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Theorem 6.2. Orthogonal Bases

Theorem 6.2

Theorem 6.2. Orthogonal Bases.
Let {~v1, ~v2, . . . , ~vk} be an orthogonal set of nonzero vectors in Rn. Then
this set is independent and consequently is a basis for the subspace
sp(~v1, ~v2, . . . , ~vk).

Proof. Let j be an integer between 2 and k. Consider

~vj = s1 ~v1 + s2 ~v2 + · · ·+ sj−1~vj−1.

If we take the dot product of each side of this equation with ~vj then, since
the set of vectors is orthogonal, we get ~vj · ~vj = 0, which contradicts the
hypothesis that ~vj 6= ~0. Therefore no ~vj is a linear combination of its
predecessors and by Page 203 Number 37, the set is independent.
Therefore the set is a basis for its span.
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Theorem 6.3. Projection Using an Orthogonal Basis

Theorem 6.3

Theorem 6.3. Projection Using an Orthogonal Basis.
Let {~v1, ~v2, . . . , ~vk} be an orthogonal basis for a subspace W of Rn, and
let ~b ∈ Rn. The projection of ~b on W is

~bW = projW (~b) =
~b · ~v1

~v1 · ~v1
~v1 +

~b · ~v2

~v2 · ~v2
~v2 + · · ·+

~b · ~vk

~vk · ~vk
~vk .

Proof. We know from Theorem 6.1 that ~b = ~bW + ~bW⊥ where ~bW is the
projection of ~b on W and ~bW⊥ is the projection of ~b on W⊥. Since
~bW ∈ W and {~v1, ~v2, . . . , ~vk} is a basis of W , then

~bW = r1 ~v1 + r2 ~v2 + · · ·+ rk ~vk

for some scalars r1, r2, . . . , rk . We now find these ri ’s.
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Theorem 6.3. Projection Using an Orthogonal Basis

Theorem 6.3 (continued)

Proof (continued). Taking the dot product of ~b with ~vi we have

~b · ~vi = (~bW + ~bW⊥) · ~vi = (~bW · ~vi ) + (~bW⊥ · ~vi )

= (r1 ~v1 · ~vi + r2 ~v2 · ~vi + · · ·+ rk ~vk · ~vi ) + 0

= ri ~vi · ~vi .

Therefore ri = (~b · ~vi )/(~vi · ~vi ) and so

ri ~vi =
~b · ~vi

~vi · ~vi
~vi .

Substituting these values of the ri ’s into the expression for ~bW yields the
theorem.
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Page 347 Number 4

Page 347 Number 4

Page 347 Number 4. Consider
W = sp([1,−1, 1, 1], [−1, 1, 1, 1], [1, 1,−1, 1]). Verify that the generating
set of W is orthogonal and find the projection of ~b = [1, 4, 1, 2] on W .

Solution. We check pairwise for orthogonality of the three generating
vectors:

[1,−1, 1, 1] · [−1, 1, 1, 1] = (1)(−1) + (−1)(1) + (1)(1) + (1)(1)

= −1− 1 + 1 + 1 = 0,

[1,−1, 1, 1] · [1, 1,−1, 1] = (1)(1) + (−1)(1) + (1)(−1) + (1)(1)

= 1− 1− 1 + 1 = 0,

[−1, 1, 1, 1] · [1, 1,−1, 1] = (−1)(1) + (1)(1) + (1)(−1) + (1)(1)

= −1 + 1− 1 + 1 = 0.

Since each dot product is 0 then the vectors form an orthogonal set (in
fact, an orthogonal basis for W , by Theorem 6.2, “Orthogonal Bases”).
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Page 347 Number 4

Page 347 Number 4 (continued)

Solution (continued). By Theorem 6.3, “Projection Using an Orthogonal
Basis,” we have the projection of ~b on W is

~bW = projW (~b) =
~b · ~v1

~v1 · ~v1
~v1 +

~b · ~v2

~v2 · ~v2
~v2 +

~b · ~v3

~v3 · ~v3
~v3

where ~v1, ~v2, ~v3 are the three orthogonal generating vectors, so

~bW =
[1, 4, 1, 2] · [1,−1, 1, 1]

[1,−1, 1, 1] · [1,−1, 1, 1]
[1,−1, 1, 1]

+
[1, 4, 1, 2] · [−1, 1, 1, 1]

[−1, 1, 1, 1] · [−1, 1, 1, 1]
[−1, 1, 1, 1]

+
[1, 4, 1, 2] · [1, 1,−1, 1]

[1, 1,−1, 1] · [1, 1,−1, 1]
[1, 1,−1, 1]

=
0

4
[1,−1, 1, 1] +

6

4
[−1, 1, 1, ] +

6

4
[1, 1,−1, 1]

= 0[1,−1, 1, 1] + (3/2)[−1, 1, 1, 1] + (3/2)[1, 1,−1, 1] = [0, 3, 0, 3]. �
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Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem

Theorem 6.4

Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.
Let W be a subspace of Rn, let {~a1, ~a2, . . . , ~ak} be any basis for W , and
let

Wj = sp(~a1, ~a2, . . . , ~aj) for j = 1, 2, . . . , k.

Then there is an orthonormal basis {~q1, ~q2, . . . , ~qk} for W such that
Wj = sp(~q1, ~q2, . . . , ~qj).

Proof. We give a recursive construction which will reveal how to apply the
Gram-Schmidt Process.

First, let ~v1 = ~a1 (we will create an orthogonal basis {~v1, ~v2, . . . , ~vk} and
then normalize each ~vi to create an orthonormal set). For j = 2, 3, . . . , k,
let ~pj be the projection ~aj on Wj−1 = sp(~a1,~a2, . . . ,~aj−1) and let
~vj = ~aj − ~pj . This computation of ~vj is given symbolically in Figure 6.7.
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Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem

Theorem 6.4 (continued 1)

Proof (continued).

Figure 6.7
Since ~pj is the projection of ~aj on Wj−1 then by Theorem 6.1(4),

“Properties of W⊥,” and Definition 6.2, “ Projection of ~b on W ,” we have

~aj = (~aj)Wj−1
+ (~aj)W⊥

j−1
= ~pj + (~aj − ~pj) = ~pj + ~vj

(and by Theorem 6.1(4), the choice of ~pj and ~vj are unique). Since
~vj ∈ W⊥

j−1 then ~vj is perpendicular to each ~v1, ~v2, . . . , ~vj−1 ∈ Wj−1.
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Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem

Theorem 6.4 (continued 2)

Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.
Let W be a subspace of Rn, let {~a1, ~a2, . . . , ~ak} be any basis for W , and
let

Wj = sp(~a1, ~a2, . . . , ~aj) for j = 1, 2, . . . , k.

Then there is an orthonormal basis {~q1, ~q2, . . . , ~qk} for W such that
Wj = sp(~q1, ~q2, . . . , ~qj).

Proof (continued). So each set {~v1, ~v2, . . . , ~vj} is an orthogonal set of
vectors for each j = 1, 2, . . . , k and since {~v1, ~v2, . . . , ~vj} ⊂ Wj (where
dim(Wj) = j) then by Theorem 6.2, “Orthogonal Bases,” {~v1, ~v2, . . . , ~vj}
is a basis for Wj .

Finally, define ~qi = ~vi/‖~vi‖ for i = 1, 2, . . . , j . Then
Wj = sp(~q1, ~q2, . . . , ~qj), {~q1, ~q2, . . . , ~qj} is an orthonormal basis for Wj ,
and in particular {~q1, ~q2, . . . , ~qk} is an orthonormal basis for W , as
claimed.
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Page 348 Number 10

Page 348 Number 10

Page 348 Number 10. Transform the basis {[1, 1, 1], [1, 0, 1], [0, 1, 1]} for
R3 into an orthonormal basis using the Gram-Schmidt Process.

Solution. First, denote the given basis vectors as ~a1,~a2,~a3 in order. Let
~v1 = ~a1 = [1, 1, 1].

Next, by the recursive formula above,

~v2 = ~a2−
~a2 · ~v1

~v1 · ~v1
~v1 = [1, 0, 1]− [1, 0, 1] · [1, 1, 1]

[1, 1, 1] · [1, 1, 1]
[1, 1, 1] = [1, 0, 1]−2

3
[1, 1, 1]

=

[
1

3
,−2

3
,
1

3

]
=

1

3
[1,−2, 1]

and

~v3 = ~a3 −
~a3 · ~v1

~v1 · ~v1
~v1 −

~a3 · ~v2

~v2 · ~v2
~v2

= [0, 1, 1]− [0, 1, 1] · [1, 1, 1]

[1, 1, 1] · [1, 1, 1]
[1, 1, 1]−

[0, 1, 1] · 1
3 [1,−2, 2]

1
3 [1,−2, 1] · 1

3 [1,−2, 1]

1

3
[1,−2, 1]

. . .
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Page 348 Number 10

Page 348 Number 10 (continued 1)

Solution (continued). . . .

= [0, 1, 1]− 2

3
[1, 1, 1]− −1

6
[1,−2, 1] =

[
−2

3
+

1

6
, 1− 2

3
− 1

3
, 1− 2

3
+

1

6

]

=

[
−1

2
, 0

1

2

]
=

1

2
[−1, 0, 1].

Finally we normalize ~v1, ~v2, ~v3 to get

~q1 = ~v1/‖~v1‖ =
[1, 1, 1]

‖[1, 1, 1]‖
=

[
1√
3
,

1√
3
,

1√
3

]
,

~q2 = ~v2/‖~v2‖ =
1
3 [1,−2, 1]

‖1
3 [1,−2, 1]‖

=

[
1√
6
,
−2√

6
,

1√
6

]
,

~q3 = ~v3/‖~v3‖ =
1
2 [−1, 0, 1]

‖1
2 [−1, 0, 1]‖

=

[
−1√

2
, 0,

1√
2

]
.
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Page 348 Number 10
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6
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6
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3
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3
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Page 348 Number 10 (continued 2)

Page 348 Number 10. Transform the basis {[1, 1, 1], [1, 0, 1], [0, 1, 1]} for
R3 into an orthonormal basis using the Gram-Schmidt Process.

Solution (continued). So an orthonormal basis is

{~q1, ~q2, ~q3} =
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1√
3
,

1√
3
,

1√
3

]
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[
1√
6
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−2√

6
,

1√
6
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−1√

2
, 0,

1√
2
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.
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Corollary 1. QR-Factorization

Corollary 1

Corollary 1. QR-Factorization.
Let A be an n × k matrix with independent column vectors in Rn. There
exists an n × k matrix Q with orthonormal column vectors and an
upper-triangular invertible k × k matrix R such that A = QR.

Proof. Denote the columns of A as ~a1,~a2, . . . ,~ak . In the proof of
Theorem 6.4 we saw that there exists {~v1, ~v2, . . . , ~vj} and {~q1, ~q2, . . . , ~qj}
both bases of Wj = sp(~a1,~a2, . . . ,~aj).

So each ~aj is a unique linear
combination of ~q1, ~q2, . . . , ~qj :

~aj = r1j~q1 + r2j~q2 + · · ·+ rjj~qj for j = 1, 2, . . . , k.

Define n× k matrix Q with columns ~q1, ~q2, . . . , ~qk and define k × k matrix
R = [rij ] where the rij are the coefficients given above.
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Corollary 1. QR-Factorization

Corollary 1 (continued 1)

Proof (continued). Notice that

~a1 = r11~q1

~a2 = r12~q1 + r22~q2

~a3 = r13~q1 + r23~q2 + r33~q3

...

~ak = r1k~q1 + r2k~q2 + r3k~q3 + · · ·+ rkk~qk

so that rij = 0 for i > j and R is upper triangular:

R =


r11 r12 · · · r1k

0 r22 · · · r2k
...

...
. . .

...
0 0 · · · rkk

 .
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Corollary 1. QR-Factorization

Corollary 1 (continued 2)

Corollary 1. QR-Factorization.
Let A be an n × k matrix with independent column vectors in Rn. There
exists an n × k matrix Q with orthonormal column vectors and an
upper-triangular invertible k × k matrix R such that A = QR.

Proof (continued). Since the columns of A are independent then rii 6= 0
for i = 1, 2, . . . , k, and hence det(R) 6= 0 and R−1 exists. Now if we let
the ith column of R be vector ~ri then Q~ri is a linear combination of
~q1, ~q2, . . . , ~qk with coefficients r1i , r2i , . . . , rki (see Note 1.3.A) as

Q~ri = r1i~q1 + r2i~q2 + · · ·+ rki~qki = ~ai for i = 1, 2, . . . , k.

That is, the ith column of QR is ~ai and this holds for i = 1, 2, . . . , k. So
A = QR, as claimed.
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Page 348 Number 26

Page 348 Number 26

Page 348 Number 26. Find a QR-factorization of A =

 0 1
1 1
0 1

 .

Solution. As seen in the proof of Corollary 1, we need to convert the

columns of A, ~a1 =

 0
1
0

 and ~a2 =

 1
1
1

 into an orthonormal basis

{~q1, ~q2} for sp(~a1,~a2).

We take ~v1 = ~a1 = [0, 1, 0]T and

~v2 = ~a2 −
~a1 · ~v1

~v1 · ~v1
~v1 =

 1
1
1

− [1, 1, 1]T · [0, 1, 0]T

[0, 1, 0]T · [0, 1, 0]T
[0, 1, 0]T

=

 1
1
1

− 1

 0
1
0

 =

 1
0
1

 .
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Page 348 Number 26

Page 348 Number 26 (continued)

Solution (continued). Then we take ~q1 = ~v1/‖~v1‖ = [0, 1, 0]T and

~q2 = ~v2/‖~v2‖ = 1√
2
[1, 0, 1]T . So Q = [~q1 ~q2] =

 0 1/
√

2
1 0

0 1/
√

2

 . Next we

need ~a1 and ~a2 as linear combinations of ~q1 and ~q2:

~a1 = 1~q1 + 0~q2 (since ~a1 = ~q1); so r11 = 1 and r21 = 0.

Next, ~a2 = r12~q1 + r22~q2 or

 1
1
1

 = r12

 0
1
0

+ r22

 1/
√

2
0

1/
√

2

 , so

clearly r12 = 1 and r22 =
√

2. Therefore R =

[
r11 r12
r21 r22

]
=

[
1 1

0
√

2

]
.

So A = QR where R =

[
1 1

0
√

2

]
and Q =

 0 1/
√

2
1 0

0 1/
√

2

 . �
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Page 348 Number 26 (continued)
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Page 348 Number 26 (continued)
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Corollary 2. Expansion of an Orthogonal Set to an Orthogonal
Basis

Corollary 2

Corollary 2. Expansion of an Orthogonal Set to an Orthogonal Basis.
Every orthogonal set of vectors in a subspace W of Rn can be expanded if
necessary to an orthogonal basis of W .

Proof. An orthogonal set {~v1, ~v2, . . . , ~vr} of vectors in W is an
independent set by Theorem 6.2, and can be expanded to a basis
{~v1, ~v2, . . . , ~vr ,~a1,~a2, . . . ,~as} of W by Theorem 2.3. We apply the
Gram-Schmidt Process (Theorem 6.4) to this basis for W .

Because the ~vj

are already mutually perpendicular, none of them will be changed by the
Gram-Schmidt Process (since they are taken first), and so the process
yields an orthogonal basis containing the vectors ~v1, ~v2, . . . , ~vr .
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Page 348 Number 20

Page 348 Number 20

Page 348 Number 20. Find an orthonormal basis for R3 that contains
the vector (1/

√
3)[1, 1, 1].

Solution. First we need a basis for R3 which includes 1√
3
[1, 1, 1]. So we

consider the set
{

1√
3
[1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]

}
. Of course, this set

of 4 vectors from R3 must be dependent by Theorem 2.2, “Relative Sizes
of Spanning and Independent Sets” (since R3 is dimension 3).

We apply
Theorem 2.1.A to find a basis for the span of the 4 vectors and row reduce
a matrix with these vectors as columns: 1/

√
3 1 0 0

1/
√

3 0 1 0

1/
√

3 0 0 1

 R2→R2−R1

˜R3 → R3 − R1

 1/
√

3 1 0 0
0 −1 1 0
0 −1 0 1


R1→R1+R2

˜R3 → R3 − R12

 1/
√

3 0 1 0
0 −1 1 0
0 0 −1 1

 = H.
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Page 348 Number 20

Page 348 Number 20 (continued 1)

Solution (continued). Since H is in row-echelon form and contains
pivots in the first 3 columns then a basis for R3 is given by
{(1/

√
3)[1, 1, 1], [1, 0, 0], [0, 1, 0]} = {~a1,~a2,~a3}. We now apply the

Gram-Schmidt Process.

Let ~v1 = ~a1 = (1/
√

3)[1, 1, 1]. Let

~v2 = ~a2 −
~a2 · ~v1

~v1 · ~v1
~v1

= [1, 0, 0]−
[1, 0, 0] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1]

= [1, 0, 0]−
(

1

3

)(
1

1

)
[1, 1, 1]

=

[
2

3
,
−1

3
,
−1

3

]
=

1

3
[2,−1,−1],

() Linear Algebra May 5, 2020 21 / 32



Page 348 Number 20

Page 348 Number 20 (continued 1)

Solution (continued). Since H is in row-echelon form and contains
pivots in the first 3 columns then a basis for R3 is given by
{(1/

√
3)[1, 1, 1], [1, 0, 0], [0, 1, 0]} = {~a1,~a2,~a3}. We now apply the

Gram-Schmidt Process.

Let ~v1 = ~a1 = (1/
√

3)[1, 1, 1]. Let

~v2 = ~a2 −
~a2 · ~v1

~v1 · ~v1
~v1

= [1, 0, 0]−
[1, 0, 0] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1]

= [1, 0, 0]−
(

1

3

)(
1

1

)
[1, 1, 1]

=

[
2

3
,
−1

3
,
−1

3

]
=

1

3
[2,−1,−1],

() Linear Algebra May 5, 2020 21 / 32



Page 348 Number 20

Page 348 Number 20 (continued 2)

Solution (continued).

~v3 = ~a3 −
~a3 · ~v1

~v1 · ~v1
~v1 −

~a3 · ~v2

~v2 · ~v2
~v2

= [0, 1, 0]−
[0, 1, 0] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1] · 1√

3
[1, 1, 1]

1√
3
[1, 1, 1]

−
[0, 1, 0] · 1

3 [2,−1,−1]
1
3 [2,−1,−1] · 1

2 [2,−1,−1]

1

3
[2,−1,−1]

= [0, 1, 0]−
(

1

3

)(
1

1

)
[1, 1, 1]−

(
1

9

)(
−1

6/9

)
[2,−1,−1]

=

[
0− 1

3
+

2

6
, 1− 1

3
− 1

6
, 0− 1

3
− 1

6

]
=

[
0,

1

2
,
−1

2

]
=

1

2
[0, 1,−1].

So an orthogonal basis for R3 is {~v1, ~v2, ~v3}.

() Linear Algebra May 5, 2020 22 / 32



Page 348 Number 20

Page 348 Number 20 (continued 3)

Solution (continued). We normalize these vectors to get an orthonormal
basis {~q1, ~q2, ~q3} (notice that ‖~v1‖ = 1, so we take ~q1 = ~v1). So

~q2 = ~v2/‖~v2‖ =
1
2 [2,−1,−1]

1
3

√
6

=
1√
6
[2,−1,−1],

and

~q3 = ~v3/‖~v3‖ =
1
2 [0, 1,−1]

1
2

√
2

=
1√
2
[0, 1,−1].

So an orthonormal basis of R3 including ~a1 = ~v1 = ~q1 = 1√
3
[1, 1, 1] is{

1√
3
[1, 1, 1],

1√
6
[2,−1,−1],

1√
2
[0, 1,−1]

}
. . . .
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Page 348 Number 20

Page 348 Number 20 (continued 4)

Page 348 Number 20. Find an orthonormal basis for R3 that contains
the vector (1/

√
3)[1, 1, 1].

Solution (continued). Notice that this answer depends on the fact that
we chose as a spanning set of R3 the given vector along with the standard
basis ê1, ê2, ê3 of R3 (in this order). We could have chosen a different basis
or the standard basis but in a different order and we would have gotten a
different answer. There are an infinite number of correct answers. �
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Page 349 Number 30

Page 349 Number 30

Page 349 Number 30. Let A be an n × n matrix. Prove that A has an
orthonormal column vector if and only if A is invertible with inverse
A−1 = AT . HINT: Use Exercise 6.3.29 which states: “Let A be an n × k
matrix. Prove that the column vectors of A are orthonormal if and only if
ATA = I.” NOTE: Exercise 6.3.29 is the inspiration for the definition of
“orthogonal matrix” in the next section.

Solution. By Exercise 6.3.29 (with k = n) we have that the column
vectors of A are orthonormal if and only if ATA = I. Notice that, since A
and AT are n × n matrices, by Theorem 1.11, “A Commutivity Property,”
ATA = I implies AAT = I. So if the column vectors of A are orthonormal
then, by Exercise 6.3.29, ATA = I = AAT and so A is invertible with
A−1 = AT .

Conversely, suppose A is invertible and A−1 = AT . Then
A−1A = ATA = I and so by Exercise 6.3.29 the column vectors of A are
orthonormal.
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Page 349 Number 30
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Page 349 Number 32

Page 349 Number 32

Page 349 Number 32. Let V be an inner-product space of dimension n
and let B be an ordered orthonormal basis for V . Prove that, for any
vectors ~a,~c ∈ V , the inner product 〈~a,~c〉 is equal to dot product of the
coordinate vectors of ~a and ~c relative to B. NOTE: We already know that
any two n-dimensional vector spaces are isomorphic by the “Fundamental
Theorem of Finite Dimensional Vector Spaces,” Theorem 3.3.A, and the
isomorphism involves mapping each vector of a given n-dimensional vector
space to its coordinate vector in Rn. This exercise shows that the inner
product structures is also preserved under the same isomorphism so that
we can conclude that any two n-dimensional inner product spaces are
isomorphic (and so any n-dimensional inner product space is isomorphic to
R where the inner product on Rn is the usual dot product).
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Page 349 Number 32

Page 349 Number 32 (continued 1)

Proof. Let ordered basis B = (~b1,~b2, . . . ,~bn),
~a = a1

~b1 + a2
~b2 + · · ·+ an

~bn, and ~c = c1
~b1 + c2

~b2 + · · ·+ cn
~bn, so that

the coordinate vectors are ~aB = [a1, a2, . . . , an] and ~cB = [c1, c2, . . . , cn].
We apply the properties of an inner product given in Definition 3.1.2 to get

〈~a,~c〉 = 〈a1
~b1 + a2

~b2 + · · ·+ an
~bn, c1

~b1 + c2
~b2 + · · ·+ cn

~bn〉
= 〈a1

~b1, c1
~b1 + c2

~b2 + · · ·+ cn
~bn〉

+〈a2
~b2, c1

~b1 + c2
~b2 + · · ·+ cn

~bn〉+ · · ·
+〈an

~bn, c1
~b1 + c2

~b2 + · · ·+ cn
~bn〉

= 〈a1
~b1〉+ 〈a1

~b1, c2
~b2〉+ · · ·+ 〈a1

~b1, cn~vn〉
+〈a2

~b2, c1
~b1〉+ 〈a2

~b2, c2
~b2〉+ · · ·+ 〈a2

~b2, cn
~bn〉+ · · ·

+〈an
~bn, c1

~b1〉+ 〈an
~bn, c2

~b2〉+ · · ·+ 〈an
~bn, cn

~bn〉
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Page 349 Number 32

Page 349 Number 32 (continued 1)

Proof. Let ordered basis B = (~b1,~b2, . . . ,~bn),
~a = a1

~b1 + a2
~b2 + · · ·+ an

~bn, and ~c = c1
~b1 + c2

~b2 + · · ·+ cn
~bn, so that

the coordinate vectors are ~aB = [a1, a2, . . . , an] and ~cB = [c1, c2, . . . , cn].
We apply the properties of an inner product given in Definition 3.1.2 to get

〈~a,~c〉 = 〈a1
~b1 + a2

~b2 + · · ·+ an
~bn, c1

~b1 + c2
~b2 + · · ·+ cn

~bn〉
= 〈a1

~b1, c1
~b1 + c2

~b2 + · · ·+ cn
~bn〉

+〈a2
~b2, c1

~b1 + c2
~b2 + · · ·+ cn

~bn〉+ · · ·
+〈an

~bn, c1
~b1 + c2

~b2 + · · ·+ cn
~bn〉

= 〈a1
~b1〉+ 〈a1

~b1, c2
~b2〉+ · · ·+ 〈a1

~b1, cn~vn〉
+〈a2

~b2, c1
~b1〉+ 〈a2

~b2, c2
~b2〉+ · · ·+ 〈a2

~b2, cn
~bn〉+ · · ·

+〈an
~bn, c1

~b1〉+ 〈an
~bn, c2

~b2〉+ · · ·+ 〈an
~bn, cn

~bn〉
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Page 349 Number 32

Page 349 Number 32 (continued 2)

Proof (continued).

〈~a,~c〉 = a1c1〈~b1,~b1〉+ a1c2〈~b1,~b2〉+ · · · a1cn〈~b1,~bn〉
+a2c1〈~b2,~b1〉+ a2c2〈~b2,~b2〉+ · · · a2cn〈~b2,~bn〉+ · · ·
+anc1〈~bn,~b1〉+ anc2〈~bn,~b2〉+ · · · ancn〈~bn,~bn〉

= a1c1 + 0 + 0 + · · ·+ 0

+0 + a2c2 + · · ·+ 0

+0 + 0 + · · ·+ ancn

= a1c1 + a2c2 + · · ·+ ancn = ~aB · ~cB .

() Linear Algebra May 5, 2020 28 / 32



Page 349 Number 34

Page 349 Number 34

Page 349 Number 34. Find an orthonormal basis for sp(1, x , x2) for

−1 ≤ x ≤ 1 if the inner product is defined by 〈f , g〉 =
∫ 1
−1 f (x)g(x) dx .

Solution. We apply the Gram-Schmidt Process to
{~a1,~a2,~a3} = {1, x , x2}. We simply replace the dot product of Rn with
the inner product given here. Let ~v1 = ~a1 = 1.

Then

~v2 = ~a2 −
〈~a2, ~v1〉
〈~v1, ~v1〉

~v1 = x −

(∫ 1
−1 x · 1 dx∫ 1
−1 1 · 1 dx

)
1

= x −

(
1
2x2|1−1

x |1−1

)
(1) = x −

1
2(1)2 − 1

2(−1)2

(1)− (−1)
= x − 0 = x ,

and

~v3 = ~a3 −
〈~a3, ~v1〉
〈~v1, ~v1〉

~v1 −
〈~a3, ~v2〉
〈~v2, ~v2〉

~v2

. . .
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Page 349 Number 34

Page 349 Number 34 (continued 1)

Solution (continued). . . .

~v3 = x2 −

(∫ 1
−1 x2 · 1 dx∫ 1
−1 1 · 1 dx

)
1−

(∫ 1
−1 x2 · x dx∫ 1
−1 x · x dx

)
x

= x2 −

(
1
3x3|1−1

x |1−1

)
1−

(
1
4x4|1−1

1
3(1)3 − 1

3(−1)3

)
x

= x2 −
(

1

3

)
1− (0)x = x2 − 1

3
.

Finally, we normalize:

~q1 = ~v1/‖~v1‖ =
1√
〈1, 1〉

=
1√∫ 1
−1 1 dx

=
1√
x |1−1

=
1√

(1)− (−1)
=

1√
2
,

~q2 =
~v2

‖~v2‖
=

x√
〈x , x〉

=
x√∫ 1

−1 x2 dx
=

x√
1
3x3|1−1

= . . .
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Page 349 Number 34 (continued 1)

Solution (continued). . . .
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Page 349 Number 34

Page 349 Number 34 (continued 2)

Solution (continued). . . .

~q2 =
x√

1
3(1)3 − 1

3(−1)3
=

x√
2
3

=

√
3x√
2

and

~q3 =
~v3

‖~v3‖
=

x2 − 1
3√

〈x2 − 1
3 , x2 − 1

3〉
=

x2 − 1
3√∫ 1

−1(x
2 − 1/3)2 dx

=
x2 − 1

3√∫ 1
−1(x

4 − 2
3x2 − 1

9) dx
=

x2 − 1
3√(

1
5x5 − 2

9x3 + 1
9x
)
|1−1

=
x2 − 1

3√(
1
5(1)5 − 2

9(1)3 + 1
9(1)

)
−
(

1
5(−1)5 − 2

9(−1)3 + 1
9(−1)

)
=

x2 − 1
3√

8/45
=

√
45

8

(
x2 − 1

3

)
=

3
√

5

2
√

2

(
x2 − 1

3

)
.
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Page 349 Number 34

Page 349 Number 34 (continued 2)

Solution (continued). . . .
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3
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2
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−1(x
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x2 − 1
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−1(x

4 − 2
3x2 − 1

9) dx
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3√(

1
5x5 − 2

9x3 + 1
9x
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−
(

1
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9(−1)

)
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3√
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=

√
45

8

(
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3
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=

3
√

5
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√

2
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3

)
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Page 349 Number 34

Page 349 Number 34 (continued 3)

Page 349 Number 34. Find an orthonormal basis for sp(1, x , x2) for

−1 ≤ x ≤ 1 if the inner product is defined by 〈f , g〉 =
∫ 1
−1 f (x)g(x) dx .

Solution (continued). So an orthonormal basis for sp(1, x , x2) is{
1√
2
,

√
3x√
2

,
3
√

5

2
√

2

(
x2 − 1

3

)}
.

�
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