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Page 336 number 10

Page 336 number 10

Page 336 number 10. Find the orthogonal complement of the plane
2x+y+3z=0in R3.

Solutlon A plane is a translatlon of a two-dimensional space of the form
X = t1d1 + t2d2 + 3 where d1 and d2 form a basis for the two-dimensional
space and 3 is a translation vector (see Section 2.5, “Lines, Planes, and
Other Flats”). Here, we can take 3 = 0 so that the plane is not translated
and is in fact a subspace of R3. So we just need a basis for the subspace.
We pick two linearly independent vectors in the subspace, say

di = [1,-2,0] and dr = [0, —3,1] (though there are infinitely many such
choices). Then using the technique described above, we take

A= [ (1) :g (1) ] and find the nullspace of A by considering the system
of equations AX = 0 (see Note 6.1.A):
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Page 336 number 4

Page 336 number 4

Page 336 number 4. Find the projection of [1,2,1] on the line with
parametric equation x = 3t, y = t, z = 2t in R3.

Solution. A line is a translation of a one-dimensional subspace and is of
the form X = td + 3 where d is the direction vector and 3 is a translation
vector (see Section 2.5, “Lines, Planes, and Other Flats”). Here,
d=[3,1,2] and 3=[0,0,0] so, in fact, the line is not translated and so is
a subspace spanned by c7 [3,1,2]. So we apply the previous definition to
get the projection B of b = [1,2,1] on sp(d):

[1,2,1]-[3,1,2]
[3,1,2] - [3,1,2]

~ b-d-
p = projs(b) = =—=d = 3,1,2
iB) === 3.1,

_(MB)+@)@)+(1)(2) _ 7 _
= o [3.1.2] = ;31,21 = |[3/2, 1/2, 1].
O
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Page 336 number 10

Page 336 number 10 (continued)
Solution (continued).

ajg =]t -2 oo Rk CRR Ty g —2/310
“lo -3 10 0 -3 1|0

Re—Re/(=3) [ 10 —2/3‘0]

01 -1/3
So we have
X1 - (2/3)X3 = 0 X1 = (2/3)X3
X2 — (1/3)X3 =0 or X2 = (1/3)X3
X3 = X3

or with x3 = 3t as a free variable, x; = 2t, xo = t, and x3 = 3t. So W' is
the nullspace of A: | W+ =sp([2,1,3]). |0
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Theorem 6.1

Theorem 6.1. Properties of W-=.

The orthogonal complement W of a subspace W of R” has the following
properties:

W is a subspace of R".

dim(W+) = n — dim(W).

(WH)t =w.

Eachqvectorqlg eR" can be expresied uniquely in the form
b= by +bwj_ for byy € W and bWJ_ e wt.

B e

Proof. Let dim(W) = k, and let {vi, va,..., vk} be a basis for W. Let A
be the k x n matrix having v; as its ith row vector for i = 1,2,..., k.

Property (1) follows from the fact that W+ is the nullspace of matrix A,
by Note 6.1.A, and therefore is a subspace of R”.
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Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let {Vii1, Vki2,...,Vn} be a basis
for n — k dimensional (by Property 2) subspace W+. We now show that

{\71, Vo, .., Vk} U {Vk+1, 7k+2, Ce \7,-,} = {\71, Vo, ..., Vn}
is a basis for R". Consider the linear combination
N+ v A4+ v+ 5k+1‘7k+1 + 5k+2‘7k+2 4+t sV, = 6 (*)
This equation implies

AL+ nvm+- v = _5k+1Vk+1 — 5k+2Vk+2 — e — SV
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Theorem 6.1. Properties of W

Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:
rank(A) + nullity(A) = n.

Since dim(W) = rank(A) and since W+ is the nullspace of A, then
dim(W+) = n — dim(W).

For Property 3, we have by Property 1 that W+ is a subspace of R". By
Property 2 we have

dim(WH)t = n—dim(W+) =n— (n— k) = k.

Since very vector in W is orthogonal to subspace W= then W is a
subspace of (W*)+ ((W+)+ is a subspace of R” by two applications of
Property 1). Since W and (W) have the same dimension then by
Exercise 2.1.38, W must be equal to (W*)*.
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Theorem 6.1. Properties of W

Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this
equation is in W and the vector on the right hand side is in W-. But
both sides of the equation represent the same vector (d'uh, it's an
equation!) so both sides of the equation represent a vector in both W and
WL So this vector must be orthogonal to itself. The only vector
orthogonal to itself is 0 (since 0 = vV - V = ||V||? implies ¥ = 0). Since the

vectors Vi, ik, ..., Vj are linearly independent and

MVi+ Va4 -+ reve = 0 then we must have p = r = -+ r, = 0.
Similarly, Vki1, Vk42, ..., Vy are linearly independent and

Ski1Vkt1 + Skp2Viia + -+ Spvp = O implies sgq1 = Sg0 = - = 5, = 0.
From equation (x), we see that {Vi, Vh,...,V,} is a linearly independent

set. Since the set contains n linearly independent vectors in R" then
dim(sp(vi, Vo, ..., V,)) = n and so by Exercise 2.1.38,
sp(vi, Vo,...,V,) =R" and so {V4, V»,...,V,} is a basis for R".
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Theorem 6.1 (continued 4)

Proof (continued). So each b € R” can be written as

b= (r1 i+ hnv+--+ rka) + (Sk+1 Vki1+ SkaoVkao+ -+ SnVn), where
nvi+nvs -+ € Wand sgi1Viy1 + SkaoVkao + -+ SpVp € w+t,
for unique ri, ra, .. s Tl Skb1s Skt25 - -+ Sn (by Definition 1. 17 “Basis for a
Subspace ). So any b € R" can be expressed in the form b = bw + bwj_
where by € W and bwl € W+, Since each vector in R" is a unique
linear combination of Vi, V»,..., V,, then the choice of bW and wa_ are
unique. ]
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Page 335 Example 6

Page 335 Example 6. Consider the inner product space Pyg 1 of all
polynomial functions defined on the interval [0, 1] with inner product

1
(P(x), q(x)) = /0 p(x)q(x) dx.

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.
Solution. We follow the definition of the projection p of b on sp(d) in R",

—

b-a,
B = projs(b) = 3 5a but instead of dot products in R” we use the inner

product in 77[0,1]. So the desired projection, with b=xand 3=1, is

1
ld
Jo x X1

( _Jo " (1/2)x 2|o
LD" fr1d xlg 1_
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Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of b = [~2,1,3,—5] on to
the subspace W = sp(&,&;) in R*.

Solution. We are given a basis for W = sp(&;, &), namely {&, & }.
Certainly a basis for W is given by {&,83}. So we take the ordered basis
{&,84,8,8} of R* and we have b= —28& — 5& + 1& + 3& (and so the
coordinate vector 7 of b relative to the ordered basis {81,84,8&,8} is

7 =[—2,-5,1,3]). Then by the Note 6.1.B, the projection of bonto W is

ré + né = —2[1,0,0,0] — 5[0,0,0,1] =/ [-2,0,0,-5].

bw = projy (b) =
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Page 335 Example 6

Page 335 Example 6 (continued)

Page 335 Example 6. Consider the inner product space Pyg 1 of all
polynomial functions defined on the interval [0, 1] with inner product

(p(x). q(x)) = /0 p(x)q(x) dx.

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.

Solution (continued). Notice that with W = sp(1) then we have from
Definition 6.2 that b = bW + bwL and we can find by . (where
WL =sp(1)+) as byyr = b— by = x —1/2. [
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Page 337 number 26

Page 337 number 26

Page 337 number 26. Let A be an m x n matrix.
(a) Prove that the set W of row vectors X in R™ such that
XA = 0 is a subspace of R™.
(b) Prove that the subspace W in part (a) and the column space
of A are orthogonal complements in R™.

Proof. (a) We use definition 1.16, “Subspace of R"." Let
W = {X € R™ | XA = 0}. We must check W for closure under vector

addition and scalar multiplication. Let Xi,X> € W and let r be a scalar.
Then:

()?1 + )_()2)/4 = XA+ XA by Theorem 1.3.A(10),
“Distribution Laws of Matrix Multiplication”
here we treat X as a matrix)

—

(
= 0+ 0since Xy,vh € W
0,
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Page 337 number 26

Page 337 number 26 (continued 2)

Proof (continued). So for X € W (here we treat row vector X € R™ as a
1 X m matrix) we have that XA is a 1 X n matrix (or a row vector in R")
and for X € W we have XA =0 € R". So the jth entry of XA =0 is the
dot product of X with the jth column of A and, since XA = 0, this dot
product must be 0 for each j = 1,2 ... n. So by Definition 1.7,
“Perpendicular or Orthogonal Vectors,” each X € W is orthogonal to each
column of A. Also, by definition, W contain all vectors X in R™ which
satisfy XA = 0 (i.e., all vectors X in R™ which are perpendicular to all
columns of A). The column space of A is the span of the columns of A
and since X € W is orthogonal to each column of A then X is orthogonal
to each vector which is in the span of the columns of A. Conversely, any
vector X in the orthogonal complement of the column space of A must be
orthogonal to all linear combinations of the columns of A; in particular
such X must by orthogonal to each column of A and hence such X is in W.
So the orthogonal complement of the column space of Ais W. O
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Page 337 number 26

Page 337 number 26 (continued 1)

Proof (continued). ...and

(rx1)A = r(X4A) by Theorem 1.3.A(7), “Scalars Pull Through”

= rOsince 3 € W

= 0.
Soboth X + X € W and rx; € W. That is, W is closed under vector
addition and scalar multiplication. By Definition 1.16, W is a subspace of
R™. O

(b) Let A be an m x n matrix. Prove that the subspace W in part (a) and
the column space of A are orthogonal complements in R™.

Proof. Recall that by Definition 1.8, “Matrix Product,” the (7, ) entry of
the matrix product AB is the dot product of the ith row of A with the jth
column of B.
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Page 337 number 28

Page 337 number 28

Page 337 number 28. Let W be a subspace of R” with orthogonal
complement W+, Writing 3 = 3\ + 3,1, as in Theorem 6.1, prove that

131 = Vlawl? + law- [

Solution. By Note 1.2.A, ||3]|> = 3- 3, so we have

13> = (3w +3aws) - (@w +3dwe)
= adw-adw +aw - awr +awe - aw +awe - apye
by Theorem 1.3, "Properties of Dot Products”
= 3wl + 3w - Fyo + Fws - 3w + |3 |? by Note 1.2.A
= ||3w||> + 0+ 0+ ||3,||? since 3y and 3y,. are orthogonal.

Not taking square roots (and observing that ||3|| is nonnegative) gives
131 = Vlawl? + law- [ O
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