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Page 336 number 4

Page 336 number 4. Find the projection of [1,2,1] on the line with
parametric equation x = 3t, y = t, z = 2t in R3.
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Page 336 number 4

Page 336 number 4

Page 336 number 4. Find the projection of [1,2,1] on the line with
parametric equation x = 3t, y = t, z = 2t in R3.

Solution. A line is a translation of a one-dimensional subspace and is of
the form ¥ = td + 3 where d is the direction vector and 3 is a translation
vector (see Section 2.5, “Lines, Planes, and Other Flats”). Here,
d=1[3,1,2] and 3= [0,0,0] so, in fact, the line is not translated and so is
a subspace spanned by d = [3,1,2].
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Page 336 number 4

Page 336 number 4. Find the projection of [1,2,1] on the line with
parametric equation x = 3t, y = t, z = 2t in R3.

Solution. A line is a translation of a one-dimensional subspace and is of
the form X = td + 3 where d is the direction vector and 3 is a translation
vector (see Section 2.5, “Lines, Planes, and Other Flats”). Here,
d=1[3,1,2] and 3= [0,0,0] so, in fact, the line is not translated and so is
a subspace spanned by 3 [3,1,2]. So we apply the previous definition to
get the projection p of b= [1,2,1] on sp(d)

C[1,2,1]-[3,1,2]
- [3,1,2]-[3,1,2]

_ (1)(3);4(32211;(1)(2) [3,1,2] = 17—4[3,1,2] =|[3/2, 1/2, 1].
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Page 336 number 10

Page 336 number 10. Find the orthogonal complement of the plane
2x +y+3z=0inR3.
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Page 336 number 10

Page 336 number 10. Find the orthogonal complement of the plane
2x+y+3z=0in R3.

Solution. A plane is a translation of a two-dimensional space of the form
X = t15'1 + t2£/’2 4 3 where 31 and c72 form a basis for the two-dimensional
space and 3 is a translation vector (see Section 2.5, “Lines, Planes, and

Other Flats”). Here, we can take 3 = 0 so that the plane is not translated
and is in fact a subspace of R3. So we just need a basis for the subspace.
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Page 336 number 10

Page 336 number 10. Find the orthogonal complement of the plane
2x+y+3z=0in R3.

Solution. A plane is a translation of a two-dimensional space of the form
X = t15'1 + t2£/’2 4 3 where 31 and c72 form a basis for the two-dimensional
space and 3 is a translation vector (see Section 2.5, “Lines, Planes, and
Other Flats”). Here, we can take 3 = 0 so that the plane is not translated
and is in fact a subspace of R3. So we just need a basis for the subspace.
We pick two linearly independent vectors in the subspace, say

di = [1,—2,0] and db = [0, —3, 1] (though there are infinitely many such
choices). Then using the technique described above, we take

A= { (1) :g 2 ] and find the nullspace of A by considering the system
of equations AX = 0 (see Note 6.1.A):
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Page 336 number 10 (continued)

Solution (continued).

ao= [ 200 RoRCER T 0 2730
“lo -3 10 0 -3 1]0

RezR/C3 1 0 —2/3]0
[o 1 -1/3 }
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Page 336 number 10 (continued)

Solution (continued).

ao= [ 200 RoRCER T 0 2730
“lo -3 10 0 -3 1]0

Re—Re/(=3) [ 10 —2/30}

01 -1/3
So we have
X1 — (2/3)X3 = 0 X1 = (2/3)X3
X2 - (1/3)X3 =0 or X2 = (1/3)X3
X3 = X3

or with x3 = 3t as a free variable, x; = 2t, xo = t, and x3 = 3t.
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Page 336 number 10 (continued)

Solution (continued).

ao= [ 200 RoRCER T 0 2730
“lo -3 10 0 -3 1]0

Re—Re/(=3) [ 10 —2/30}

01 -1/3
So we have
X1 — (2/3)X3 = 0 X1 = (2/3)X3
X2 - (1/3)X3 =0 or X2 = (1/3)X3
X3 = X3

or with x3 = 3t as a free variable, x; = 2t, x» = t, and x3 = 3t. So W= is
the nullspace of A: | W+ =sp([2,1,3]). |0
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Theorem 6.1

Theorem 6.1. Properties of W' .
The orthogonal complement W of a subspace W of R” has the following

properties:

W is a subspace of R".

dim(W+) = n — dim(W).

(WH)t =w.

I_E)achqvector_'ls € R” can be expressed uniquely in the form
b= by + by for by € W and by € W,

=
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Theorem 6.1

Theorem 6.1. Properties of W' .

The orthogonal complement W of a subspace W of R” has the following
properties:

W is a subspace of R".

dim(W+) = n — dim(W).

(WH)t =w.

I_E)achqvector_'ls e R” can be express_gd uniquely in the form
b= by + by for by € W and by € W,

=

Proof. Let dim(W) = k, and let {vi, v5,..., vk} be a basis for W. Let A
be the k x n matrix having v; as its ith row vector for i =1,2,..., k.
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Theorem 6.1

Theorem 6.1. Properties of W' .

The orthogonal complement W of a subspace W of R” has the following
properties:

W is a subspace of R".

dim(W+) = n — dim(W).

(WH)t =w.

I_E)achqvector_'ls e R” can be express_)ed uniquely in the form
b= by + by for by € W and by € W,

=

Proof. Let dim(W) = k, and let {vi, v5,..., vk} be a basis for W. Let A
be the k x n matrix having v; as its ith row vector for i =1,2,..., k.

Property (1) follows from the fact that W is the nullspace of matrix A,
by Note 6.1.A, and therefore is a subspace of R".
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Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:

rank(A) + nullity(A) = n.

Since dim(W) = rank(A) and since W is the nullspace of A, then
dim(W+) = n — dim(W).
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Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:
rank(A) + nullity(A) = n.

Since dim(W) = rank(A) and since W is the nullspace of A, then
dim(W+) = n — dim(W).

For Property 3, we have by Property 1 that W is a subspace of R". By
Property 2 we have

dim(WH)t =n—dim(Wt)=n—(n—k) = k.
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Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:
rank(A) + nullity(A) = n.

Since dim(W) = rank(A) and since W is the nullspace of A, then
dim(W+) = n — dim(W).

For Property 3, we have by Property 1 that W is a subspace of R". By
Property 2 we have

dim(WH)t =n—dim(Wt)=n—(n—k) = k.

Since very vector in W is orthogonal to subspace W= then W is a
subspace of (W)L ((W1)L is a subspace of R" by two applications of
Property 1). Since W and (W) have the same dimension then by
Exercise 2.1.38, W must be equal to (W)L
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Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let {Vk11, Vk+2,...,Vn} be a basis
for n — k dimensional (by Property 2) subspace W-. We now show that

{‘717 ‘727 ceey ‘7/(} U {‘7/(+17 Vk+2a ceey Vn} — {‘717 ‘727 ceey Vn}

is a basis for R".
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Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let {Vk11, Vk+2,...,Vn} be a basis
for n — k dimensional (by Property 2) subspace W-. We now show that

{\71, Vo,..., ‘7k} U {\7k+1, Vk+2, ey \7,,} = {\71, Vo,..., \7,,}
is a basis for R”. Consider the linear combination
ML+ Vo + -+ MeVi + Ske1Vikr1 + SkoVkeo + -+ SpVp = 0. (*)
This equation implies

r1\71 + r2\72 4+ -+ rk\7k = —Sk+1Vk+1 — 5k+2‘7k+2 — e = s,,\7,,.
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Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this
equation is in W and the vector on the right hand side is in W-'. But
both sides of the equation represent the same vector (d'uh, it's an
equation!) so both sides of the equation represent a vector in both W and
W, So this vector must be orthogonal to itself. The only vector
orthogonal to itself is 0 (since 0 = v - v = ||¥|? implies v = 0).
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Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this
equation is in W and the vector on the right hand side is in W-'. But
both sides of the equation represent the same vector (d'uh, it's an
equation!) so both sides of the equation represent a vector in both W and
W, So this vector must be orthogonal to itself. The only vector
orthogonal to itself is 0 (since 0 = v - v = ||¥||? implies ¥ = 0). Since the

vectors Vi, ib, ..., Vi are linearly independent and

V14 ravo + -+ revk = 0 then we must have n =, = - r, = 0.
Similarly, Vki1, V12, ..., V, are linearly independent and

Ska11Vki1 + SkaoVkio 4+ -+ + SpVp = 0 implies Sgy1 = Skyp =+ =5, = 0.
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Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this
equation is in W and the vector on the right hand side is in W-'. But
both sides of the equation represent the same vector (d'uh, it's an
equation!) so both sides of the equation represent a vector in both W and
W, So this vector must be orthogonal to itself. The only vector
orthogonal to itself is 0 (since 0 = v - v = ||¥||? implies ¥ = 0). Since the

vectors Vi, ib, ..., Vi are linearly independent and

rvi+ rvs+ -+ revie = 0 then we must have r; = rp = -+ r, = 0.
Similarly, Vki1, V12, ..., V, are linearly independent and

Skt1Vk+1 + Sk4+2Vk+2 + -+ -+ SpVp = 0 implies Sgy1 = Skyp =+ =5, = 0.
From equation (x), we see that {vq, Vh,...,V,} is a linearly independent

set. Since the set contains n linearly independent vectors in R" then
dim(sp(v1, V2, ..., Vn)) = n and so by Exercise 2.1.38,
sp(Vi, Va,...,V,) = R" and so {Vq, Va,...,V,} is a basis for R".
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Theorem 6.1 (continued 4)

Proof (continued). So each b € R” can be written as

b= (r1\71 + v+ + rka) + (5k+1\7k+1 + SkioVkyo+ o+ SnVn), where
nvi+nva 4+ nvk € Wand sgi1Viy1 + SkroVkto + -+ SpVp € w+,
for unique r, r, ..., rk, Sk+1, Sk+2; - - - » Sn (by Definition 1.17, “Basis for a
Subspace™).
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Theorem 6.1 (continued 4)

Proof (continued). So each b € R” can be written as

b= (r1\71 + v+ + rka) + (5k+1\7k+1 + SkioVkyo+ o+ SnVn), where
nvi+nva 4+ nvk € Wand sgi1Viy1 + SkroVkto + -+ SpVp € w+,
for unique ri, r, .. s Ty Skt15 Sk+25 - - - » Sn (by Definition 1.17, “Basis for a
Subspace ). So any b € R" can be expressed in the form b = by + wa_
where bW € W and bwL € W, Since each vector in ]R{” is a unlque
linear combination of Vi, b, ..., V,, then the choice of bW and bwj_ are
unique. []

Linear Algebra April 15,2020 10 / 17



Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of b = [—2,1,3,—5] on to
the subspace W = sp(&1,&;) in R*.
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Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of b = [—2,1,3,—5] on to

the subspace W = sp(&1,&;) in R*.

Solution. We are given a basis for W = sp(&;, &), namely {&;, & }.
Certainly a basis for W is given by {&, &}.
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Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of b = [—2,1,3,—5] on to
the subspace W = sp(&1,&;) in R*.

Solution. We are given a basis for W = sp(&;, &), namely {&;, & }.
Certainly a basis for W+ is given by {&,&}. So we take the ordered basis
{&1,84,&, 83} of R* and we have b= —28& —5& +1& + 383 (and so the
coordinate vector 7 of b relative to the ordered basis {81,84,8,83} is
F=[-2-5,1,3]).
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Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of b = [—2,1,3,—5] on to
the subspace W = sp(&1,&;) in R*.

Solution. We are given a basis for W = sp(&;, &), namely {&;, & }.
Certainly a basis for W is given by {&,&}. So we take the ordered basis
{&1,84,&, 83} of R* and we have b= —28& —5& +1& + 383 (and so the
coordinate vector 7 of b relative to the ordered basis {81,84,8&,83} is

7 =[-2,-5,1,3]). Then by the Note 6.1.B, the projection of bonto W is

bw = projyy (b) = né; + ré = —2[1,0,0,0] — 5[0,0,0,1] = | [-2,0,0,-5].

O
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Page 335 Example 6

Page 335 Example 6

Page 335 Example 6. Consider the inner product space P 1) of all
polynomial functions defined on the interval [0, 1] with inner product

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.
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Page 335 Example 6

Page 335 Example 6. Consider the inner product space P 1) of all
polynomial functions defined on the interval [0, 1] with inner product

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.

Solution. We follow the definition of the projection g of b on sp(3) in R",

4 7 a. : . .
p = projz(b) = =—3, but instead of dot products in R” we use the inner

o

L
L

product in Ppg 1j-
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Page 335 Example 6

Page 335 Example 6. Consider the inner product space P 1) of all
polynomial functions defined on the interval [0, 1] with inner product

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.

Solution. We follow the definition of the projection g of b on sp(3) in R",

—

_ .o b-a, , . .
p = projz(b) = =—3, but instead of dot products in R” we use the inner
3-3

product in P 1). So the desired projection, with b=xand 3=1, is

1
bol)y  Jox-lex, (/2% _[3]
(L) 1 1dx x[o
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Page 335 Example 6 (continued)

Page 335 Example 6. Consider the inner product space P 1) of all
polynomial functions defined on the interval [0, 1] with inner product

1
(p(x),q(x)) :/o p(x)q(x) dx.

Find the projection of f(x) = x on sp(1) and then find the projection of x
on sp(1)+.

Solution (continued). Notice that with W = sp(1) then we have from
Definition 6.2 that b = bW + wa_ and we can find by (where
Wt =sp(1)t)as by =b—by =x—1/2. O

Linear Algebra April 15,2020 13 / 17



Page 337 number 26

Page 337 number 26. Let A be an m X n matrix.
(a) Prove that the set W of row vectors X in R™ such that
XA =0 is a subspace of R™.
(b) Prove that the subspace W in part (a) and the column space
of A are orthogonal complements in R™.

14 /17

Linear Algebra April 15, 2020



Page 337 number 26

Page 337 number 26

Page 337 number 26. Let A be an m X n matrix.
(a) Prove that the set W of row vectors X in R™ such that
XA =0 is a subspace of R™.
(b) Prove that the subspace W in part (a) and the column space
of A are orthogonal complements in R™.

Proof. (a) We use definition 1.16, “Subspace of R"." Let
W ={X e R™|XA=0}. We must check W for closure under vector
addition and scalar multiplication. Let X;,X € W and let r be a scalar.

Linear Algebra April 15,2020 14 / 17



Page 337 number 26

Page 337 number 26. Let A be an m X n matrix.
(a) Prove that the set W of row vectors X in R™ such that
XA =0 is a subspace of R™.
(b) Prove that the subspace W in part (a) and the column space
of A are orthogonal complements in R™.

Proof. (a) We use definition 1.16, “Subspace of R"." Let
W ={X e R™|XA=0}. We must check W for closure under vector
addition and scalar multiplication. Let X;,X € W and let r be a scalar.
Then:
(X1 +%)A = X1A+ %A by Theorem 1.3.A(10),
“Distribution Laws of Matrix Multiplication”
(here we treat X as a matrix)
= 040 since X, v e W
= 0,
Linear Algebra April 15,2020 14 / 17



Page 337 number 26 (continued 1)

Proof (continued). ...and

(rx1)A = r(X4A) by Theorem 1.3.A(7), “Scalars Pull Through”
= rOsincex; € W

—

= 0.
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Page 337 number 26 (continued 1)

Proof (continued). ...and
(rx1)A = r(X4A) by Theorem 1.3.A(7), “Scalars Pull Through”
= rOsincex; € W
= 0.
So both X; + 3 € W and rX; € W. That is, W is closed under vector

addition and scalar multiplication. By Definition 1.16, W is a subspace of
R™. O

Linear Algebra April 15,2020 15/ 17



Page 337 number 26 (continued 1)

Proof (continued). ...and

(rx1)A = r(X4A) by Theorem 1.3.A(7), “Scalars Pull Through”
= rOsincex; € W

—

= 0.

So both X; + 3 € W and rX; € W. That is, W is closed under vector

addition and scalar multiplication. By Definition 1.16, W is a subspace of
R™. O

(b) Let A be an m x n matrix. Prove that the subspace W in part (a) and
the column space of A are orthogonal complements in R™.
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Page 337 number 26 (continued 1)

Proof (continued). ...and

(rx1)A = r(X4A) by Theorem 1.3.A(7), “Scalars Pull Through”

= rOsince Xy € W

= 0.

So both X; + 3 € W and rX; € W. That is, W is closed under vector
addition and scalar multiplication. By Definition 1.16, W is a subspace of
R™. O

(b) Let A be an m x n matrix. Prove that the subspace W in part (a) and
the column space of A are orthogonal complements in R™.

Proof. Recall that by Definition 1.8, “Matrix Product,” the (/,) entry of
the matrix product AB is the dot product of the ith row of A with the jth
column of B.

Linear Algebra April 15,2020 15/ 17



Page 337 number 26

Page 337 number 26 (continued 2)

Proof (continued). So for X € W (here we treat row vector X € R™ as a
1 X m matrix) we have that XA is a 1 X n matrix (or a row vector in R")
and for ¥ € W we have XA = 0 € R". So the jth entry of XA = 0 is the
dot product of X with the jth column of A and, since XA = 0, this dot
product must be 0 for each j =1,2,... n. So by Definition 1.7,

“Perpendicular or Orthogonal Vectors,” each X € W is orthogonal to each
column of A.
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Page 337 number 26 (continued 2)

Proof (continued). So for X € W (here we treat row vector X € R™ as a
1 X m matrix) we have that XA is a 1 X n matrix (or a row vector in R")
and for ¥ € W we have XA = 0 € R". So the jth entry of XA = 0 is the
dot product of X with the jth column of A and, since XA = 0, this dot
product must be 0 for each j =1,2,... n. So by Definition 1.7,
“Perpendicular or Orthogonal Vectors,” each X € W is orthogonal to each
column of A. Also, by definition, W contain all vectors X in R™ which
satisfy XA =0 (i.e., all vectors X in R™ which are perpendicular to all
columns of A). The column space of A is the span of the columns of A
and since X € W is orthogonal to each column of A then X is orthogonal
to each vector which is in the span of the columns of A.
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Page 337 number 26 (continued 2)

Proof (continued). So for X € W (here we treat row vector X € R™ as a
1 X m matrix) we have that XA is a 1 X n matrix (or a row vector in R")
and for ¥ € W we have XA = 0 € R". So the jth entry of XA = 0 is the
dot product of X with the jth column of A and, since XA = 0, this dot
product must be 0 for each j =1,2,... n. So by Definition 1.7,
“Perpendicular or Orthogonal Vectors,” each X € W is orthogonal to each
column of A. Also, by definition, W contain all vectors X in R™ which
satisfy XA =0 (i.e., all vectors X in R™ which are perpendicular to all
columns of A). The column space of A is the span of the columns of A
and since X € W is orthogonal to each column of A then X is orthogonal
to each vector which is in the span of the columns of A. Conversely, any
vector X in the orthogonal complement of the column space of A must be
orthogonal to all linear combinations of the columns of A; in particular
such X must by orthogonal to each column of A and hence such X is in W.
So the orthogonal complement of the column space of Ais W. Ol
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Page 337 number 28

Page 337 number 28

Page 337 number 28. Let W be a subspace of R" with orthogonal

complement W+ Writing 3 = 3w + dyy 1, as in Theorem 6.1, prove that
13l = Vw2 + 3w [

Linear Algebra April 15, 2020 17 /17



Page 337 number 28

Page 337 number 28

Page 337 number 28. Let W be a subspace of R" with orthogonal

complement W+ Writing 3 = 3w + dyy 1, as in Theorem 6.1, prove that
13l = Vw2 + 3w [

Solution. By Note 1.2.A, ||3]|> = 3- 3, so we have
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Page 337 number 28

Page 337 number 28

Page 337 number 28. Let W be a subspace of R" with orthogonal

complement W+ Writing 3 = 3w + dyy 1, as in Theorem 6.1, prove that
13l = Vw2 + 3w [

Solution. By Note 1.2.A, ||3]|> = 3- 3, so we have

1317 = (3w +3ws) - (@w +3s)

= adw-aw+aw-awL +awe-aw +apL - dpe

by Theorem 1.3, “Properties of Dot Products”

lawl|® + 3w - 3o + e - 3w + |3 ||? by Note 1.2.A

3w ||> + 0+ 0+ |3y ||? since 3y and 3y, are orthogonal.
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Page 337 number 28

Page 337 number 28. Let W be a subspace of R" with orthogonal

complement W+ Writing 3 = 3w + dyy 1, as in Theorem 6.1, prove that
13l = Vw2 + 3w [

Solution. By Note 1.2.A, ||3]|> = 3- 3, so we have

131* = Gw +3ws) - Gw +3w)
= 3W'§W+§W'3Wi+§wL‘§W+3wl '§WL
by Theorem 1.3, “Properties of Dot Products”
= 13wl + 3w - dwr + 3w - 3w + |32 ]* by Note 1.2.A
3w ||> + 0+ 0+ |3y ||? since 3y and 3y, are orthogonal.

Not taking square roots (and observing that ||3|| is nonnegative) gives
131 = VlIawl? + 13w [ 0
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