Linear Algebra

Chapter 5: Eigenvalues and Eigenvectors Section 5.3. Two Applications—Proofs of Theorems

Page 325 Number 4. Let the sequence a_0, a_1, a_2, \ldots be given by $a_0 = 0, 1_1 = 1$, and $a_k = (1/2)a_{k-1} + (3/16)a_{k-2}$ for $k \ge 2$. Find the matrix A that can be used to generate this sequence, classify this process as stable, neutrally stable, or unstable, and compute a_k for

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}.$$
Solution. Since $\vec{\mathbf{x}} = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$ and $A\vec{\mathbf{x}} = \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}a_1 + \frac{3}{16}a_0 \\ a_1 \end{bmatrix}$ then we need $A = \begin{bmatrix} 1/2 & 3/16 \\ 1 & 0 \end{bmatrix}.$

Page 325 Number 4. Let the sequence a_0, a_1, a_2, \ldots be given by $a_0 = 0, 1_1 = 1$, and $a_k = (1/2)a_{k-1} + (3/16)a_{k-2}$ for $k \ge 2$. Find the matrix A that can be used to generate this sequence, classify this process as stable, neutrally stable, or unstable, and compute a_k for

$$\vec{x} = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
Solution. Since $\vec{x} = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$ and $A\vec{x} = \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}a_1 + \frac{3}{16}a_0 \\ a_1 \end{bmatrix}$ then we need $A = \begin{bmatrix} 1/2 & 3/16 \\ 1 & 0 \end{bmatrix}.$
To address stability, we need to find the eigenvalues of A . We need $\det(A - \lambda \mathcal{I}) = \begin{vmatrix} \frac{1}{2} - \lambda & \frac{3}{16} \\ 1 & -\lambda \end{vmatrix} = \begin{pmatrix} \frac{1}{2} - \lambda & \frac{3}{16} \\ -\lambda \end{vmatrix} = \begin{pmatrix} \frac{1}{2} - \lambda \end{pmatrix} (-\lambda) - \begin{pmatrix} \frac{3}{16} \end{pmatrix} (1)$

$$= \lambda^2 - \frac{1}{2}\lambda - \frac{3}{16} = (\lambda + \frac{1}{4}) (\lambda - \frac{3}{4}) = 0.$$

Page 325 Number 4. Let the sequence a_0, a_1, a_2, \ldots be given by $a_0 = 0, 1_1 = 1$, and $a_k = (1/2)a_{k-1} + (3/16)a_{k-2}$ for $k \ge 2$. Find the matrix A that can be used to generate this sequence, classify this process as stable, neutrally stable, or unstable, and compute a_k for

$$\vec{x} = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
Solution. Since $\vec{x} = \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}$ and $A\vec{x} = \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}a_1 + \frac{3}{16}a_0 \\ a_1 \end{bmatrix}$ then we need $A = \begin{bmatrix} 1/2 & 3/16 \\ 1 & 0 \end{bmatrix}.$
To address stability, we need to find the eigenvalues of A . We need $\det(A - \lambda \mathcal{I}) = \begin{vmatrix} \frac{1}{2} - \lambda & \frac{3}{16} \\ 1 & -\lambda \end{vmatrix} = \begin{pmatrix} \frac{1}{2} - \lambda & \frac{3}{16} \\ -\lambda & -\lambda \end{vmatrix} = \begin{pmatrix} \frac{1}{2} - \lambda \end{pmatrix} (-\lambda) - \begin{pmatrix} \frac{3}{16} \end{pmatrix} (1)$
 $= \lambda^2 - \frac{1}{2}\lambda - \frac{3}{16} = (\lambda + \frac{1}{4})(\lambda - \frac{3}{4}) = 0.$

Page 325 Number 4 (continued 1)

Solution (continued). So the eigenvalues of A are $\lambda_1 = -1/4$ and $\lambda_2 = 3/4$. Since $|\lambda_1| < 1$ and $|\lambda_2| < 1$ then the process is stable.

To compute $A^k \vec{x}$, we use Equation (1) and we need the eigenvectors of A. For $\lambda_1 = -1/4$ with eigenvector $\vec{v}_1 = [v_1, v_2]^T$ we need $A\vec{v}_1 = \lambda \vec{v}_1$ or $(A - \lambda_1 \mathcal{I})\vec{v}_1 = \vec{0}$ so we consider the augmented matrix

$$\begin{bmatrix} A - \lambda_1 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} 3/4 & 3/16 & | & 0 \\ 1 & 1/4 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 1/4 & | & 0 \\ 3/4 & 3/16 & | & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - (3/4)R_1} \begin{bmatrix} 1 & 1/4 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Page 325 Number 4 (continued 1)

Solution (continued). So the eigenvalues of A are $\lambda_1 = -1/4$ and $\lambda_2 = 3/4$. Since $|\lambda_1| < 1$ and $|\lambda_2| < 1$ then the process is stable.

To compute $A^k \vec{x}$, we use Equation (1) and we need the eigenvectors of A. For $\lambda_1 = -1/4$ with eigenvector $\vec{v}_1 = [v_1, v_2]^T$ we need $A\vec{v}_1 = \lambda \vec{v}_1$ or $(A - \lambda_1 \mathcal{I})\vec{v}_1 = \vec{0}$ so we consider the augmented matrix

$$\begin{bmatrix} A - \lambda_1 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} 3/4 & 3/16 \mid 0\\ 1 & 1/4 \mid 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 1/4 \mid 0\\ 3/4 & 3/16 \mid 0 \end{bmatrix}$$
$$\xrightarrow{R_2 \to R_2 - (3/4)R_1} \begin{bmatrix} 1 & 1/4 \mid 0\\ 0 & 0 \mid 0 \end{bmatrix}$$

 $r = v_2/4$ as a free variable, $egin{array}{ccc} v_1 &=& -r \ v_2 &=& 4r \end{array}$ where $r \in \mathbb{R}, \ r \neq 0.$

Page 325 Number 4 (continued 1)

Solution (continued). So the eigenvalues of A are $\lambda_1 = -1/4$ and $\lambda_2 = 3/4$. Since $|\lambda_1| < 1$ and $|\lambda_2| < 1$ then the process is stable.

To compute $A^k \vec{x}$, we use Equation (1) and we need the eigenvectors of A. For $\lambda_1 = -1/4$ with eigenvector $\vec{v}_1 = [v_1, v_2]^T$ we need $A\vec{v}_1 = \lambda \vec{v}_1$ or $(A - \lambda_1 \mathcal{I})\vec{v}_1 = \vec{0}$ so we consider the augmented matrix

$$\begin{bmatrix} A - \lambda_1 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} 3/4 & 3/16 & 0 \\ 1 & 1/4 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 1/4 & 0 \\ 3/4 & 3/16 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - (3/4)R_1} \begin{bmatrix} 1 & 1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
and we need
$$v_1 + (1/4)v_2 = 0 \text{ or } v_1 = (-1/4)v_2$$

$$0 = 0 \text{ or } v_2 = v_2 \text{ or, with}$$

$$r = v_2/4 \text{ as a free variable,} \quad \begin{array}{c} v_1 = -r \\ v_2 = 4r \end{array} \text{ where } r \in \mathbb{R}, r \neq 0.$$

Page 325 Number 4 (continued 2)

Solution (continued). We choose r = 1 and $\vec{v}_1 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$.

Similarly for $\lambda_2 = 3/4$ with eigenvector $\vec{v}_2 = [v_1, v_2]^T$ we consider

$$\begin{bmatrix} A - \lambda_2 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} -1/4 & 3/16 & 0 \\ 1 & -3/4 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -3/4 & 0 \\ -1/4 & 3/16 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 + (1/4)R_1} \begin{bmatrix} 1 & -3/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Page 325 Number 4 (continued 2)

Solution (continued). We choose r = 1 and $\vec{v}_1 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$.

Similarly for $\lambda_2 = 3/4$ with eigenvector $\vec{v}_2 = [v_1, v_2]^T$ we consider

 $[A - \lambda_2 \mathcal{I} \mid \vec{0}] = \begin{bmatrix} -1/4 & 3/16 \mid 0 \\ 1 & -3/4 \mid 0 \end{bmatrix} \xrightarrow{\kappa_1 \leftrightarrow \kappa_2} \begin{bmatrix} 1 & -3/4 \mid 0 \\ -1/4 & 3/16 \mid 0 \end{bmatrix}$ $\underbrace{R_2 \rightarrow R_2 + (1/4)R_1}_{0} \begin{bmatrix} 1 & -3/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and we need $\begin{array}{cccc} v_1 - (3/4)v_2 &= 0 \\ 0 &= 0 \end{array}$ or $\begin{array}{cccc} v_1 &= (3/4)v_2 \\ v_2 &= v_2 \end{array}$ or, with $s = v_2/4$ as a free variable, $\begin{array}{ccc} v_1 &=& 3s\\ v_2 &=& 4s \end{array}$ where $s \in \mathbb{R}, \ s \neq 0$. We choose s = 1 and $\vec{v}_2 = \begin{vmatrix} 3 \\ 4 \end{vmatrix}$.

Page 325 Number 4 (continued 2)

Solution (continued). We choose r = 1 and $\vec{v}_1 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$.

Similarly for $\lambda_2 = 3/4$ with eigenvector $\vec{v}_2 = [v_1, v_2]^T$ we consider

 $\begin{bmatrix} A - \lambda_2 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} -1/4 & 3/16 \mid 0 \\ 1 & -3/4 \mid 0 \end{bmatrix} \xrightarrow{\mu_1 \to \mu_2} \begin{bmatrix} 1 & -3/4 \mid 0 \\ -1/4 & 3/16 \mid 0 \end{bmatrix}$ $\underbrace{R_2 \rightarrow R_2 + (1/4)R_1}_{0} \begin{bmatrix} 1 & -3/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and we need $v_1 - (3/4)v_2 = 0$ or $v_1 = (3/4)v_2$ or, with 0 = 0 or $v_2 = v_2$ $s = v_2/4$ as a free variable, $\begin{array}{ccc} v_1 &=& 3s \\ v_2 &=& 4s \end{array}$ where $s \in \mathbb{R}, \ s \neq 0.$ We choose s=1 and $\vec{v}_2=\begin{vmatrix} 3\\4\end{vmatrix}$.

Linear Algebra

Page 325 Number 4 (continued 3)

Solution (continued). To use Equation (1), we need $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ as a linear combination of \vec{v}_1 and \vec{v}_2 , $\vec{x} = d_1\vec{v}_1 + d_2\vec{d}_2 = C\vec{d}$, or $\vec{d} = C^{-1}\vec{x}$ where the columns of C are eigenvectors \vec{v}_1 and \vec{v}_2 . So we find C^{-1} as follows:

$$\begin{bmatrix} C \mid \mathcal{I} \end{bmatrix} = \begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 4 & 4 \mid 0 & 1 \end{bmatrix} \stackrel{R_2 \to R_2 + R_1}{\longrightarrow} \begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 0 & 16 \mid 4 & 1 \end{bmatrix}$$
$$\stackrel{R_1 \to -R_1}{\underset{R_2 \to R_2/16}{\longrightarrow}} \begin{bmatrix} 1 & -3 \mid -1 & 0 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix} \stackrel{R_2 \to R_2 + 3R_1}{\longrightarrow} \begin{bmatrix} 1 & 0 \mid -1/4 & 3/16 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix}$$
and so $C^{-1} = \begin{bmatrix} -1/4 & 3/16 \\ 1/4 & 1/16 \end{bmatrix}$.

Page 325 Number 4 (continued 3)

Solution (continued). To use Equation (1), we need $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ as a linear combination of \vec{v}_1 and \vec{v}_2 , $\vec{x} = d_1\vec{v}_1 + d_2\vec{d}_2 = C\vec{d}$, or $\vec{d} = C^{-1}\vec{x}$ where the columns of C are eigenvectors \vec{v}_1 and \vec{v}_2 . So we find C^{-1} as follows:

$$\begin{bmatrix} C \mid \mathcal{I} \end{bmatrix} = \begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 4 & 4 \mid 0 & 1 \end{bmatrix}^{R_2 \to R_2 + R_1} \begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 0 & 16 \mid 4 & 1 \end{bmatrix}$$
$$\stackrel{R_1 \to -R_1}{R_2 \to R_2/16} \begin{bmatrix} 1 & -3 \mid -1 & 0 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix}^{R_2 \to R_2 + 3R_1} \begin{bmatrix} 1 & 0 \mid -1/4 & 3/16 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix}$$
and so $C^{-1} = \begin{bmatrix} -1/4 & 3/16 \\ 1/4 & 1/16 \end{bmatrix}$. Therefore
$$\vec{d} = C^{-1}\vec{x} = \begin{bmatrix} -1/4 & 3/16 \\ 1/4 & 1/16 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}.$$

Page 325 Number 4 (continued 3)

Solution (continued). To use Equation (1), we need $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ as a linear combination of \vec{v}_1 and \vec{v}_2 , $\vec{x} = d_1\vec{v}_1 + d_2\vec{d}_2 = C\vec{d}$, or $\vec{d} = C^{-1}\vec{x}$ where the columns of C are eigenvectors \vec{v}_1 and \vec{v}_2 . So we find C^{-1} as follows:

$$\begin{bmatrix} C \mid \mathcal{I} \end{bmatrix} = \begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 4 & 4 \mid 0 & 1 \end{bmatrix} \stackrel{R_2 \to R_2 + R_1}{\begin{bmatrix} -1 & 3 \mid 1 & 0 \\ 0 & 16 \mid 4 & 1 \end{bmatrix}$$
$$\stackrel{R_1 \to -R_1}{\underset{R_2 \to R_2/16}{\longrightarrow}} \begin{bmatrix} 1 & -3 \mid -1 & 0 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix} \stackrel{R_2 \to R_2 + 3R_1}{\begin{bmatrix} 1 & 0 \mid -1/4 & 3/16 \\ 0 & 1 \mid 1/4 & 1/16 \end{bmatrix}$$
and so $C^{-1} = \begin{bmatrix} -1/4 & 3/16 \\ 1/4 & 1/16 \end{bmatrix}$. Therefore
$$\vec{d} = C^{-1}\vec{x} = \begin{bmatrix} -1/4 & 3/16 \\ 1/4 & 1/16 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}.$$

Page 325 Number 4 (continued 4)

Solution (continued). So $\vec{x} = d_1\vec{v}_1 + d_2\vec{v}_2 = \frac{-1}{4} \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 3 \\ r \end{bmatrix}$. Equation (1) then gives

$$\begin{bmatrix} a_{k+1} \\ a_k \end{bmatrix} = A^k \vec{x} = d_1 \lambda_1^k \vec{v}_1 + d_2 \lambda_2^k \vec{v}_2$$
$$= \left(\frac{-1}{4}\right) \left(\frac{-1}{4}\right)^k \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^k \begin{bmatrix} 3 \\ 4 \end{bmatrix},$$

$$a_{k} = \left(\frac{-1}{4}\right) \left(\frac{-1}{4}\right)^{k} \left(4\right) + \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^{k} \left(4\right) = \left[\left(\frac{3}{4}\right)^{k} - \left(\frac{-1}{4}\right)^{k}\right]^{k}.$$

Page 325 Number 4 (continued 4)

Solution (continued). So $\vec{x} = d_1\vec{v}_1 + d_2\vec{v}_2 = \frac{-1}{4} \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 3 \\ r \end{bmatrix}$. Equation (1) then gives

$$\begin{bmatrix} a_{k+1} \\ a_k \end{bmatrix} = A^k \vec{x} = d_1 \lambda_1^k \vec{v}_1 + d_2 \lambda_2^k \vec{v}_2$$
$$= \left(\frac{-1}{4}\right) \left(\frac{-1}{4}\right)^k \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^k \begin{bmatrix} 3 \\ 4 \end{bmatrix},$$

or

$$a_{k} = \left(\frac{-1}{4}\right) \left(\frac{-1}{4}\right)^{k} (4) + \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^{k} (4) = \left[\left(\frac{3}{4}\right)^{k} - \left(\frac{-1}{4}\right)^{k} \right].$$

Page 325 Number 10. Find the general solution to the system:

Solution. The coefficient matrix
$$A = \begin{bmatrix} 6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7 \end{bmatrix}$$
 is not diagonal, so we attempt to diagonalize it.

Page 325 Number 10. Find the general solution to the system:

Solution. The coefficient matrix $A = \begin{bmatrix} 6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7 \end{bmatrix}$ is not diagonal, so we attempt to diagonalize it. First we need the eigenvalues, so consider det $(A - \lambda I) = 0$:

$$\det(A - \lambda \mathcal{I}) = \begin{vmatrix} 6 - \lambda & 3 & -3 \\ -2 & -1 - \lambda & 2 \\ 16 & 8 & -7 - \lambda \end{vmatrix} = \cdots$$

Page 325 Number 10. Find the general solution to the system:

Solution. The coefficient matrix $A = \begin{bmatrix} 6 & 3 & -3 \\ -2 & -1 & 2 \\ 16 & 8 & -7 \end{bmatrix}$ is not diagonal, so we attempt to diagonalize it. First we need the eigenvalues, so consider $det(A - \lambda I) = 0$:

$$\det(A - \lambda \mathcal{I}) = \begin{vmatrix} 6 - \lambda & 3 & -3 \\ -2 & -1 - \lambda & 2 \\ 16 & 8 & -7 - \lambda \end{vmatrix} = \cdots$$

Page 325 Number 10 (continued 1)

Solution (continued). det $(A - \lambda I) =$

$$= (6-\lambda) \begin{vmatrix} -1-\lambda & 2 \\ 8 & -7-\lambda \end{vmatrix} - (3) \begin{vmatrix} -2 & 2 \\ 16 & -7-\lambda \end{vmatrix} + (-3) \begin{vmatrix} -2 & -1-\lambda \\ 16 & 8 \end{vmatrix}$$

$$= (6 - \lambda)((-1 - \lambda)(-7 - \lambda) - (2)(8)) - 3((-2)(-7 - \lambda) - (2)(16))$$

-3((-2)(8) - (-1 - λ)(16)) = (6 - λ)($\lambda^2 + 8\lambda - 9$) - 3(2 λ - 18) - 2(16 λ)
= 6 λ^2 + 48 λ - 54 - λ^3 - 8 λ^2 + 9 λ - 6 λ + 54 - 48 λ = - λ^3 - 2 λ^2 + 3 λ
= - λ (λ^2 + 2 λ - 3) = - λ (λ + 3)(λ - 1).

So the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 0$, and $\lambda_3 = 1$. Now we find corresponding eigenvectors.

For eigenvalue $\lambda_1 = -3$ with corresponding eigenvector $\vec{v}_1 = [v_1, v_2, v_3]^T$ we need $A\vec{v}_1 = \lambda_1\vec{v}_1$ or $(A - \lambda_1\mathcal{I})\vec{v}_1 = \vec{0}$. So we consider the augmented matrix...

Page 325 Number 10 (continued 1)

Solution (continued). det $(A - \lambda I) =$

$$= (6-\lambda) \begin{vmatrix} -1-\lambda & 2 \\ 8 & -7-\lambda \end{vmatrix} - (3) \begin{vmatrix} -2 & 2 \\ 16 & -7-\lambda \end{vmatrix} + (-3) \begin{vmatrix} -2 & -1-\lambda \\ 16 & 8 \end{vmatrix}$$

$$= (6 - \lambda)((-1 - \lambda)(-7 - \lambda) - (2)(8)) - 3((-2)(-7 - \lambda) - (2)(16))$$

-3((-2)(8) - (-1 - \lambda)(16)) = (6 - \lambda)(\lambda^2 + 8\lambda - 9) - 3(2\lambda - 18) - 2(16\lambda)
= 6\lambda^2 + 48\lambda - 54 - \lambda^3 - 8\lambda^2 + 9\lambda - 6\lambda + 54 - 48\lambda = -\lambda^3 - 2\lambda^2 + 3\lambda
= -\lambda(\lambda^2 + 2\lambda - 3) = -\lambda(\lambda + 3)(\lambda - 1).

So the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 0$, and $\lambda_3 = 1$. Now we find corresponding eigenvectors.

For eigenvalue $\lambda_1 = -3$ with corresponding eigenvector $\vec{v}_1 = [v_1, v_2, v_3]^T$ we need $A\vec{v}_1 = \lambda_1\vec{v}_1$ or $(A - \lambda_1\mathcal{I})\vec{v}_1 = \vec{0}$. So we consider the augmented matrix...

Page 325 Number 10 (continued 2)

Solution (continued).

$$\begin{split} \left[A - \lambda_{1} \mathcal{I} \mid \vec{0} \right] &= \begin{bmatrix} 9 & 3 & -3 & | & 0 \\ -2 & 2 & 2 & | & 0 \\ 16 & 8 & -4 & | & 0 \end{bmatrix} \stackrel{R_{1} \to R_{1}/3}{R_{2} \to R_{2}/(-2)} \begin{bmatrix} 3 & 1 & -1 & | & 0 \\ 1 & -1 & -1 & | & 0 \\ 4 & 2 & -1 & | & 0 \end{bmatrix} \\ \stackrel{R_{1} \leftrightarrow R_{2}}{\underset{A}{\longrightarrow}} \begin{bmatrix} 1 & -1 & -1 & | & 0 \\ 3 & 1 & -1 & | & 0 \\ 4 & 2 & -1 & | & 0 \end{bmatrix} \stackrel{R_{2} \to R_{2} - 3R_{1}}{R_{4} \to R_{4} - 4R_{1}} \begin{bmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 4 & 2 & | & 0 \\ 0 & 6 & 3 & | & 0 \end{bmatrix} \\ \stackrel{R_{2} \to R_{2}/4}{\underset{R_{3} \to R_{3}/3}{\underset{A}{\longrightarrow}}} \begin{bmatrix} 1 & -1 & -1 & | & 0 \\ 0 & 1 & 1/2 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} \stackrel{R_{1} \to R_{1} + R_{2}}{\underset{R_{3} \to R_{3} - 2R_{2}}{\underset{A}{\longrightarrow}}} \begin{bmatrix} 1 & 0 & -1/2 & | & 0 \\ 0 & 1 & 1/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \\ \stackrel{v_{1}}{\underset{V_{2} \to (1/2)v_{3}}{\underset{V_{2} \to (1/2)v_{3}}{\underset{V_{2} \to (1/2)v_{3}}{\underset{V_{3} \to 0}{\underset{W_{3} \to W_{3}}{\underset{W_{3} \to W_{3}}{\underset{W_{3$$

Linear Algebra

Page 325 Number 10 (continued 2)

Solution (continued).

$$\begin{split} \left[A - \lambda_{1}\mathcal{I} \mid \vec{0}\right] &= \begin{bmatrix} 9 & 3 & -3 & 0 \\ -2 & 2 & 2 & 0 \\ 16 & 8 & -4 & 0 \end{bmatrix} \stackrel{R_{1} \to R_{1}/3}{\underset{R_{2} \to R_{2}/(-2)}{\underset{R_{3} \to R_{3}/4}{\overset{R_{1} \to R_{2}}{\underset{R_{2} \to R_{3}/4}{\overset{R_{1} \to R_{2}}{\underset{R_{2} \to R_{2}}{\overset{R_{1} \to R_{2}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{2}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{2}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{1} = 1 \\ 0 \\ 1 & -1 & -1 \\ 0 \\ 4 & 2 & -1 \\ 0 \end{bmatrix}} \stackrel{R_{2} \to R_{2} - 3R_{1}}{\underset{R_{4} \to R_{4} - 4R_{1}}{\underset{R_{4} \to R_{4} - 4R_{1}}{\overset{R_{1} \to R_{1} + R_{2}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{1}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{1}}{\underset{R_{3} \to R_{3}/3}{\overset{R_{1} \to R_{1}}{\underset{R_{3} \to R_{3}}{\overset{R_{1} \to R_{1}}{\underset{R_{3} \to R_{3} - 2R_{2}}{\overset{R_{1} \to R_{1} + R_{2}}{\underset{R_{3} \to R_{3} - R_{2} - (1/2)v_{3}}{\underset{R_{3} \to R_{3} - R_{1} - (1/2)v_{3}}{\underset{R_{3} \to R_{3} - R_{1} - (1/2)v_{3}}{\underset{R_{3} \to R_{3} - R_{1} - (1/2)v_{3}}{\overset{R_{1} \to R_{1} + R_{2} - (1/2)v_{3}}{\underset{R_{3} \to R_{1} - (1/2)v_{3}}{\underset{R_{1} \to R_{1} - (1/2)v_{3}}{\underset$$

Page 325 Number 10 (continued 3)

Solution (continued). ... with
$$r = v_3/2$$
 as a free variable,
 $v_1 = r$
 $v_2 = -r$
 $v_3 = 2r$
where $r \in \mathbb{R}$, $r \neq 0$. We choose $r = 1$ and $\vec{v}_1 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.
Similarly, for eigenvalue $\lambda_2 = 0$ with corresponding eigenvector
 $\vec{v}_2 = [v_1, v_2, v_3]^T$ we consider
 $[A - \lambda_2 \mathcal{I} \mid \vec{0}] = \begin{bmatrix} 6 & 3 & -3 & | & 0 \\ -2 & -1 & 2 & | & 0 \\ 16 & 8 & -7 & | & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -2 & -1 & 2 & | & 0 \\ 6 & 3 & -3 & | & 0 \\ 16 & 8 & -7 & | & 0 \end{bmatrix}$
 $\frac{R_2 \rightarrow R_2 + 3R_1}{R_3 \rightarrow R_3 + 8R_1} \begin{bmatrix} -2 & -1 & 2 & | & 0 \\ 0 & 0 & 3 & | & 0 \\ 0 & 0 & 9 & | & 0 \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1/(-2)}_{R_3 \rightarrow R_3 - 3R_2} \begin{bmatrix} 1 & 1/2 & -1 & | & 0 \\ 0 & 0 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$

Page 325 Number 10 (continued 3)

 $v_1 = r$ $v_2 = -r$ $v_3 = 2r$ **Solution (continued).** . . . with $r = v_3/2$ as a free variable, where $r \in \mathbb{R}$, $r \neq 0$. We choose r = 1 and $\vec{v}_1 = \begin{vmatrix} v_1 \\ v_2 \end{vmatrix} = \begin{vmatrix} 1 \\ -1 \\ -1 \end{vmatrix}$. Similarly, for eigenvalue $\lambda_2 = 0$ with corresponding eigenvector $\vec{v}_2 = [v_1, v_2, v_3]^T$ we consider $\begin{bmatrix} A - \lambda_2 \mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} 6 & 3 & -3 & 0 \\ -2 & -1 & 2 & 0 \\ 16 & 8 & -7 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -2 & -1 & 2 & 0 \\ 6 & 3 & -3 & 0 \\ 16 & 8 & -7 & 0 \end{bmatrix}$

Page 325 Number 10 (continued 4)

Solution (continued). ...

$$R_{2 \to R_{2}/3} \begin{bmatrix} 1 & 1/2 & -1 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} R_{1 \to R_{1}+R_{2}} \begin{bmatrix} 1 & 1/2 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

and we need

$$v_{1} + (1/2)v_{2} = 0 \qquad v_{1} = -(1/2)v_{2}$$

and we need

$$v_{3} = 0 \text{ or } v_{2} = v_{2} \text{ or, with}$$

$$0 = 0 \qquad v_{3} = 0$$

$$v_{1} = -s$$

$$= v_{2}/2 \text{ as a free variable, } v_{2} = 2s \text{ where } s \in \mathbb{R}, s \neq 0. \text{ We choose}$$

$$v_{3} = 0$$

$$= 1 \text{ and } \vec{v}_{2} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}.$$

S

S

Page 325 Number 10 (continued 4)

Solution (continued). ...

Page 325 Number 10 (continued 5)

Solution (continued). Similarly, for eigenvalue $\lambda_3 = 1$ with corresponding eigenvector $\vec{v}_3 = [v_1, v_2, v_3]^T$ we consider

$$\begin{bmatrix} A - \lambda_{3}\mathcal{I} \mid \vec{0} \end{bmatrix} = \begin{bmatrix} 5 & 3 & -3 & | & 0 \\ -2 & -2 & 2 & | & 0 \\ 16 & 8 & -8 & | & 0 \end{bmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{bmatrix} -2 & -2 & 2 & | & 0 \\ 5 & 3 & -3 & | & 0 \\ 16 & 8 & -8 & | & 0 \end{bmatrix}$$
$$\stackrel{R_{1} \to R_{1}/(-2)}{\underset{R_{3} \to R_{3}/8}{\longrightarrow} R_{3}/8} \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 5 & 3 & -3 & | & 0 \\ 2 & 1 & -1 & | & 0 \\ 2 & 1 & -1 & | & 0 \end{bmatrix} \xrightarrow{R_{2} \to R_{2} - 5R_{1}}_{R_{3} \to R_{3} - 2R_{1}} \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -2 & 2 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{bmatrix}$$
$$\stackrel{R_{3} \to R_{3} - (1/2)R_{2}}{\underset{R_{3} \to R_{1} - R_{2}}{\longrightarrow} R_{3} - \frac{R_{2}}{(0 - 2)} \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$\stackrel{R_{1} \to R_{1} - R_{2}}{\underset{R_{1} \to R_{1} - R_{2}}{\longrightarrow} R_{1} - \frac{R_{1}}{(0 - 2)} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}}$$

Page 325 Number 10 (continued 6)

Solution (continued). ... and we need

$$v_1 = 0$$

 $v_2 = v_3$ or, with $t = v_3$ as a free variable, $v_2 = t$ for $t \in \mathbb{R}$,
 $v_3 = v_3$
 $t \neq 0$. We choose $t = 1$ and $\vec{v}_3 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. With C the matrix
whose columns are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ we have $C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$.

Page 325 Number 10 (continued 6)

Solution (continued). ... and we need

$$v_1 = 0$$

 $v_2 = v_3$ or, with $t = v_3$ as a free variable, $v_2 = t$ for $t \in \mathbb{R}$,
 $v_3 = v_3$
 $t \neq 0$. We choose $t = 1$ and $\vec{v}_3 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. With C the matrix
whose columns are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ we have $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$.

Page 325 Number 10 (continued 7)

Solution (continued). In the notation introduced above, the solution to

$$\vec{y}' = D\vec{y}$$
 is $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} k_1 e^{\lambda_1 t} \\ k_2 e^{\lambda_2 t} \\ k_3 e^{\lambda_3 t} \end{bmatrix} = \begin{bmatrix} k_1 e^{-3t} \\ k_2 \\ k_3 e^t \end{bmatrix}$ and the solution to

the original system is

$$\vec{x} = C\vec{y} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_1 e^{-3t} \\ k_2 \\ k_3 e^t \end{bmatrix}$$

$$= \begin{bmatrix} k_1 e^{-3t} & - & k_2 \\ -k_1 e^{-3t} & + & 2k_2 & + & k_3 e^t \\ 2e^{-3t} & & + & k_3 e^t \end{bmatrix}.$$

Page 325 Number 10 (continued 7)

Solution (continued). In the notation introduced above, the solution to

$$\vec{y}' = D\vec{y}$$
 is $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} k_1 e^{\lambda_1 t} \\ k_2 e^{\lambda_2 t} \\ k_3 e^{\lambda_3 t} \end{bmatrix} = \begin{bmatrix} k_1 e^{-3t} \\ k_2 \\ k_3 e^t \end{bmatrix}$ and the solution to

the original system is

$$\vec{x} = C\vec{y} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} k_1 e^{-3t} \\ k_2 \\ k_3 e^t \end{bmatrix}$$

$$= \begin{bmatrix} k_1 e^{-3t} & - & k_2 \\ -k_1 e^{-3t} & + & 2k_2 & + & k_3 e^t \\ 2e^{-3t} & & + & k_3 e^t \end{bmatrix}.$$