec{v}_i of $A = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix}$. Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$.

Solution. We show all computations and details, so this will take a while...

We have

$$A - \lambda \mathcal{I} = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -3 - \lambda & 5 & -20 \\ 2 & 0 - \lambda & 8 \\ 2 & 1 & 7 - \lambda \end{bmatrix}.$$

Page 315 Number 6

Page 315 Number 6. Find the eigenvalues λ_i and corresponding eigenvectors \vec{v}_i of $A = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix}$. Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$.

Solution. We show all computations and details, so this will take a while. . .

We have

$$\begin{aligned} \mathcal{A} - \lambda \mathcal{I} &= \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} -3 - \lambda & 5 & -20 \\ 2 & 0 - \lambda & 8 \\ 2 & 1 & 7 - \lambda \end{bmatrix}. \end{aligned}$$
Page 315 Number 6 (continued 1)

Solution (continued). So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & 5 & -20 \\ 2 & 0 - \lambda & 8 \\ 2 & 1 & 7 - \lambda \end{vmatrix}$$
$$= (-3 - \lambda) \begin{vmatrix} -\lambda & 8 \\ 1 & 7 - \lambda \end{vmatrix} - (5) \begin{vmatrix} 2 & 8 \\ 2 & 7 - \lambda \end{vmatrix} + (-20) \begin{vmatrix} 2 & -\lambda \\ 2 & 1 \end{vmatrix}$$
$$= (-3 - \lambda) ((-\lambda)(7 - \lambda) - (8)(1)) - 5 ((2)(7 - \lambda) - (8)(2))$$
$$20 ((2)(1) - (-\lambda)(2)) = (-3 - \lambda)(\lambda^2 - 7\lambda - 8) - 5(-2\lambda - 2) - 20(2\lambda + 2)$$

Page 315 Number 6 (continued 1)

Solution (continued). So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} -3 - \lambda & 5 & -20 \\ 2 & 0 - \lambda & 8 \\ 2 & 1 & 7 - \lambda \end{vmatrix}$$
$$= (-3 - \lambda) \begin{vmatrix} -\lambda & 8 \\ 1 & 7 - \lambda \end{vmatrix} - (5) \begin{vmatrix} 2 & 8 \\ 2 & 7 - \lambda \end{vmatrix} + (-20) \begin{vmatrix} 2 & -\lambda \\ 2 & 1 \end{vmatrix}$$
$$= (-3 - \lambda) ((-\lambda)(7 - \lambda) - (8)(1)) - 5 ((2)(7 - \lambda) - (8)(2))$$
$$-20 ((2)(1) - (-\lambda)(2)) = (-3 - \lambda)(\lambda^2 - 7\lambda - 8) - 5(-2\lambda - 2) - 20(2\lambda + 2)$$

$$= (-3 - \lambda)(\lambda - 8)(\lambda + 1) + 10(\lambda + 1) - 40(\lambda + 1)$$

= $(\lambda + 1)((-3 - \lambda)(\lambda - 8) + 10 - 40) = (\lambda + 1)(-3\lambda + 24 - \lambda^2 + 8\lambda + 10 - 40)$
= $(\lambda + 1)(-\lambda^2 + 5\lambda - 6) = -(\lambda + 1)(\lambda^2 - 5\lambda + 6) = -(\lambda + 1)(\lambda - 2)(\lambda - 3).$

Page 315 Number 6 (continued 1)

Solution (continued). So the characteristic polynomial is

$$p(\lambda) = \det(A - \lambda \mathcal{I}) = \begin{vmatrix} -3 - \lambda & 5 & -20 \\ 2 & 0 - \lambda & 8 \\ 2 & 1 & 7 - \lambda \end{vmatrix}$$
$$= (-3 - \lambda) \begin{vmatrix} -\lambda & 8 \\ 1 & 7 - \lambda \end{vmatrix} - (5) \begin{vmatrix} 2 & 8 \\ 2 & 7 - \lambda \end{vmatrix} + (-20) \begin{vmatrix} 2 & -\lambda \\ 2 & 1 \end{vmatrix}$$
$$= (-3 - \lambda) ((-\lambda)(7 - \lambda) - (8)(1)) - 5 ((2)(7 - \lambda) - (8)(2))$$
$$= (-3 - \lambda)(\lambda^2 - 7\lambda - 8) - 5(-2\lambda - 2) - 20(2\lambda + 2)$$

$$= (-3 - \lambda)(\lambda - 8)(\lambda + 1) + 10(\lambda + 1) - 40(\lambda + 1)$$

= $(\lambda + 1)((-3 - \lambda)(\lambda - 8) + 10 - 40) = (\lambda + 1)(-3\lambda + 24 - \lambda^2 + 8\lambda + 10 - 40)$
= $(\lambda + 1)(-\lambda^2 + 5\lambda - 6) = -(\lambda + 1)(\lambda^2 - 5\lambda + 6) = -(\lambda + 1)(\lambda - 2)(\lambda - 3).$

Page 315 Number 6 (continued 2)

Solution (continued). Since $p(\lambda) = -(\lambda + 1)(\lambda - 2)(\lambda - 3)$, then the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue we consider the formula $A\vec{v} = \lambda\vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\frac{\lambda_1 = -1}{\lambda_1 = -1}$ With $\vec{v}_1 = [v_1, v_2, v_3]$ an eigenvector corresponding to eigenvalue $\lambda_1 = -1$ we need $(A - \lambda I)\vec{v}_1 = \vec{0}$.

Page 315 Number 6 (continued 2)

Solution (continued). Since $p(\lambda) = -(\lambda + 1)(\lambda - 2)(\lambda - 3)$, then the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue we consider the formula $A\vec{v} = \lambda\vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\underline{\lambda_1 = -1}$. With $\vec{v_1} = [v_1, v_2, v_3]$ an eigenvector corresponding to eigenvalue $\overline{\lambda_1 = -1}$ we need $(A - \lambda \mathcal{I})\vec{v_1} = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} -3 - (-1) & 5 & -20 & | & 0 \\ 2 & 0 - (-1) & 8 & | & 0 \\ 2 & 1 & 7 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 2 & 1 & 8 & | & 0 \end{bmatrix}$$

$$R_{3 \to R_{3} - R_{2}} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} R_{2 \to R_{2} + R_{1}} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 6 & -12 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 2)

Solution (continued). Since $p(\lambda) = -(\lambda + 1)(\lambda - 2)(\lambda - 3)$, then the eigenvalues are $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 3$. To find the eigenvectors corresponding to each eigenvalue we consider the formula $A\vec{v} = \lambda\vec{v}$ or $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$.

 $\frac{\lambda_1 = -1}{\lambda_1 = -1}$ With $\vec{v}_1 = [v_1, v_2, v_3]$ an eigenvector corresponding to eigenvalue $\lambda_1 = -1$ we need $(A - \lambda I)\vec{v}_1 = \vec{0}$. So we consider the augmented matrix

$$\begin{bmatrix} -3 - (-1) & 5 & -20 & | & 0 \\ 2 & 0 - (-1) & 8 & | & 0 \\ 2 & 1 & 7 - (-1) & | & 0 \end{bmatrix} = \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 2 & 1 & 8 & | & 0 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 + R_1} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 6 & -12 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 3)

Solution (continued).

$$\begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 6 & -12 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2/6} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-2)} \begin{bmatrix} 1 & 0 & 5 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-2)} \begin{bmatrix} 1 & 0 & 5 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

So we need
$$\begin{array}{c} v_1 & + & 5v_3 &= & 0 & v_1 &= & -5v_3 \\ v_2 & - & 2v_3 &= & 0 & or & v_2 &= & 2v_3 & or, \text{ with } r = v_3 \\ & 0 &= & 0 & v_3 &= & v_3 \\ v_1 &= & -5r \\ \text{as a free variable, } v_2 &= & 2r \\ v_3 &= & r \end{bmatrix}$$

Page 315 Number 6 (continued 3)

Solution (continued).

$$\begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 6 & -12 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2/6} \begin{bmatrix} -2 & 5 & -20 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-2)} \begin{bmatrix} 1 & 0 & 5 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1/(-2)} \begin{bmatrix} 1 & 0 & 5 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

So we need $v_2 - 2v_3 = 0$ or $v_2 = 2v_3$ or, with $r = v_3$
 $0 = 0$ $v_3 = v_3$
 $v_1 = -5r$
as a free variable, $v_2 = 2r$.
 $v_3 = r$

Page 315 Number 6 (continued 4)

Solution (continued). So the collection of all eigenvectors of $\lambda_1 = -1$ is

	[_5]	
$\vec{v}_1 = r$	2	where $r \in \mathbb{R}$, $r \neq 0$.
	1	

 $\underline{\lambda_2=2.}$ As above, we consider $(A-2\mathcal{I})\vec{v}_2=\vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -3-(2) & 5 & -20 & | & 0 \\ 2 & 0-(2) & 8 & | & 0 \\ 2 & 1 & 7-(2) & | & 0 \end{bmatrix} = \begin{bmatrix} -5 & 5 & -20 & | & 0 \\ 2 & -2 & 8 & | & 0 \\ 2 & 1 & 5 & | & 0 \end{bmatrix}$$
$$\stackrel{R_1 \to R_1/(-5)}{\underset{R_2 \to R_2/2}{\longrightarrow} R_2/R_2/2} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 1 & -1 & 4 & | & 0 \\ 2 & 1 & 5 & | & 0 \end{bmatrix} \stackrel{R_2 \to R_2 - R_1}{\underset{R_3 \to R_3 - 2R_1}{\longrightarrow} R_3 - 2R_1} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 3 & -3 & | & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 4)

Solution (continued). So the collection of all eigenvectors of $\lambda_1 = -1$ is

	[−5]	
$\vec{v}_1 = r$	2	where $r \in \mathbb{R}$, $r \neq 0$.
	L 1	

 $\lambda_2 = 2$. As above, we consider $(A - 2\mathcal{I})\vec{v}_2 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -3-(2) & 5 & -20 & | & 0 \\ 2 & 0-(2) & 8 & | & 0 \\ 2 & 1 & 7-(2) & | & 0 \end{bmatrix} = \begin{bmatrix} -5 & 5 & -20 & | & 0 \\ 2 & -2 & 8 & | & 0 \\ 2 & 1 & 5 & | & 0 \end{bmatrix}$$
$$\stackrel{R_1 \to R_1/(-5)}{\underset{R_2 \to R_2/2}{\frown R_2/2}} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 1 & -1 & 4 & | & 0 \\ 2 & 1 & 5 & | & 0 \end{bmatrix} \stackrel{R_2 \to R_2 - R_1}{\underset{R_3 \to R_3 - 2R_1}{\frown R_3 \to R_3 - 2R_1}} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 3 & -3 & | & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 5)

Solution (continued).

$$\begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 3 & -3 & | & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3/3} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

o we need
$$v_1 + 3v_3 = 0 \quad v_1 = -3v_3$$

o we need
$$v_2 - v_3 = 0 \text{ or } v_2 = v_3 \text{ or, with } s = v_3$$

$$v_1 = -3s$$

s a free variable, $v_2 = s$.
 $v_3 = s$

Page 315 Number 6 (continued 5)

Solution (continued).

$$\begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 3 & -3 & | & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3/3} \begin{bmatrix} 1 & -1 & 4 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$v_1 \qquad + 3v_3 = 0 \qquad v_1 = -3v_3$$
So we need
$$v_2 \qquad - v_3 = 0 \text{ or } v_2 = v_3 \text{ or, with } s = v_3$$

$$v_1 = -3s$$
as a free variable,
$$v_2 = s$$

$$v_3 = s$$

Page 315 Number 6 (continued 6)

Solution (continued). So the collection of all eigenvectors of $\lambda_2 = 2$ is

	[-3]	
$\vec{v}_2 = s$	1	where $s \in \mathbb{R}$, $s \neq 0$.
	L 1 _	

 $\underline{\lambda_3=3.}$ As above, we consider $(A-3\mathcal{I})\vec{v}_3=\vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -3 - (3) & 5 & -20 & 0 \\ 2 & 0 - (3) & 8 & 0 \\ 2 & 1 & 7 - (3) & 0 \end{bmatrix} = \begin{bmatrix} -6 & 5 & -20 & 0 \\ 2 & -3 & 8 & 0 \\ 2 & 1 & 4 & 0 \end{bmatrix}$$
$$\underbrace{R_1 \leftrightarrow R_3}_{R_1 \leftrightarrow R_3} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 2 & -3 & 8 & 0 \\ -6 & 5 & -20 & 0 \end{bmatrix} \xrightarrow{R_2 \rightarrow R_2 - R_1}_{R_3 \rightarrow R_3 + 3R_1} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & -4 & 4 & 0 \\ 0 & 8 & -8 & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 6)

Solution (continued). So the collection of all eigenvectors of $\lambda_2 = 2$ is

	[−3 [−]	
$\vec{v}_2 = s$	1	where $s \in \mathbb{R}$, $s \neq 0$.
	1	

 $\lambda_3 = 3$. As above, we consider $(A - 3\mathcal{I})\vec{v}_3 = \vec{0}$ and consider the augmented matrix

$$\begin{bmatrix} -3-(3) & 5 & -20 & | & 0 \\ 2 & 0-(3) & 8 & | & 0 \\ 2 & 1 & 7-(3) & | & 0 \end{bmatrix} = \begin{bmatrix} -6 & 5 & -20 & | & 0 \\ 2 & -3 & 8 & | & 0 \\ 2 & 1 & 4 & | & 0 \end{bmatrix}$$

$$\underbrace{R_1 \leftrightarrow R_3}_{I \to I} \begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 2 & -3 & 8 & | & 0 \\ -6 & 5 & -20 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1}_{R_3 \to R_3 + 3R_1} \begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 0 & -4 & 4 & | & 0 \\ 0 & 8 & -8 & | & 0 \end{bmatrix}$$

Page 315 Number 6 (continued 7)

Solution (continued).

$$\begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 0 & -4 & 4 & | & 0 \\ 0 & 8 & -8 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2/(-4)} \begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix}$$
$$\xrightarrow{R_1 \to R_1 - R_2} \begin{bmatrix} 2 & 0 & 5 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_1/2} \begin{bmatrix} 1 & 0 & 5/2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\xrightarrow{V_1} + (5/2)v_3 = 0 \quad v_1 = -(5/2)v_3$$
So we need $v_2 - v_3 = 0$ or $v_2 = v_3$ or, with $0 = 0 \quad v_3 = v_3$
$$\xrightarrow{V_1} = -5t$$
 $t = v_3/2$ as a free variable, $v_2 = 2t$.

Page 315 Number 6 (continued 7)

Solution (continued).

$$\begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 0 & -4 & 4 & | & 0 \\ 0 & 8 & -8 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2/(-4)} \begin{bmatrix} 2 & 1 & 4 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \end{bmatrix}$$
$$\xrightarrow{R_1 \to R_1 - R_2} \begin{bmatrix} 2 & 0 & 5 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_1/2} \begin{bmatrix} 1 & 0 & 5/2 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\xrightarrow{V_1} + (5/2)v_3 = 0 \quad v_1 = -(5/2)v_3$$
So we need $v_2 - v_3 = 0$ or $v_2 = v_3$ or, with $0 = 0 \quad v_3 = v_3$
$$v_1 = -5t$$
$$t = v_3/2 \text{ as a free variable,} \quad v_2 = 2t$$

Page 315 Number 6 (continued 8)

Solution (continued). So the collection of all eigenvectors of $\lambda_3 = 3$ is

	[−5 [−]	
$\vec{v}_3 = t$	2	where $t \in \mathbb{R}$, $t \neq 0$.
	2	

If we take r = s = t = 1 then we have the eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, and $\lambda_3 = 3$ with corresponding eigenvalues $\vec{v}_1 = \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$,

and
$$\vec{v}_3 = \begin{bmatrix} -5\\ 2\\ 2 \end{bmatrix}$$
, respectively.

Page 315 Number 6 (continued 8)

Solution (continued). So the collection of all eigenvectors of $\lambda_3 = 3$ is

$$ec{v_3}=t\left[egin{array}{c} -5\\2\\2\end{array}
ight]$$
 where $t\in\mathbb{R},\ t
eq 0.$

If we take r = s = t = 1 then we have the eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, and $\lambda_3 = 3$ with corresponding eigenvalues $\vec{v}_1 = \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$,

and $\vec{v}_3 = \begin{bmatrix} -5\\2\\2 \end{bmatrix}$, respectively. So by Theorem 5.2, "Matrix Summary of Eigenvalues of A," with $C = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} -5 & -3 & -5\\2 & 1 & 2\\1 & 1 & 2 \end{bmatrix}$, ...

Page 315 Number 6 (continued 8)

Solution (continued). So the collection of all eigenvectors of $\lambda_3 = 3$ is

$$\vec{v}_3 = t \begin{bmatrix} -5\\2\\2 \end{bmatrix}$$
 where $t \in \mathbb{R}, t \neq 0$.

If we take r = s = t = 1 then we have the eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, and $\lambda_3 = 3$ with corresponding eigenvalues $\vec{v}_1 = \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$,

and $\vec{v}_3 = \begin{bmatrix} -5\\2\\2 \end{bmatrix}$, respectively. So by Theorem 5.2, "Matrix Summary of Eigenvalues of *A*," with $C = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} -5 & -3 & -5 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$, ...

Page 315 Number 6 (continued 9)

Page 315 Number 6. Find the eigenvalues λ_i and corresponding eigenvectors \vec{v}_i of $A = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix}$. Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$.

Solution (continued). ... and
$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

we have AC = CD. By Theorem 5.3, "Independence of Eigenvalues," we have that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent vectors and A is diagonalizable (notice that C is invertible by Theorem 1.16, "The Square Case, m = n"). So $D = C^{-1}AC$ where

$$C = \begin{bmatrix} -5 & -3 & -5 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \square$$

Page 315 Number 6 (continued 9)

Page 315 Number 6. Find the eigenvalues λ_i and corresponding eigenvectors \vec{v}_i of $A = \begin{bmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{bmatrix}$. Find an invertible matrix C and a diagonal matrix D such that $D = C^{-1}AC$.

Solution (continued). ... and
$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

we have AC = CD. By Theorem 5.3, "Independence of Eigenvalues," we have that $\vec{v_1}, \vec{v_2}, \vec{v_3}$ are linearly independent vectors and A is diagonalizable (notice that C is invertible by Theorem 1.16, "The Square Case, m = n"). So $D = C^{-1}AC$ where

$$C = \begin{bmatrix} -5 & -3 & -5 \\ 2 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \square$$

Page 315 Number 18. Prove that similar square matrices have the same eigenvalues with the same algebraic multiplicities.

Proof. (This is repetitious with Exercise 5.1.38.) Notice that

$$C^{-1}AC - \lambda \mathcal{I} = C^{-1}AC - \lambda C^{-1}C$$

= $C^{-1}AC - C^{-1}(\lambda C)$ by Theorem 1.3.A(7),
"Scalars Pull Through"
= $C^{-1}(AC - \lambda C)$ by Theorem 1.3.A(10),
"Distribution Law of Matrix Multiplication"
= $C^{-1}(A - \lambda \mathcal{I})C$ by Theorem 1.3.A(10).

Page 315 Number 18. Prove that similar square matrices have the same eigenvalues with the same algebraic multiplicities.

Proof. (This is repetitious with Exercise 5.1.38.) Notice that

$$C^{-1}AC - \lambda \mathcal{I} = C^{-1}AC - \lambda C^{-1}C$$

= $C^{-1}AC - C^{-1}(\lambda C)$ by Theorem 1.3.A(7),
"Scalars Pull Through"
= $C^{-1}(AC - \lambda C)$ by Theorem 1.3.A(10),
"Distribution Law of Matrix Multiplication"
= $C^{-1}(A - \lambda \mathcal{I})C$ by Theorem 1.3.A(10).

Page 315 Number 18 (continued)

Proof (continued). Recall that $det(C^{-1}) = 1/det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $C^{-1}AC$ is

$$det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}$$

= $det(C^{-1})det(A - \lambda \mathcal{I})det(C)$ by Theorem 4.4,
"The Multiplicative Property"
= $(1/det(C))det(A - \lambda \mathcal{I})det(C)$
= $det(A - \lambda \mathcal{I}).$

Page 315 Number 18 (continued)

Proof (continued). Recall that $det(C^{-1}) = 1/det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $C^{-1}AC$ is

$$det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}$$

= $det(C^{-1})det(A - \lambda \mathcal{I})det(C)$ by Theorem 4.4,
"The Multiplicative Property"
= $(1/det(C))det(A - \lambda \mathcal{I})det(C)$
= $det(A - \lambda \mathcal{I}).$

Now det $(A - \lambda \mathcal{I})$ is the characteristic polynomial of A, so A and $C^{-1}AC$ have the same characteristic polynomials. So these polynomials have the same roots with the same multiplicities (of course) and since the eigenvalues of a matrix are the roots of the characteristic polynomial, then A and $C^{-1}AC$ have the same eigenvalues with the same algebraic multiplicities, as claimed.

Page 315 Number 18 (continued)

Proof (continued). Recall that $det(C^{-1}) = 1/det(C)$ by Exercise 4.2.31. So the characteristic polynomial for $C^{-1}AC$ is

$$det(C^{-1}AC - \lambda \mathcal{I}) = det(C^{-1}(A - \lambda \mathcal{I})C) \text{ as just shown}$$

= $det(C^{-1})det(A - \lambda \mathcal{I})det(C)$ by Theorem 4.4,
"The Multiplicative Property"
= $(1/det(C))det(A - \lambda \mathcal{I})det(C)$
= $det(A - \lambda \mathcal{I}).$

Now det $(A - \lambda \mathcal{I})$ is the characteristic polynomial of A, so A and $C^{-1}AC$ have the same characteristic polynomials. So these polynomials have the same roots with the same multiplicities (of course) and since the eigenvalues of a matrix are the roots of the characteristic polynomial, then A and $C^{-1}AC$ have the same eigenvalues with the same algebraic multiplicities, as claimed.

()

Page 315 Number 10. Determine whether $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonalizable.

Solution. First, we find the eigenvalues of *A*. Notice that $A - \lambda \mathcal{I} = \begin{bmatrix} 3 - \lambda & 1 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$ is upper triangular, so by Example 4.2.4, $p(\lambda) = \det(A - \lambda \mathcal{I}) = (3 - \lambda)^3$. So $\lambda = 3$ is the only eigenvalue of *A* and it is of algebraic multiplicity 3.

Page 315 Number 10. Determine whether $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonalizable.

Solution. First, we find the eigenvalues of *A*. Notice that $A - \lambda \mathcal{I} = \begin{bmatrix} 3 - \lambda & 1 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$ is upper triangular, so by Example 4.2.4, $p(\lambda) = \det(A - \lambda \mathcal{I}) = (3 - \lambda)^3$. So $\lambda = 3$ is the only eigenvalue of *A* and it is of algebraic multiplicity 3. With $\vec{v} = [v_1, v_2, v_3]^T$ as an eigenvector corresponding to eigenvalue $\lambda = 3$, we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix:

$$\begin{bmatrix} 3-(3) & 1 & 0 & | & 0 \\ 0 & 3-(3) & 1 & | & 0 \\ 0 & 0 & 3-(3) & | & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Page 315 Number 10. Determine whether $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonalizable.

Solution. First, we find the eigenvalues of *A*. Notice that $A - \lambda \mathcal{I} = \begin{bmatrix} 3 - \lambda & 1 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$ is upper triangular, so by Example 4.2.4, $p(\lambda) = \det(A - \lambda \mathcal{I}) = (3 - \lambda)^3$. So $\lambda = 3$ is the only eigenvalue of *A* and it is of algebraic multiplicity 3. With $\vec{v} = [v_1, v_2, v_3]^T$ as an eigenvector corresponding to eigenvalue $\lambda = 3$, we need $(A - \lambda \mathcal{I})\vec{v} = \vec{0}$. So we consider the augmented matrix:

$$\begin{bmatrix} 3-(3) & 1 & 0 & | & 0 \\ 0 & 3-(3) & 1 & | & 0 \\ 0 & 0 & 3-(3) & | & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Page 315 Number 10 (continued)

Page 315 Number 10. Determine whether
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 is
diagonalizable.
Solution (continued). So we need
 $v_2 = 0$ $v_1 = v_1$
 $v_3 = 0$ or $v_2 = 0$ or,
 $0 = 0$ $v_3 = 0$
 $v_1 = r$
with $r = v_1$ as a free variable, $v_2 = 0$. So the collection of all
 $v_3 = 0$
eigenvectors of $\lambda = 3$ is $\vec{v} = r \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ where $r \in \mathbb{R}$, $r \neq 0$. But then there
can be only one vector in a set of linearly independent eigenvectors. That
is, the dimension of E_{λ} is 1 and so $\lambda = 3$ is of geometric multiplicity 1.
So, by Theorem 5.4, "A Criterion for Diagonalization,"
A is not diagonalizable.

Page 315 Number 10 (continued)

Page 315 Number 10. Determine whether
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 isdiagonalizable. $v_2 = 0$ $v_1 = v_1$ Solution (continued). So we need $v_3 = 0$ or $v_2 = 0$ or,
 $0 = 0$ $v_3 = 0$ $v_1 = r$ with $r = v_1$ as a free variable, $v_2 = 0$. So the collection of all
 $v_3 = 0$ eigenvectors of $\lambda = 3$ is $\vec{v} = r \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ where $r \in \mathbb{R}$, $r \neq 0$. But then there
can be only one vector in a set of linearly independent eigenvectors. That
is, the dimension of E_{λ} is 1 and so $\lambda = 3$ is of geometric multiplicity 1.
So, by Theorem 5.4, "A Criterion for Diagonalization,"A is not diagonalizable. \Box

Linear Algebra

Page 316 Number 22. Let *A* and *C* be $n \times n$ matrices, and let *C* be invertible. Prove that, if \vec{v} is an eigenvector of *A* with corresponding eigenvalue λ , then $C^{-1}\vec{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$, where \vec{v} is an eigenvector of *A*.

Proof. If \vec{v} is an eigenvector of A corresponding to eigenvalue λ then $A\vec{v} = \lambda \vec{v}$.

Page 316 Number 22. Let *A* and *C* be $n \times n$ matrices, and let *C* be invertible. Prove that, if \vec{v} is an eigenvector of *A* with corresponding eigenvalue λ , then $C^{-1}\vec{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$, where \vec{v} is an eigenvector of *A*.

Proof. If \vec{v} is an eigenvector of A corresponding to eigenvalue λ then $A\vec{v} = \lambda\vec{v}$. So

$$(C^{-1}AC)(C^{-1}\vec{v}) = C^{-1}A(CC^{-1})\vec{v} \text{ by Theorem 1.3.A(8),}$$

"Associativity of Matrix Multiplication"

$$= C^{-1}A\mathcal{I}\vec{v} = C^{-1}A\vec{v}$$

$$= C^{-1}(\lambda\vec{v}) = \lambda(C^{-1}\vec{v}) \text{ by Theorem 1.3.A(7),}$$

"Scalars Pull Through"

and so λ is an eigenvalue of $C^{-1}AC$ with corresponding eigenvector $C^{-1}\vec{v}$, as claimed.

Page 316 Number 22. Let *A* and *C* be $n \times n$ matrices, and let *C* be invertible. Prove that, if \vec{v} is an eigenvector of *A* with corresponding eigenvalue λ , then $C^{-1}\vec{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$, where \vec{v} is an eigenvector of *A*.

Proof. If \vec{v} is an eigenvector of A corresponding to eigenvalue λ then $A\vec{v} = \lambda\vec{v}$. So

$$(C^{-1}AC)(C^{-1}\vec{v}) = C^{-1}A(CC^{-1})\vec{v} \text{ by Theorem 1.3.A(8),}$$

"Associativity of Matrix Multiplication"

$$= C^{-1}A\mathcal{I}\vec{v} = C^{-1}A\vec{v}$$

$$= C^{-1}(\lambda\vec{v}) = \lambda(C^{-1}\vec{v}) \text{ by Theorem 1.3.A(7),}$$

"Scalars Pull Through"

and so λ is an eigenvalue of $C^{-1}AC$ with corresponding eigenvector $C^{-1}\vec{v}$, as claimed.

(

Page 316 Number 22 (continued)

Page 316 Number 22. Let A and C be $n \times n$ matrices, and let C be invertible. Prove that, if \vec{v} is an eigenvector of A with corresponding eigenvalue λ , then $C^{-1}\vec{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$, where \vec{v} is an eigenvector of A.

Proof (continued). Now suppose \vec{w} is an eigenvector of $C^{-1}AC$. Then $C^{-1}AC\vec{w} = \lambda \vec{w}$ for some $\lambda \in \mathbb{R}$. Then $C(C^{-1}AC\vec{w}) = C\lambda \vec{w}$ or $(CC^{-1})AC\vec{w} = \lambda C\vec{w}$ or $A(C\vec{w}) = \lambda(C\vec{w})$. So $\vec{v} = C\vec{w}$ is an eigenvector of A with corresponding eigenvalue λ . Then $\vec{w} = C^{-1}\vec{v}$ and so all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$ where \vec{v} is an eigenvector of A, as claimed.

Page 316 Number 22 (continued)

Page 316 Number 22. Let A and C be $n \times n$ matrices, and let C be invertible. Prove that, if \vec{v} is an eigenvector of A with corresponding eigenvalue λ , then $C^{-1}\vec{v}$ is an eigenvector of $C^{-1}AC$ with corresponding eigenvalue λ . Prove that all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$, where \vec{v} is an eigenvector of A.

Proof (continued). Now suppose \vec{w} is an eigenvector of $C^{-1}AC$. Then $C^{-1}AC\vec{w} = \lambda \vec{w}$ for some $\lambda \in \mathbb{R}$. Then $C(C^{-1}AC\vec{w}) = C\lambda \vec{w}$ or $(CC^{-1})AC\vec{w} = \lambda C\vec{w}$ or $A(C\vec{w}) = \lambda(C\vec{w})$. So $\vec{v} = C\vec{w}$ is an eigenvector of A with corresponding eigenvalue λ . Then $\vec{w} = C^{-1}\vec{v}$ and so all eigenvectors of $C^{-1}AC$ are of the form $C^{-1}\vec{v}$ where \vec{v} is an eigenvector of A, as claimed.
Page 316 Number 24. Prove that if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real eigenvalues of an $n \times n$ real matrix A and if B_i is a basis for the eigenspace E_{λ_i} , then the union of the bases B_i is an independent set of vectors in \mathbb{R}^n .

Proof. Let $B_i = {\vec{b}_1^i, \vec{b}_2^i, \dots, \vec{b}_{n_i}^i}$ for $i = 1, 2, \dots, k$, where n_i is the dimension of E_{λ_i} . Suppose

$$a_{1}^{1}\vec{b}_{1}^{1} + a_{2}^{1}\vec{b}_{2}^{1} + \dots + a_{n_{1}}^{1}\vec{b}_{n_{1}}^{1} + a_{1}^{2}\vec{b}_{1}^{2} + a_{2}^{2}\vec{b}_{2}^{2} + \dots + a_{n_{2}}^{2}\vec{b}_{n_{2}}^{2} + \dots + a_{n_{k}}^{k}\vec{b}_{n_{k}}^{k} = \vec{0}. \qquad (*)$$

Page 316 Number 24. Prove that if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real eigenvalues of an $n \times n$ real matrix A and if B_i is a basis for the eigenspace E_{λ_i} , then the union of the bases B_i is an independent set of vectors in \mathbb{R}^n .

Proof. Let $B_i = {\vec{b}_1^i, \vec{b}_2^i, \dots, \vec{b}_{n_i}^i}$ for $i = 1, 2, \dots, k$, where n_i is the dimension of E_{λ_i} . Suppose

$$a_{1}^{1}\vec{b}_{1}^{1} + a_{2}^{1}\vec{b}_{2}^{1} + \dots + a_{n_{1}}^{1}\vec{b}_{n_{1}}^{1} + a_{1}^{2}\vec{b}_{1}^{2} + a_{2}^{2}\vec{b}_{2}^{2} + \dots + a_{n_{2}}^{2}\vec{b}_{n_{2}}^{2} + \dots + a_{n_{k}}^{k}\vec{b}_{n_{k}}^{k} = \vec{0}.$$
 (*)

If we let $\vec{w}_i = a_1^i \vec{b}_1^i + a_2^i \vec{b}_2^i + \dots + a_{n_1}^i \vec{b}_{n_1}^i$ then (*) gives $\vec{w}_1 + \vec{w}_2 + \dots + \vec{w}_k = \vec{0}$. But $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ are linearly independent by Theorem 5.3, "Independence of Eigenvectors." This implies that each \vec{w}_i must in fact be the zero vector, $\vec{w}_i = \vec{0}$ (or else some nonzero \vec{w}_i is a linear combination of the other \vec{w}_i 's, contradicting the linear independence).

Page 316 Number 24. Prove that if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real eigenvalues of an $n \times n$ real matrix A and if B_i is a basis for the eigenspace E_{λ_i} , then the union of the bases B_i is an independent set of vectors in \mathbb{R}^n .

Proof. Let $B_i = {\vec{b}_1^i, \vec{b}_2^i, \dots, \vec{b}_{n_i}^i}$ for $i = 1, 2, \dots, k$, where n_i is the dimension of E_{λ_i} . Suppose

$$a_{1}^{1}\vec{b}_{1}^{1} + a_{2}^{1}\vec{b}_{2}^{1} + \dots + a_{n_{1}}^{1}\vec{b}_{n_{1}}^{1} + a_{1}^{2}\vec{b}_{1}^{2} + a_{2}^{2}\vec{b}_{2}^{2} + \dots + a_{n_{2}}^{2}\vec{b}_{n_{2}}^{2} + \dots + a_{n_{1}}^{k}\vec{b}_{n_{1}}^{k} = \vec{0}. \qquad (*)$$

If we let $\vec{w}_i = a_1^i \vec{b}_1^i + a_2^i \vec{b}_2^i + \dots + a_{n_1}^i \vec{b}_{n_1}^i$ then (*) gives $\vec{w}_1 + \vec{w}_2 + \dots + \vec{w}_k = \vec{0}$. But $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k$ are linearly independent by Theorem 5.3, "Independence of Eigenvectors." This implies that each \vec{w}_i must in fact be the zero vector, $\vec{w}_i = \vec{0}$ (or else some nonzero \vec{w}_i is a linear combination of the other \vec{w}_i 's, contradicting the linear independence).

Page 316 Number 24 (continued)

Page 316 Number 24. Prove that if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real eigenvalues of an $n \times n$ real matrix A and if B_i is a basis for the eigenspace E_{λ_i} , then the union of the bases B_i is an independent set of vectors in \mathbb{R}^n .

Proof (continued). But then $\vec{w}_i = a_1^i \vec{b}_1^i + a_2^j \vec{b}_2^i + \dots + a_{n_1}^i \vec{b}_{n_1}^i = \vec{0}$ and since the \vec{b}_j^i 's are a basis for E_{λ_i} then the \vec{b}_j^i are linear independent for a given *i* and so each $a_j^i = 0$ for given *i*. Since this holds for all $i = 1, 2, \dots, k$ then all $a_j^i = 0$ and so we see from (*) that $\{\vec{b}_1^1, \vec{b}_2^1, \dots, \vec{b}_{n_k}^k\} = \bigcup_{i=1}^k B_i$ is a linearly independent set.

()

Page 316 Number 26. Prove that the set $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}\}$, where the λ_i are distinct, is independent in the vector space D_{∞} of all functions mapping \mathbb{R} into \mathbb{R} and having derivatives of all orders (see Note 3.2.A).

Proof. We know that differentiation D is a linear transformation mapping D_{∞} into D_{∞} (see Example 3.4.1). Now $D(e^{\lambda_i x}) = \frac{d}{dx}[e^{\lambda_i x}] = \lambda_i e^{\lambda_i x}$, so $e^{\lambda_i x}$ is an eigenvector of D with corresponding eigenvalue λ_i .

Page 316 Number 26. Prove that the set $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_k x}\}$, where the λ_i are distinct, is independent in the vector space D_{∞} of all functions mapping \mathbb{R} into \mathbb{R} and having derivatives of all orders (see Note 3.2.A).

Proof. We know that differentiation D is a linear transformation mapping D_{∞} into D_{∞} (see Example 3.4.1). Now $D(e^{\lambda_i x}) = \frac{d}{dx}[e^{\lambda_i x}] = \lambda_i e^{\lambda_i x}$, so $e^{\lambda_i x}$ is an eigenvector of D with corresponding eigenvalue λ_i . Since $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct by hypothesis, then by Theorem 5.3, "Independence of Eigenvectors," the set of eigenvectors $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}\}$ are linearly independent, as claimed.

()

Page 316 Number 26. Prove that the set $\{e^{\lambda_1 \times}, e^{\lambda_2 \times}, \dots, e^{\lambda_k \times}\}$, where the λ_i are distinct, is independent in the vector space D_{∞} of all functions mapping \mathbb{R} into \mathbb{R} and having derivatives of all orders (see Note 3.2.A).

Proof. We know that differentiation D is a linear transformation mapping D_{∞} into D_{∞} (see Example 3.4.1). Now $D(e^{\lambda_i x}) = \frac{d}{dx}[e^{\lambda_i x}] = \lambda_i e^{\lambda_i x}$, so $e^{\lambda_i x}$ is an eigenvector of D with corresponding eigenvalue λ_i . Since $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct by hypothesis, then by Theorem 5.3, "Independence of Eigenvectors," the set of eigenvectors $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}\}$ are linearly independent, as claimed.