Linear Algebra

Chapter 6: Orthogonality Section 6.1. Projections—Proofs of Theorems

Table of contents

- 1 [Page 336 number 4](#page-2-0)
- 2 [Page 336 number 10](#page-5-0)
- 3 [Theorem 6.1. Properties of](#page-11-0) W^{\perp}
- 4 [Page 336 number 20\(b\)](#page-24-0)
- 5 [Page 335 Example 6](#page-28-0)
- 6 [Page 337 number 26](#page-32-0)
	- [Page 337 number 28](#page-42-0)

Page 336 number 4. Find the projection of $[1, 2, 1]$ on the line with parametric equation $x = 3t$, $y = t$, $z = 2t$ in \mathbb{R}^3 .

Solution. A line is a translation of a one-dimensional subspace and is of the form $\vec{x} = t \vec{d} + \vec{a}$ where \vec{d} is the direction vector and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, $\vec{d} = [3, 1, 2]$ and $\vec{a} = [0, 0, 0]$ so, in fact, the line is not translated and so is a subspace spanned by $d = [3, 1, 2]$.

Page 336 number 4. Find the projection of $[1, 2, 1]$ on the line with parametric equation $x = 3t$, $y = t$, $z = 2t$ in \mathbb{R}^3 .

Solution. A line is a translation of a one-dimensional subspace and is of the form $\vec{x} = t \vec{d} + \vec{a}$ where \vec{d} is the direction vector and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, $\vec{d} = [3, 1, 2]$ and $\vec{a} = [0, 0, 0]$ so, in fact, the line is not translated and so is **a subspace spanned by** $\vec{d} = [3, 1, 2]$ **.** So we apply the previous definition to get the projection \vec{p} of $\vec{b} = [1, 2, 1]$ on sp(\vec{d}):

$$
\vec{p} = \text{proj}_{\vec{d}}(\vec{b}) = \frac{\vec{b} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d} = \frac{[1, 2, 1] \cdot [3, 1, 2]}{[3, 1, 2] \cdot [3, 1, 2]} [3, 1, 2]
$$

$$
= \frac{(1)(3) + (2)(1) + (1)(2)}{3^2 + 1^2 + 2^2} [3, 1, 2] = \frac{7}{14} [3, 1, 2] = \boxed{[3/2, 1/2, 1]}.
$$

 \Box

Page 336 number 4. Find the projection of $[1, 2, 1]$ on the line with parametric equation $x = 3t$, $y = t$, $z = 2t$ in \mathbb{R}^3 .

Solution. A line is a translation of a one-dimensional subspace and is of the form $\vec{x} = t \vec{d} + \vec{a}$ where \vec{d} is the direction vector and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, $\vec{d} = [3, 1, 2]$ and $\vec{a} = [0, 0, 0]$ so, in fact, the line is not translated and so is a subspace spanned by $d = [3, 1, 2]$. So we apply the previous definition to get the projection \vec{p} of $\vec{b} = [1, 2, 1]$ on sp(\vec{d}):

$$
\vec{p} = \text{proj}_{\vec{d}}(\vec{b}) = \frac{\vec{b} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d} = \frac{[1, 2, 1] \cdot [3, 1, 2]}{[3, 1, 2] \cdot [3, 1, 2]} [3, 1, 2]
$$

$$
= \frac{(1)(3) + (2)(1) + (1)(2)}{3^2 + 1^2 + 2^2} [3, 1, 2] = \frac{7}{14} [3, 1, 2] = \boxed{[3/2, 1/2, 1]}.
$$

 \Box

Page 336 number 10. Find the orthogonal complement of the plane $2x + y + 3z = 0$ in \mathbb{R}^3 .

Solution. A plane is a translation of a two-dimensional space of the form $\vec{x}=t_1\vec{d}_1+t_2\vec{d}_2+\vec{a}$ where \vec{d}_1 and \vec{d}_2 form a basis for the two-dimensional space and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, we can take $\vec{a} = \vec{0}$ so that the plane is not translated and is in fact a subspace of \mathbb{R}^3 . So we just need a basis for the subspace.

Page 336 number 10. Find the orthogonal complement of the plane $2x + y + 3z = 0$ in \mathbb{R}^3 .

Solution. A plane is a translation of a two-dimensional space of the form $\vec{x}=t_1\vec{d}_1+t_2\vec{d}_2+\vec{a}$ where \vec{d}_1 and \vec{d}_2 form a basis for the two-dimensional space and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, we can take $\vec{a} = \vec{0}$ so that the plane is not translated and is in fact a subspace of \mathbb{R}^3 . So we just need a basis for the subspace. We pick two linearly independent vectors in the subspace, say $\vec{d}_1 = [1, -2, 0]$ and $\vec{d}_2 = [0, -3, 1]$ (though there are infinitely many such choices). Then using the technique described above, we take $A=\left[\begin{array}{ccc} 1 & -2 & 0 \ 0 & -3 & 1 \end{array}\right]$ and find the nullspace of A by considering the system of equations $A\vec{x} = \vec{0}$ (see Note 6.1.A):

Page 336 number 10. Find the orthogonal complement of the plane $2x + y + 3z = 0$ in \mathbb{R}^3 .

Solution. A plane is a translation of a two-dimensional space of the form $\vec{x}=t_1\vec{d}_1+t_2\vec{d}_2+\vec{a}$ where \vec{d}_1 and \vec{d}_2 form a basis for the two-dimensional space and \vec{a} is a translation vector (see Section 2.5, "Lines, Planes, and Other Flats"). Here, we can take $\vec{a} = \vec{0}$ so that the plane is not translated and is in fact a subspace of \mathbb{R}^3 . So we just need a basis for the subspace. We pick two linearly independent vectors in the subspace, say $\vec{d}_1 = [1, -2, 0]$ and $\vec{d}_2 = [0, -3, 1]$ (though there are infinitely many such choices). Then using the technique described above, we take $A=\left[\begin{array}{ccc} 1 & -2 & 0 \ 0 & -3 & 1 \end{array}\right]$ and find the nullspace of A by considering the system of equations $A\vec{x} = \vec{0}$ (see Note 6.1.A):

Page 336 number 10 (continued)

Solution (continued).

$$
[A \mid \vec{0}] = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 - (2/3)R_2} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix}
$$

$$
\xrightarrow{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & 1 & -1/3 & 0 \end{bmatrix}.
$$

So we have

$$
\begin{array}{ccccccccc}\nx_1 & - & (2/3)x_3 & = & 0 & x_1 & = & (2/3)x_3 \\
x_2 & - & (1/3)x_3 & = & 0 & \text{or} & x_2 & = & (1/3)x_3 \\
x_3 & = & x_3 & = & x_3\n\end{array}
$$

or with $x_3 = 3t$ as a free variable, $x_1 = 2t$, $x_2 = t$, and $x_3 = 3t$.

Page 336 number 10 (continued)

Solution (continued).

$$
[A \mid \vec{0}] = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 - (2/3)R_2} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix}
$$

$$
\xrightarrow{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & 1 & -1/3 & 0 \end{bmatrix}.
$$

So we have

$$
\begin{array}{ccccccccc}\nx_1 & - & (2/3)x_3 & = & 0 & x_1 & = & (2/3)x_3 \\
x_2 & - & (1/3)x_3 & = & 0 & \text{or} & x_2 & = & (1/3)x_3 \\
x_3 & = & x_3 & \text{or} & x_3 & = & x_3\n\end{array}
$$

or with $x_3 = 3t$ as a free variable, $x_1 = 2t$, $x_2 = t$, and $x_3 = 3t$. So W^{\perp} is the nullspace of A: $|W^{\perp} = sp([2, 1, 3])$. \Box

Page 336 number 10 (continued)

Solution (continued).

$$
[A \mid \vec{0}] = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 - (2/3)R_2} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & -3 & 1 & 0 \end{bmatrix}
$$

$$
\xrightarrow{R_2 \to R_2/(-3)} \begin{bmatrix} 1 & 0 & -2/3 & 0 \\ 0 & 1 & -1/3 & 0 \end{bmatrix}.
$$

So we have

$$
\begin{array}{ccccccccc}\nx_1 & - & (2/3)x_3 & = & 0 & x_1 & = & (2/3)x_3 \\
x_2 & - & (1/3)x_3 & = & 0 & \text{or} & x_2 & = & (1/3)x_3 \\
x_3 & = & x_3 & \text{or} & x_3 & = & x_3\n\end{array}
$$

or with $x_3 = 3t$ as a free variable, $x_1 = 2t$, $x_2 = t$, and $x_3 = 3t$. So W^{\perp} is the nullspace of A: $|W^{\perp} = sp([2, 1, 3])$. \Box

Theorem 6.1

Theorem 6.1. Properties of W^{\perp} .

The orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^n has the following properties:

> 1. W^{\perp} is a subspace of \mathbb{R}^{n} . 2. dim(W^{\perp}) = n – dim(W). 3. $(W^{\perp})^{\perp} = W$. 4. Each vector $\vec{b} \in \mathbb{R}^n$ can be expressed uniquely in the form $\vec{b} = \vec{b}_W + \vec{b}_{W\perp}$ for $\vec{b}_W \in W$ and $\vec{b}_{W\perp} \in W^{\perp}$.

Proof. Let dim(W) = k, and let $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be a basis for W. Let A be the $k \times n$ matrix having \vec{v}_i as its *i*th row vector for $i = 1, 2, ..., k$.

Theorem 6.1

Theorem 6.1. Properties of W^{\perp} .

The orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^n has the following properties:

> 1. W^{\perp} is a subspace of \mathbb{R}^{n} . 2. dim(W^{\perp}) = n – dim(W). 3. $(W^{\perp})^{\perp} = W$. 4. Each vector $\vec{b} \in \mathbb{R}^n$ can be expressed uniquely in the form $\vec{b} = \vec{b}_W + \vec{b}_{W\perp}$ for $\vec{b}_W \in W$ and $\vec{b}_{W\perp} \in W^{\perp}$.

Proof. Let dim(W) = k, and let $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be a basis for W. Let A be the $k \times n$ matrix having $\vec{v_i}$ as its *i*th row vector for $i = 1, 2, ..., k$.

Property (1) follows from the fact that W^{\perp} is the nullspace of matrix A, by Note 6.1.A, and therefore is a subspace of \mathbb{R}^n .

Theorem 6.1

Theorem 6.1. Properties of W^{\perp} .

The orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^n has the following properties:

> 1. W^{\perp} is a subspace of \mathbb{R}^{n} . 2. dim(W^{\perp}) = n – dim(W). 3. $(W^{\perp})^{\perp} = W$. 4. Each vector $\vec{b} \in \mathbb{R}^n$ can be expressed uniquely in the form $\vec{b} = \vec{b}_W + \vec{b}_{W\perp}$ for $\vec{b}_W \in W$ and $\vec{b}_{W\perp} \in W^{\perp}$.

Proof. Let dim(W) = k, and let $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be a basis for W. Let A be the $k \times n$ matrix having \vec{v}_i as its *i*th row vector for $i = 1, 2, ..., k$.

Property (1) follows from the fact that W^{\perp} is the nullspace of matrix A, by Note 6.1.A, and therefore is a subspace of \mathbb{R}^n .

Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:

rank (A) + nullity (A) = n.

Since dim(W) = rank(A) and since W^{\perp} is the nullspace of A, then $\dim(W^{\perp}) = n - \dim(W)$.

For Property 3, we have by Property 1 that W^\perp is a subspace of \mathbb{R}^n . By Property 2 we have

$$
\dim(W^{\perp})^{\perp} = n - \dim(W^{\perp}) = n - (n - k) = k.
$$

Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:

rank (A) + nullity (A) = n.

Since dim(W) = rank(A) and since W^{\perp} is the nullspace of A, then $\dim(W^{\perp}) = n - \dim(W)$.

For Property 3, we have by Property 1 that W^{\perp} is a subspace of $\mathbb{R}^{n}.$ By Property 2 we have

$$
\dim(W^{\perp})^{\perp} = n - \dim(W^{\perp}) = n - (n - k) = k.
$$

Since very vector in W is orthogonal to subspace W^{\perp} then W is a subspace of $(W^{\perp})^{\perp}$ $((W^{\perp})^{\perp}$ is a subspace of \mathbb{R}^n by two applications of Property 1). Since W and $(W^{\perp})^{\perp}$ have the same dimension then by Exercise 2.1.38, W must be equal to $(W^{\perp})^{\perp}$.

Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:

rank (A) + nullity (A) = n.

Since dim(W) = rank(A) and since W^{\perp} is the nullspace of A, then $\dim(W^{\perp}) = n - \dim(W)$.

For Property 3, we have by Property 1 that W^{\perp} is a subspace of $\mathbb{R}^{n}.$ By Property 2 we have

$$
\dim(W^{\perp})^{\perp} = n - \dim(W^{\perp}) = n - (n - k) = k.
$$

Since very vector in W is orthogonal to subspace W^{\perp} then W is a subspace of $(W^{\perp})^{\perp}$ $((W^{\perp})^{\perp}$ is a subspace of \mathbb{R}^n by two applications of Property 1). Since W and $(W^{\perp})^{\perp}$ have the same dimension then by Exercise 2.1.38, W must be equal to $(W^\perp)^\perp$.

Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let ${\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n}$ be a basis for $n - k$ dimensional (by Property 2) subspace W^{\perp} . We now show that

$$
\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\} \cup \{\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n\} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}
$$

is a basis for \mathbb{R}^n . Consider the linear combination

$$
r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k + s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n = \vec{0}. (*)
$$

This equation implies

$$
r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k = -s_{k+1}\vec{v}_{k+1} - s_{k+2}\vec{v}_{k+2} - \cdots - s_n\vec{v}_n.
$$

Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let ${\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n}$ be a basis for $n - k$ dimensional (by Property 2) subspace W^{\perp} . We now show that

$$
\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\} \cup \{\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n\} = \{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}
$$

is a basis for \mathbb{R}^n . Consider the linear combination

$$
r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k + s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n = \vec{0}. (*)
$$

This equation implies

$$
r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k = -s_{k+1}\vec{v}_{k+1} - s_{k+2}\vec{v}_{k+2} - \cdots - s_n\vec{v}_n.
$$

Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this equation is in W and the vector on the right hand side is in W^{\perp} . But both sides of the equation represent the same vector (d'uh, it's an equation!) so both sides of the equation represent a vector in both W and W^{\perp} . So this vector must be orthogonal to itself. The only vector **orthogonal to itself is** $\vec{0}$ **(since** $0 = \vec{v} \cdot \vec{v} = \|\vec{v}\|^2$ **implies** $\vec{v} = \vec{0})$ **.** Since the vectors \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_k are linearly independent and $r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k = \vec{0}$ then we must have $r_1 = r_2 = \cdots r_k = 0$. Similarly, $\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n$ are linearly independent and $s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n = \vec{0}$ implies $s_{k+1} = s_{k+2} = \cdots = s_n = 0$.

Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this equation is in W and the vector on the right hand side is in W^{\perp} . But both sides of the equation represent the same vector (d'uh, it's an equation!) so both sides of the equation represent a vector in both W and W^{\perp} . So this vector must be orthogonal to itself. The only vector orthogonal to itself is $\vec{0}$ (since $0=\vec{v}\cdot\vec{v}=\|\vec{v}\|^2$ implies $\vec{v}=\vec{0})$. Since the vectors \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_k are linearly independent and $r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k = \vec{0}$ then we must have $r_1 = r_2 = \cdots r_k = 0$. Similarly, $\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n$ are linearly independent and $s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n = \vec{0}$ implies $s_{k+1} = s_{k+2} = \cdots = s_n = 0$. From equation (*), we see that $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$ is a linearly independent set. Since the set contains n linearly independent vectors in \mathbb{R}^n then $\dim(sp(\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n)) = n$ and so by Exercise 2.1.38, ${\sf sp}(\vec v_1,\vec v_2,\dots,\vec v_n) = \mathbb{R}^n$ and so $\{\vec v_1,\vec v_2,\dots,\vec v_n\}$ is a basis for $\mathbb{R}^n.$

Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this equation is in W and the vector on the right hand side is in W^{\perp} . But both sides of the equation represent the same vector (d'uh, it's an equation!) so both sides of the equation represent a vector in both W and W^{\perp} . So this vector must be orthogonal to itself. The only vector orthogonal to itself is $\vec{0}$ (since $0=\vec{v}\cdot\vec{v}=\|\vec{v}\|^2$ implies $\vec{v}=\vec{0})$. Since the vectors \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_k are linearly independent and $r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k = \vec{0}$ then we must have $r_1 = r_2 = \cdots r_k = 0$. Similarly, $\vec{v}_{k+1}, \vec{v}_{k+2}, \ldots, \vec{v}_n$ are linearly independent and $s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n = \vec{0}$ implies $s_{k+1} = s_{k+2} = \cdots = s_n = 0$. From equation (*), we see that $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$ is a linearly independent set. Since the set contains n linearly independent vectors in \mathbb{R}^n then $\dim(sp(\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n)) = n$ and so by Exercise 2.1.38, ${\sf sp}(\vec{\mathsf{v}}_1,\vec{\mathsf{v}}_2,\dots,\vec{\mathsf{v}}_n) = \bar{\mathbb{R}}^n$ and so $\{\vec{\mathsf{v}}_1,\vec{\mathsf{v}}_2,\dots,\vec{\mathsf{v}}_n\}$ is a basis for $\mathbb{R}^n.$

Theorem 6.1 (continued 4)

<code>Proof</code> (continued). So each $\vec{b} \in \mathbb{R}^n$ can be written as $\vec{b} = (r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k) + (s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n)$, where $r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k \in W$ and $s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n \in W^{\perp}$, for unique $r_1, r_2, \ldots, r_k, s_{k+1}, s_{k+2}, \ldots, s_n$ (by Definition 1.17, "Basis for a ${\sf Subspace}$ "). So any $\vec{b} \in \mathbb{R}^n$ can be expressed in the form $\vec{b} = \vec{b}_W + \vec{b}_{W^\perp}$ where $\vec{b}_W \in W$ and $\vec{b}_{W^\perp} \in W^\perp$. Since each vector in \mathbb{R}^n is a unique linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$, then the choice of \vec{b}_W and $\vec{b}_{W\perp}$ are unique.

Theorem 6.1 (continued 4)

<code>Proof</code> (continued). So each $\vec{b} \in \mathbb{R}^n$ can be written as $\vec{b} = (r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k) + (s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n)$, where $r_1\vec{v}_1 + r_2\vec{v}_2 + \cdots + r_k\vec{v}_k \in W$ and $s_{k+1}\vec{v}_{k+1} + s_{k+2}\vec{v}_{k+2} + \cdots + s_n\vec{v}_n \in W^{\perp}$. for unique $r_1, r_2, \ldots, r_k, s_{k+1}, s_{k+2}, \ldots, s_n$ (by Definition 1.17, "Basis for a Subspace''). So any $\vec{b} \in \mathbb{R}^n$ can be expressed in the form $\vec{b} = \vec{b}_W + \vec{b}_{W^\perp}$ where $\vec{b}_W \in W$ and $\vec{b}_{W^\perp} \in W^\perp.$ Since each vector in \mathbb{R}^n is a unique linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$, then the choice of b_W and $b_{W^{\perp}}$ are unique.

Page 336 number 20(b). Find the projection of $\vec{b} = [-2, 1, 3, -5]$ on to the subspace $W = sp(\hat{e}_1, \hat{e}_4)$ in \mathbb{R}^4 .

Solution. We are given a basis for $W = sp(\hat{e}_1, \hat{e}_4)$, namely $\{\hat{e}_1, \hat{e}_4\}$. Certainly a basis for W^{\perp} is given by $\{\hat{e}_2, \hat{e}_3\}.$

Page 336 number 20(b). Find the projection of $\vec{b} = [-2, 1, 3, -5]$ on to the subspace $W = sp(\hat{e}_1, \hat{e}_4)$ in \mathbb{R}^4 .

Solution. We are given a basis for $W = sp(\hat{e}_1, \hat{e}_4)$, namely $\{\hat{e}_1, \hat{e}_4\}$. Certainly a basis for W^{\perp} is given by $\{\hat{e}_2, \hat{e}_3\}$. So we take the ordered basis $\{\hat{e}_1,\hat{e}_4,\hat{e}_2,\hat{e}_3\}$ of \mathbb{R}^4 and we have $\vec{b}=-2\hat{e}_1-5\hat{e}_4+1\hat{e}_2+3\hat{e}_3$ (and so the coordinate vector \vec{r} of \vec{b} relative to the ordered basis $\{\hat{e}_1, \hat{e}_4, \hat{e}_2, \hat{e}_3\}$ is $\vec{r} = [-2, -5, 1, 3]$.

Page 336 number 20(b). Find the projection of $\vec{b} = [-2, 1, 3, -5]$ on to the subspace $W = sp(\hat{e}_1, \hat{e}_4)$ in \mathbb{R}^4 .

Solution. We are given a basis for $W = sp(\hat{e}_1, \hat{e}_4)$, namely $\{\hat{e}_1, \hat{e}_4\}$. Certainly a basis for W^{\perp} is given by $\{\hat{e}_2, \hat{e}_3\}$. So we take the ordered basis $\{\hat{e}_1,\hat{e}_4,\hat{e}_2,\hat{e}_3\}$ of \mathbb{R}^4 and we have $\vec{b}=-2\hat{e}_1-5\hat{e}_4+1\hat{e}_2+3\hat{e}_3$ (and so the coordinate vector \vec{r} of \vec{b} relative to the ordered basis $\{\hat{e}_1, \hat{e}_4, \hat{e}_2, \hat{e}_3\}$ is $\vec{r} = [-2, -5, 1, 3]$. Then by the Note 6.1.B, the projection of b on to W is

$$
\vec{b}_W = \text{proj}_W(\vec{b}) = r_1 \hat{e}_1 + r_2 \hat{e}_4 = -2[1, 0, 0, 0] - 5[0, 0, 0, 1] = \boxed{[-2, 0, 0, -5]}.
$$

 \Box

Page 336 number 20(b). Find the projection of $\vec{b} = [-2, 1, 3, -5]$ on to the subspace $W = sp(\hat{e}_1, \hat{e}_4)$ in \mathbb{R}^4 .

Solution. We are given a basis for $W = sp(\hat{e}_1, \hat{e}_4)$, namely $\{\hat{e}_1, \hat{e}_4\}$. Certainly a basis for W^{\perp} is given by $\{\hat{e}_2, \hat{e}_3\}$. So we take the ordered basis $\{\hat{e}_1,\hat{e}_4,\hat{e}_2,\hat{e}_3\}$ of \mathbb{R}^4 and we have $\vec{b}=-2\hat{e}_1-5\hat{e}_4+1\hat{e}_2+3\hat{e}_3$ (and so the coordinate vector \vec{r} of \vec{b} relative to the ordered basis $\{\hat{e}_1, \hat{e}_4, \hat{e}_2, \hat{e}_3\}$ is $\vec{r} = [-2, -5, 1, 3]$. Then by the Note 6.1.B, the projection of \vec{b} on to W is

$$
\vec{b}_W = \text{proj}_W(\vec{b}) = r_1 \hat{e}_1 + r_2 \hat{e}_4 = -2[1, 0, 0, 0] - 5[0, 0, 0, 1] = \boxed{[-2, 0, 0, -5]}.
$$

 \Box

Page 335 Example 6

Page 335 Example 6. Consider the inner product space $P_{[0,1]}$ of all polynomial functions defined on the interval [0, 1] with inner product

$$
\langle p(x), q(x) \rangle = \int_0^1 p(x) q(x) \, dx.
$$

Find the projection of $f(x) = x$ on sp(1) and then find the projection of x on sp $(1)^{\perp}$.

Solution. We follow the definition of the projection $\vec{\rho}$ of \vec{b} on sp(\vec{a}) in \mathbb{R}^n , $\vec{p} = \text{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$ $\frac{D \cdot a}{\vec{a} \cdot \vec{a}}$ \vec{a} , but instead of dot products in \mathbb{R}^n we use the inner product in $\mathcal{P}_{[0,1]}$.

Page 335 Example 6

Page 335 Example 6. Consider the inner product space $P_{[0,1]}$ of all polynomial functions defined on the interval [0, 1] with inner product

$$
\langle p(x), q(x) \rangle = \int_0^1 p(x) q(x) \, dx.
$$

Find the projection of $f(x) = x$ on sp(1) and then find the projection of x on sp $(1)^{\perp}$.

Solution. We follow the definition of the projection $\vec{\rho}$ of \vec{b} on sp(\vec{a}) in \mathbb{R}^n , $\vec{p} = \text{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$ $\frac{D \cdot a}{\vec{a} \cdot \vec{a}}$ \vec{a} , but instead of dot products in \mathbb{R}^n we use the inner **product in** $\mathcal{P}_{[0,1]}$ **.** So the desired projection, with $\vec{b} = x$ and $\vec{a} = 1$, is

$$
\frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} 1 = \frac{\int_0^1 x \cdot 1 \, dx}{\int_0^1 1 \cdot 1 \, dx} 1 = \frac{(1/2)x^2\big|_0^1}{x\big|_0^1} 1 = \boxed{\frac{1}{2}}.
$$

Page 335 Example 6

Page 335 Example 6. Consider the inner product space $P_{[0,1]}$ of all polynomial functions defined on the interval [0, 1] with inner product

$$
\langle p(x), q(x) \rangle = \int_0^1 p(x) q(x) \, dx.
$$

Find the projection of $f(x) = x$ on sp(1) and then find the projection of x on sp $(1)^{\perp}$.

Solution. We follow the definition of the projection $\vec{\rho}$ of \vec{b} on sp(\vec{a}) in \mathbb{R}^n , $\vec{p} = \text{proj}_{\vec{a}}(\vec{b}) = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}$ $\frac{D \cdot a}{\vec{a} \cdot \vec{a}}$ \vec{a} , but instead of dot products in \mathbb{R}^n we use the inner product in $\mathcal{P}_{[0,1]}$. So the desired projection, with $\vec{b} = x$ and $\vec{a} = 1$, is

$$
\frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} 1 = \frac{\int_0^1 x \cdot 1 \, dx}{\int_0^1 1 \cdot 1 \, dx} 1 = \frac{(1/2)x^2\big|_0^1}{x\big|_0^1} 1 = \boxed{\frac{1}{2}}.
$$

Page 335 Example 6 (continued)

Page 335 Example 6. Consider the inner product space $P_{[0,1]}$ of all polynomial functions defined on the interval [0, 1] with inner product

$$
\langle p(x), q(x) \rangle = \int_0^1 p(x) q(x) \, dx.
$$

Find the projection of $f(x) = x$ on sp(1) and then find the projection of x on sp $(1)^{\perp}$.

Solution (continued). Notice that with $W = sp(1)$ then we have from Definition 6.2 that $\vec{b} = \vec{b}_W + \vec{b}_{W^{\perp}}$ and we can find $\vec{b}_{W^{\perp}}$ (where W^{\perp} = sp(1)^{\perp}) as $\vec{b}_{W\perp} = \vec{b} - \vec{b}_W = x - 1/2$. \Box

Page 337 number 26. Let A be an $m \times n$ matrix.

- (a) Prove that the set W of row vectors \vec{x} in \mathbb{R}^m such that $\vec{x}A = \vec{0}$ is a subspace of \mathbb{R}^m .
- (b) Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof. (a) We use definition 1.16, "Subspace of \mathbb{R}^n ." Let $W = \{\vec{x} \in \mathbb{R}^m \mid \vec{x}A = \vec{0}\}$. We must check W for closure under vector addition and scalar multiplication. Let $\vec{x}_1, \vec{x}_2 \in W$ and let r be a scalar.

Page 337 number 26. Let A be an $m \times n$ matrix.

- (a) Prove that the set W of row vectors \vec{x} in \mathbb{R}^m such that $\vec{x}A = \vec{0}$ is a subspace of \mathbb{R}^m .
- (b) Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof. (a) We use definition 1.16, "Subspace of \mathbb{R}^n ." Let $W = \{\vec{x} \in \mathbb{R}^m \mid \vec{x}A = \vec{0}\}$. We must check W for closure under vector addition and scalar multiplication. Let $\vec{x}_1, \vec{x}_2 \in W$ and let r be a scalar. Then:

$$
(\vec{x}_1 + \vec{x}_2)A = \vec{x}_1A + \vec{x}_2A
$$
 by Theorem 1.3.A(10),

"Distribution Laws of Matrix Multiplication"

(here we treat \vec{x} as a matrix)

 $= \vec{0} + \vec{0}$ since $\vec{x}_1, \vec{v}_2 \in W$

 $=$ $\overline{0}$

Page 337 number 26. Let A be an $m \times n$ matrix.

- (a) Prove that the set W of row vectors \vec{x} in \mathbb{R}^m such that $\vec{x}A = \vec{0}$ is a subspace of \mathbb{R}^m .
- (b) Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof. (a) We use definition 1.16, "Subspace of \mathbb{R}^n ." Let $W = \{\vec{x} \in \mathbb{R}^m \mid \vec{x}A = \vec{0}\}$. We must check W for closure under vector addition and scalar multiplication. Let $\vec{x}_1, \vec{x}_2 \in W$ and let r be a scalar. Then:

$$
(\vec{x}_1 + \vec{x}_2)A = \vec{x}_1A + \vec{x}_2A \text{ by Theorem 1.3.A(10),}
$$

\n"Distribution Laws of Matrix Multiplication"
\n(here we treat \vec{x} as a matrix)
\n
$$
= \vec{0} + \vec{0} \text{ since } \vec{x}_1, \vec{v}_2 \in W
$$

\n
$$
= \vec{0},
$$

Proof (continued). . . . and

$$
(r\vec{x}_1)A = r(\vec{x}_1A) \text{ by Theorem 1.3.A(7), "Scalars Pull Through"}
$$

= $r\vec{0} \text{ since } \vec{x}_1 \in W$
= $\vec{0}$.

So both $\vec{x}_1 + \vec{x}_2 \in W$ and $r\vec{x}_1 \in W$. That is, W is closed under vector addition and scalar multiplication. By Definition 1.16, W is a subspace of \mathbb{R}^m .

Proof (continued). . . . and

$$
(r\vec{x}_1)A = r(\vec{x}_1A) \text{ by Theorem 1.3.A(7), "Scalars Pull Through"}
$$

= $r\vec{0} \text{ since } \vec{x}_1 \in W$
= $\vec{0}$.

So both $\vec{x}_1 + \vec{x}_2 \in W$ and $r\vec{x}_1 \in W$. That is, W is closed under vector addition and scalar multiplication. By Definition 1.16, W is a subspace of \mathbb{R}^m .

(b) Let A be an $m \times n$ matrix. Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof (continued). . . . and

$$
(r\vec{x}_1)A = r(\vec{x}_1A) \text{ by Theorem 1.3.A(7), "Scalars Pull Through"}
$$

= $r\vec{0} \text{ since } \vec{x}_1 \in W$
= $\vec{0}$.

So both $\vec{x}_1 + \vec{x}_2 \in W$ and $r\vec{x}_1 \in W$. That is, W is closed under vector addition and scalar multiplication. By Definition 1.16, W is a subspace of \mathbb{R}^m .

(b) Let A be an $m \times n$ matrix. Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof. Recall that by Definition 1.8, "Matrix Product," the (i, j) entry of the matrix product AB is the dot product of the *i*th row of A with the *i*th column of B.

Proof (continued). . . . and

$$
(r\vec{x}_1)A = r(\vec{x}_1A) \text{ by Theorem 1.3.A(7), "Scalars Pull Through"}
$$

= $r\vec{0} \text{ since } \vec{x}_1 \in W$
= $\vec{0}$.

So both $\vec{x}_1 + \vec{x}_2 \in W$ and $r\vec{x}_1 \in W$. That is, W is closed under vector addition and scalar multiplication. By Definition 1.16, W is a subspace of \mathbb{R}^m .

(b) Let A be an $m \times n$ matrix. Prove that the subspace W in part (a) and the column space of A are orthogonal complements in \mathbb{R}^m .

Proof. Recall that by Definition 1.8, "Matrix Product," the (i, j) entry of the matrix product AB is the dot product of the *i*th row of A with the *i*th column of B.

Proof (continued). So for $\vec{x} \in W$ (here we treat row vector $\vec{x} \in \mathbb{R}^m$ as a $1\times m$ matrix) we have that $\vec{x}A$ is a $1\times n$ matrix (or a row vector in $\mathbb{R}^n)$ and for $\vec{x} \in W$ we have $\vec{x} A = \vec{0} \in \mathbb{R}^n.$ So the j th entry of $\vec{x} A = \vec{0}$ is the dot product of \vec{x} with the *j*th column of A and, since $\vec{x}A = \vec{0}$, this dot product must be 0 for each $j = 1, 2, ..., n$. So by Definition 1.7, "Perpendicular or Orthogonal Vectors," each $\vec{x} \in W$ is orthogonal to each column of A. Also, by definition, W contain <u>all</u> vectors \vec{x} in \mathbb{R}^m which satisfy $\vec{x} A = \vec{0}$ (i.e., all vectors \vec{x} in \mathbb{R}^m which are perpendicular to all columns of A). The column space of A is the span of the columns of A and since $\vec{x} \in W$ is orthogonal to each column of A then \vec{x} is orthogonal to each vector which is in the span of the columns of A.

Proof (continued). So for $\vec{x} \in W$ (here we treat row vector $\vec{x} \in \mathbb{R}^m$ as a $1\times m$ matrix) we have that $\vec{x}A$ is a $1\times n$ matrix (or a row vector in $\mathbb{R}^n)$ and for $\vec{x} \in W$ we have $\vec{x} A = \vec{0} \in \mathbb{R}^n.$ So the j th entry of $\vec{x} A = \vec{0}$ is the dot product of \vec{x} with the *j*th column of A and, since $\vec{x}A = \vec{0}$, this dot product must be 0 for each $j = 1, 2, \ldots, n$. So by Definition 1.7, "Perpendicular or Orthogonal Vectors," each $\vec{x} \in W$ is orthogonal to each column of A. Also, by definition, W contain <u>all</u> vectors \vec{x} in \mathbb{R}^m which satisfy $\vec{\mathsf{x}}A=\vec{0}$ (i.e., all vectors $\vec{\mathsf{x}}$ in \mathbb{R}^m which are perpendicular to all columns of A). The column space of A is the span of the columns of A and since $\vec{x} \in W$ is orthogonal to each column of A then \vec{x} is orthogonal to each vector which is in the span of the columns of A. Conversely, any vector \vec{x} in the orthogonal complement of the column space of A must be orthogonal to all linear combinations of the columns of A ; in particular such \vec{x} must by orthogonal to each column of A and hence such \vec{x} is in W. So the orthogonal complement of the column space of A is W.

Proof (continued). So for $\vec{x} \in W$ (here we treat row vector $\vec{x} \in \mathbb{R}^m$ as a $1\times m$ matrix) we have that $\vec{x}A$ is a $1\times n$ matrix (or a row vector in $\mathbb{R}^n)$ and for $\vec{x} \in W$ we have $\vec{x} A = \vec{0} \in \mathbb{R}^n.$ So the j th entry of $\vec{x} A = \vec{0}$ is the dot product of \vec{x} with the *j*th column of A and, since $\vec{x}A = \vec{0}$, this dot product must be 0 for each $j = 1, 2, \ldots, n$. So by Definition 1.7, "Perpendicular or Orthogonal Vectors," each $\vec{x} \in W$ is orthogonal to each column of A. Also, by definition, W contain <u>all</u> vectors \vec{x} in \mathbb{R}^m which satisfy $\vec{\mathsf{x}}A=\vec{0}$ (i.e., all vectors $\vec{\mathsf{x}}$ in \mathbb{R}^m which are perpendicular to all columns of A). The column space of A is the span of the columns of A and since $\vec{x} \in W$ is orthogonal to each column of A then \vec{x} is orthogonal to each vector which is in the span of the columns of A. Conversely, any vector \vec{x} in the orthogonal complement of the column space of A must be orthogonal to all linear combinations of the columns of A ; in particular such \vec{x} must by orthogonal to each column of A and hence such \vec{x} is in W. So the orthogonal complement of the column space of A is W .

Page 337 number 28. Let W be a subspace of \mathbb{R}^n with orthogonal complement W^{\perp} . Writing $\vec{a} = \vec{a}_W + \vec{a}_{W^{\perp}}$, as in Theorem 6.1, prove that $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^\perp}\|^2}.$

Solution. By Note 1.2.A, $\|\vec{a}\|^2 = \vec{a} \cdot \vec{a}$, so we have

Page 337 number 28. Let W be a subspace of \mathbb{R}^n with orthogonal complement W^{\perp} . Writing $\vec{a} = \vec{a}_W + \vec{a}_{W^{\perp}}$, as in Theorem 6.1, prove that $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^\perp}\|^2}.$

Solution. By Note 1.2.A, $\|\vec{a}\|^2 = \vec{a}\cdot\vec{a}$, so we have

$$
\|\vec{a}\|^2 = (\vec{a}_W + \vec{a}_{W^\perp}) \cdot (\vec{a}_W + \vec{a}_{W^\perp})
$$

\n
$$
= \vec{a}_W \cdot \vec{a}_W + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \vec{a}_{W^\perp} \cdot \vec{a}_{W^\perp}
$$

\nby Theorem 1.3, "Properties of Dot Products"
\n
$$
= \|\vec{a}_W\|^2 + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \|\vec{a}_{W^\perp}\|^2
$$
 by Note 1.2.A
\n
$$
= \|\vec{a}_W\|^2 + 0 + 0 + \|\vec{a}_{W^\perp}\|^2
$$
 since \vec{a}_W and \vec{a}_{W^\perp} are orthogonal.

Page 337 number 28. Let W be a subspace of \mathbb{R}^n with orthogonal complement W^{\perp} . Writing $\vec{a} = \vec{a}_W + \vec{a}_{W^{\perp}}$, as in Theorem 6.1, prove that $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^\perp}\|^2}.$

Solution. By Note 1.2.A, $\|\vec{a}\|^2 = \vec{a}\cdot\vec{a}$, so we have

$$
\|\vec{a}\|^2 = (\vec{a}_W + \vec{a}_{W^\perp}) \cdot (\vec{a}_W + \vec{a}_{W^\perp})
$$

\n
$$
= \vec{a}_W \cdot \vec{a}_W + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \vec{a}_{W^\perp} \cdot \vec{a}_{W^\perp}
$$

\nby Theorem 1.3, "Properties of Dot Products"
\n
$$
= \|\vec{a}_W\|^2 + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \|\vec{a}_{W^\perp}\|^2
$$
 by Note 1.2.A
\n
$$
= \|\vec{a}_W\|^2 + 0 + 0 + \|\vec{a}_{W^\perp}\|^2
$$
 since \vec{a}_W and \vec{a}_{W^\perp} are orthogonal.

Not taking square roots (and observing that $\|\vec{a}\|$ is nonnegative) gives $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^{\perp}}\|^2}.$

Page 337 number 28. Let W be a subspace of \mathbb{R}^n with orthogonal complement W^{\perp} . Writing $\vec{a} = \vec{a}_W + \vec{a}_{W^{\perp}}$, as in Theorem 6.1, prove that $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^\perp}\|^2}.$

Solution. By Note 1.2.A, $\|\vec{a}\|^2 = \vec{a}\cdot\vec{a}$, so we have

$$
\|\vec{a}\|^2 = (\vec{a}_W + \vec{a}_{W^\perp}) \cdot (\vec{a}_W + \vec{a}_{W^\perp})
$$

\n
$$
= \vec{a}_W \cdot \vec{a}_W + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \vec{a}_{W^\perp} \cdot \vec{a}_{W^\perp}
$$

\nby Theorem 1.3, "Properties of Dot Products"
\n
$$
= \|\vec{a}_W\|^2 + \vec{a}_W \cdot \vec{a}_{W^\perp} + \vec{a}_{W^\perp} \cdot \vec{a}_W + \|\vec{a}_{W^\perp}\|^2
$$
 by Note 1.2.A
\n
$$
= \|\vec{a}_W\|^2 + 0 + 0 + \|\vec{a}_{W^\perp}\|^2
$$
 since \vec{a}_W and \vec{a}_{W^\perp} are orthogonal.

Not taking square roots (and observing that $\|\vec{a}\|$ is nonnegative) gives $\|\vec{a}\| = \sqrt{\|\vec{a}_W\|^2 + \|\vec{a}_{W^\perp}\|^2}.$