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Page 336 number 4

Page 336 number 4

Page 336 number 4. Find the projection of [1, 2, 1] on the line with
parametric equation x = 3t, y = t, z = 2t in R3.

Solution. A line is a translation of a one-dimensional subspace and is of
the form ~x = t~d +~a where ~d is the direction vector and ~a is a translation
vector (see Section 2.5, “Lines, Planes, and Other Flats”). Here,
~d = [3, 1, 2] and ~a = [0, 0, 0] so, in fact, the line is not translated and so is
a subspace spanned by ~d = [3, 1, 2].

So we apply the previous definition to
get the projection ~p of ~b = [1, 2, 1] on sp(~d):

~p = proj~d(~b) =
~b · ~d
~d · ~d

~d =
[1, 2, 1] · [3, 1, 2]

[3, 1, 2] · [3, 1, 2]
[3, 1, 2]

=
(1)(3) + (2)(1) + (1)(2)

32 + 12 + 22
[3, 1, 2] =

7

14
[3, 1, 2] = [3/2, 1/2, 1].
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Page 336 number 10

Page 336 number 10

Page 336 number 10. Find the orthogonal complement of the plane
2x + y + 3z = 0 in R3.

Solution. A plane is a translation of a two-dimensional space of the form
~x = t1~d1 + t2~d2 +~a where ~d1 and ~d2 form a basis for the two-dimensional
space and ~a is a translation vector (see Section 2.5, “Lines, Planes, and
Other Flats”). Here, we can take ~a = ~0 so that the plane is not translated
and is in fact a subspace of R3. So we just need a basis for the subspace.

We pick two linearly independent vectors in the subspace, say
~d1 = [1,−2, 0] and ~d2 = [0,−3, 1] (though there are infinitely many such
choices). Then using the technique described above, we take

A =

[
1 −2 0
0 −3 1

]
and find the nullspace of A by considering the system

of equations A~x = ~0 (see Note 6.1.A):
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Page 336 number 10

Page 336 number 10 (continued)

Solution (continued).

[A | ~0] =

[
1 −2 0 0
0 −3 1 0

] R1→R1−(2/3)R2

˜
[

1 0 −2/3 0
0 −3 1 0

]
R2→R2/(−3)

˜
[

1 0 −2/3 0
0 1 −1/3 0

]
.

So we have

x1 − (2/3)x3 = 0 x1 = (2/3)x3

x2 − (1/3)x3 = 0 or x2 = (1/3)x3

x3 = x3

or with x3 = 3t as a free variable, x1 = 2t, x2 = t, and x3 = 3t.

So W⊥ is

the nullspace of A: W⊥ = sp([2, 1, 3]). �
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Theorem 6.1. Properties of W⊥

Theorem 6.1

Theorem 6.1. Properties of W⊥.
The orthogonal complement W⊥ of a subspace W of Rn has the following
properties:

1. W⊥ is a subspace of Rn.

2. dim(W⊥) = n − dim(W ).

3. (W⊥)⊥ = W .

4. Each vector ~b ∈ Rn can be expressed uniquely in the form
~b = ~bW + ~bW⊥ for ~bW ∈ W and ~bW⊥ ∈ W⊥.

Proof. Let dim(W ) = k, and let {~v1, ~v2, . . . , ~vk} be a basis for W . Let A
be the k × n matrix having ~vi as its ith row vector for i = 1, 2, . . . , k.

Property (1) follows from the fact that W⊥ is the nullspace of matrix A,
by Note 6.1.A, and therefore is a subspace of Rn.

() Linear Algebra April 15, 2020 6 / 17



Theorem 6.1. Properties of W⊥

Theorem 6.1

Theorem 6.1. Properties of W⊥.
The orthogonal complement W⊥ of a subspace W of Rn has the following
properties:

1. W⊥ is a subspace of Rn.

2. dim(W⊥) = n − dim(W ).

3. (W⊥)⊥ = W .

4. Each vector ~b ∈ Rn can be expressed uniquely in the form
~b = ~bW + ~bW⊥ for ~bW ∈ W and ~bW⊥ ∈ W⊥.

Proof. Let dim(W ) = k, and let {~v1, ~v2, . . . , ~vk} be a basis for W . Let A
be the k × n matrix having ~vi as its ith row vector for i = 1, 2, . . . , k.

Property (1) follows from the fact that W⊥ is the nullspace of matrix A,
by Note 6.1.A, and therefore is a subspace of Rn.

() Linear Algebra April 15, 2020 6 / 17



Theorem 6.1. Properties of W⊥

Theorem 6.1

Theorem 6.1. Properties of W⊥.
The orthogonal complement W⊥ of a subspace W of Rn has the following
properties:

1. W⊥ is a subspace of Rn.

2. dim(W⊥) = n − dim(W ).

3. (W⊥)⊥ = W .

4. Each vector ~b ∈ Rn can be expressed uniquely in the form
~b = ~bW + ~bW⊥ for ~bW ∈ W and ~bW⊥ ∈ W⊥.

Proof. Let dim(W ) = k, and let {~v1, ~v2, . . . , ~vk} be a basis for W . Let A
be the k × n matrix having ~vi as its ith row vector for i = 1, 2, . . . , k.

Property (1) follows from the fact that W⊥ is the nullspace of matrix A,
by Note 6.1.A, and therefore is a subspace of Rn.

() Linear Algebra April 15, 2020 6 / 17



Theorem 6.1. Properties of W⊥

Theorem 6.1 (continued 1)

Proof (continued). For Property 2, consider the rank equation of A:

rank(A) + nullity(A) = n.

Since dim(W ) = rank(A) and since W⊥ is the nullspace of A, then
dim(W⊥) = n − dim(W ).

For Property 3, we have by Property 1 that W⊥ is a subspace of Rn. By
Property 2 we have

dim(W⊥)⊥ = n − dim(W⊥) = n − (n − k) = k.

Since very vector in W is orthogonal to subspace W⊥ then W is a
subspace of (W⊥)⊥ ((W⊥)⊥ is a subspace of Rn by two applications of
Property 1). Since W and (W⊥)⊥ have the same dimension then by
Exercise 2.1.38, W must be equal to (W⊥)⊥.
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Theorem 6.1. Properties of W⊥

Theorem 6.1 (continued 2)

Proof (continued). For Property 4, let {~vk+1, ~vk+2, . . . , ~vn} be a basis
for n − k dimensional (by Property 2) subspace W⊥. We now show that

{~v1, ~v2, . . . , ~vk} ∪ {~vk+1, ~vk+2, . . . , ~vn} = {~v1, ~v2, . . . , ~vn}

is a basis for Rn. Consider the linear combination

r1~v1 + r2~v2 + · · · + rk~vk + sk+1~vk+1 + sk+2~vk+2 + · · · + sn~vn = ~0. (∗)

This equation implies

r1~v1 + r2~v2 + · · · + rk~vk = −sk+1~vk+1 − sk+2~vk+2 − · · · − sn~vn.
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Theorem 6.1. Properties of W⊥

Theorem 6.1 (continued 3)

Proof (continued). Notice that the vector on the left hand side of this
equation is in W and the vector on the right hand side is in W⊥. But
both sides of the equation represent the same vector (d’uh, it’s an
equation!) so both sides of the equation represent a vector in both W and
W⊥. So this vector must be orthogonal to itself. The only vector
orthogonal to itself is ~0 (since 0 = ~v · ~v = ‖~v‖2 implies ~v = ~0). Since the
vectors ~v1, ~v2, . . . , ~vk are linearly independent and
r1~v1 + r2~v2 + · · · + rk~vk = ~0 then we must have r1 = r2 = · · · rk = 0.
Similarly, ~vk+1, ~vk+2, . . . , ~vn are linearly independent and
sk+1~vk+1 + sk+2~vk+2 + · · ·+ sn~vn = ~0 implies sk+1 = sk+2 = · · · = sn = 0.

From equation (∗), we see that {~v1, ~v2, . . . , ~vn} is a linearly independent
set. Since the set contains n linearly independent vectors in Rn then
dim(sp(~v1, ~v2, . . . , ~vn)) = n and so by Exercise 2.1.38,
sp(~v1, ~v2, . . . , ~vn) = Rn and so {~v1, ~v2, . . . , ~vn} is a basis for Rn.
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Theorem 6.1. Properties of W⊥

Theorem 6.1 (continued 4)

Proof (continued). So each ~b ∈ Rn can be written as
~b = (r1~v1 + r2~v2 + · · ·+ rk~vk) + (sk+1~vk+1 + sk+2~vk+2 + · · ·+ sn~vn), where
r1~v1 + r2~v2 + · · ·+ rk~vk ∈ W and sk+1~vk+1 + sk+2~vk+2 + · · ·+ sn~vn ∈ W⊥,
for unique r1, r2, . . . , rk , sk+1, sk+2, . . . , sn (by Definition 1.17, “Basis for a
Subspace”). So any ~b ∈ Rn can be expressed in the form ~b = ~bW + ~bW⊥

where ~bW ∈ W and ~bW⊥ ∈ W⊥. Since each vector in Rn is a unique
linear combination of ~v1, ~v2, . . . , ~vn, then the choice of ~bW and ~bW⊥ are
unique.
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Page 336 number 20(b)

Page 336 number 20(b)

Page 336 number 20(b). Find the projection of ~b = [−2, 1, 3,−5] on to
the subspace W = sp(ê1, ê4) in R4.

Solution. We are given a basis for W = sp(ê1, ê4), namely {ê1, ê4}.
Certainly a basis for W⊥ is given by {ê2, ê3}.

So we take the ordered basis
{ê1, ê4, ê2, ê3} of R4 and we have ~b = −2ê1 − 5ê4 + 1ê2 + 3ê3 (and so the
coordinate vector ~r of ~b relative to the ordered basis {ê1, ê4, ê2, ê3} is
~r = [−2,−5, 1, 3]). Then by the Note 6.1.B, the projection of ~b on to W is

~bW = projW (~b) = r1ê1 + r2ê4 = −2[1, 0, 0, 0] − 5[0, 0, 0, 1] = [-2,0,0,-5].

�
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~r = [−2,−5, 1, 3]).

Then by the Note 6.1.B, the projection of ~b on to W is
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Certainly a basis for W⊥ is given by {ê2, ê3}. So we take the ordered basis
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coordinate vector ~r of ~b relative to the ordered basis {ê1, ê4, ê2, ê3} is
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Page 335 Example 6

Page 335 Example 6

Page 335 Example 6. Consider the inner product space P[0,1] of all
polynomial functions defined on the interval [0, 1] with inner product

〈p(x), q(x)〉 =

∫ 1

0
p(x)q(x) dx .

Find the projection of f (x) = x on sp(1) and then find the projection of x
on sp(1)⊥.

Solution. We follow the definition of the projection ~p of ~b on sp(~a) in Rn,

~p = proj~a(~b) =
~b ·~a
~a ·~a

~a, but instead of dot products in Rn we use the inner

product in P[0,1].

So the desired projection, with ~b = x and ~a = 1, is

〈x , 1〉
〈1, 1〉

1 =

∫ 1
0 x · 1 dx∫ 1
0 1 · 1 dx

1 =
(1/2)x2|10

x |10
1 = 1

2 .
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Page 335 Example 6. Consider the inner product space P[0,1] of all
polynomial functions defined on the interval [0, 1] with inner product

〈p(x), q(x)〉 =

∫ 1

0
p(x)q(x) dx .

Find the projection of f (x) = x on sp(1) and then find the projection of x
on sp(1)⊥.

Solution (continued). Notice that with W = sp(1) then we have from
Definition 6.2 that ~b = ~bW + ~bW⊥ and we can find ~bW⊥ (where
W⊥ = sp(1)⊥) as ~bW⊥ = ~b − ~bW = x − 1/2. �
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Page 337 number 26. Let A be an m × n matrix.

(a) Prove that the set W of row vectors ~x in Rm such that
~xA = ~0 is a subspace of Rm.

(b) Prove that the subspace W in part (a) and the column space
of A are orthogonal complements in Rm.

Proof. (a) We use definition 1.16, “Subspace of Rn.” Let
W = {~x ∈ Rm | ~xA = ~0}. We must check W for closure under vector
addition and scalar multiplication. Let ~x1,~x2 ∈ W and let r be a scalar.

Then:

(~x1 + ~x2)A = ~x1A + ~x2A by Theorem 1.3.A(10),

“Distribution Laws of Matrix Multiplication”

(here we treat ~x as a matrix)

= ~0 +~0 since ~x1, ~v2 ∈ W

= ~0,
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Page 337 number 26 (continued 1)

Proof (continued). . . . and

(r~x1)A = r(~x1A) by Theorem 1.3.A(7), “Scalars Pull Through”

= r~0 since ~x1 ∈ W

= ~0.

So both ~x1 + ~x2 ∈ W and r~x1 ∈ W . That is, W is closed under vector
addition and scalar multiplication. By Definition 1.16, W is a subspace of
Rm.

(b) Let A be an m × n matrix. Prove that the subspace W in part (a) and
the column space of A are orthogonal complements in Rm.

Proof. Recall that by Definition 1.8, “Matrix Product,” the (i , j) entry of
the matrix product AB is the dot product of the ith row of A with the jth
column of B.
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Page 337 number 26 (continued 2)

Proof (continued). So for ~x ∈ W (here we treat row vector ~x ∈ Rm as a
1 × m matrix) we have that ~xA is a 1 × n matrix (or a row vector in Rn)
and for ~x ∈ W we have ~xA = ~0 ∈ Rn. So the jth entry of ~xA = ~0 is the
dot product of ~x with the jth column of A and, since ~xA = ~0, this dot
product must be 0 for each j = 1, 2, . . . , n. So by Definition 1.7,
“Perpendicular or Orthogonal Vectors,” each ~x ∈ W is orthogonal to each
column of A. Also, by definition, W contain all vectors ~x in Rm which
satisfy ~xA = ~0 (i.e., all vectors ~x in Rm which are perpendicular to all
columns of A). The column space of A is the span of the columns of A
and since ~x ∈ W is orthogonal to each column of A then ~x is orthogonal
to each vector which is in the span of the columns of A.

Conversely, any
vector ~x in the orthogonal complement of the column space of A must be
orthogonal to all linear combinations of the columns of A; in particular
such ~x must by orthogonal to each column of A and hence such ~x is in W .
So the orthogonal complement of the column space of A is W .
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Page 337 number 28. Let W be a subspace of Rn with orthogonal
complement W⊥. Writing ~a = ~aW +~aW⊥ , as in Theorem 6.1, prove that
‖~a‖ =

√
‖~aW ‖2 + ‖~aW⊥‖2.

Solution. By Note 1.2.A, ‖~a‖2 = ~a ·~a, so we have

‖~a‖2 = (~aW +~aW⊥) · (~aW +~aW⊥)

= ~aW ·~aW +~aW ·~aW⊥ +~aW⊥ ·~aW +~aW⊥ ·~aW⊥

by Theorem 1.3, “Properties of Dot Products”

= ‖~aW ‖2 +~aW ·~aW⊥ +~aW⊥ ·~aW + ‖~aW⊥‖2 by Note 1.2.A

= ‖~aW ‖2 + 0 + 0 + ‖~aW⊥‖2 since ~aW and ~aW⊥ are orthogonal.

Not taking square roots (and observing that ‖~a‖ is nonnegative) gives
‖~a‖ =

√
‖~aW ‖2 + ‖~aW⊥‖2.
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