Linear Algebra

Chapter 6: Orthogonality Section 6.4. The Projection Matrix—Proofs of Theorems

Table of contents

- 2 Example 6.4.2
- 3 Page 368 Number 6
- Theorem 6.11. Projection Matrix
- 5 Theorem 6.12. Characterization Projection Matrices
- 6 Page 369 Number 28
- Page 369 Number 32

Theorem 6.10. The Rank of $(A^T)A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^T)A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v} = \vec{0}$ and so $A^T(A\vec{v}) = A^T\vec{0}$ or $(A^TA)\vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of A^TA .

Theorem 6.10. The Rank of $(A^T)A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^T)A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v} = \vec{0}$ and so $A^T(A\vec{v}) = A^T\vec{0}$ or $(A^TA)\vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of A^TA . Conversely, suppose \vec{w} is in the nullspace of A^TA so that $(A^TA)\vec{w} = \vec{0}$. Then $\vec{w}^T(A^TA)\vec{w} = \vec{w}^T\vec{0}$ or $(\vec{w})^T(A\vec{w}) = \vec{w}^T\vec{0} = [0]$ (notice that \vec{w} is $n \times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^T\vec{0}$ is 1×1). Now $(A\vec{w})^T(A\vec{w}) = [A\vec{w} \cdot A\vec{w}] = [||A\vec{w}||^2]$ and so $||A\vec{w}|| = 0$ or $A\vec{w} = \vec{0}$. That is, \vec{w} is in the nullspace of A^TA and nullity(A) = nullity (A^TA) .

Theorem 6.10. The Rank of $(A^T)A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^T)A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v} = \vec{0}$ and so $A^T(A\vec{v}) = A^T\vec{0}$ or $(A^{T}A)\vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of $A^{T}A$. Conversely, suppose \vec{w} is in the nullspace of $A^T A$ so that $(A^T A)\vec{w} = \vec{0}$. Then $\vec{w}^T (A^T A) \vec{w} = \vec{w}^T \vec{0}$ or $(\vec{w})^T (A \vec{w}) = \vec{w}^T \vec{0} = [0]$ (notice that \vec{w} is $n \times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^T \vec{0}$ is 1×1). Now $(A\vec{w})^{T}(A\vec{w}) = [A\vec{w} \cdot A\vec{w}] = [||A\vec{w}||^{2}]$ and so $||A\vec{w}|| = 0$ or $A\vec{w} = \vec{0}$. That is, \vec{w} is in the nullspace of $A^T A$ and nullity(A) = nullity $(A^T A)$. Since both A and $A^{T}A$ have *n* columns then by the rank-nullity equation (Theorem 2.5) rank(A) + nullity(A) = number of columns(A) = n =number of columns $(A^{T}A)$ = rank $(A^{T}A)$ + nullity $(A^{T}A)$ and so $rank(A) = rank(A^{T}A)$, as claimed.

Theorem 6.10. The Rank of $(A^T)A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^T)A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v} = \vec{0}$ and so $A^T(A\vec{v}) = A^T\vec{0}$ or $(A^{T}A)\vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of $A^{T}A$. Conversely, suppose \vec{w} is in the nullspace of $A^T A$ so that $(A^T A)\vec{w} = \vec{0}$. Then $\vec{w}^T (A^T A) \vec{w} = \vec{w}^T \vec{0}$ or $(\vec{w})^T (A \vec{w}) = \vec{w}^T \vec{0} = [0]$ (notice that \vec{w} is $n \times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^T \vec{0}$ is 1×1). Now $(A\vec{w})^{T}(A\vec{w}) = [A\vec{w} \cdot A\vec{w}] = [||A\vec{w}||^{2}]$ and so $||A\vec{w}|| = 0$ or $A\vec{w} = \vec{0}$. That is, \vec{w} is in the nullspace of $A^T A$ and nullity $(A) = \text{nullity}(A^T A)$. Since both A and $A^{T}A$ have *n* columns then by the rank-nullity equation (Theorem 2.5) rank(A) + nullity(A) = number of columns(A) = n =number of columns($A^T A$) = rank($A^T A$) + nullity($A^T A$) and so $rank(A) = rank(A^{T}A)$, as claimed.

Example 6.4.2

Example 6.4.2. Use the definition to find the projection matrix for the subspace in \mathbb{R}^3 of the x_2x_2 -plane (which is spanned by $\hat{j} = [0, 1, 0]$ and $\hat{k} = [0, 0, 1]$).

Solution. We have
$$A = \begin{bmatrix} \hat{i} \ \hat{j} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $A^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then
 $A^T A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (A^T A)^{-1}$, so
 $P = A(A^T A)^{-1}A^T = AA^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
Notice that $P \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ b_2 \\ b_2 \end{bmatrix}$, as expected. \Box

Linear Algebra

Example 6.4.2

Example 6.4.2. Use the definition to find the projection matrix for the subspace in \mathbb{R}^3 of the x_2x_2 -plane (which is spanned by $\hat{j} = [0, 1, 0]$ and $\hat{k} = [0, 0, 1]$).

Solution. We have
$$A = \begin{bmatrix} \hat{i} & \hat{j} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $A^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then
 $A^T A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (A^T A)^{-1}$, so
 $P = A(A^T A)^{-1}A^T = AA^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
Notice that $P \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ b_2 \\ b_2 \end{bmatrix}$, as expected. \Box

Linear Algebra

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0 of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane 3x + 2y + z = 0.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$\vec{a}_2 = [1, 0, -3].$$
 We set $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix}$ and so $A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.$

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0 of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane 3x + 2y + z = 0.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.$$

Hence $A^T A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}.$

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0 of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane 3x + 2y + z = 0.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.$$

Hence $A^T A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}.$ So for

 $(A^T A)^{-1}$, consider

$$\begin{bmatrix} 5 & 6 & | & 1 & 0 \\ 6 & 10 & | & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 5 & 6 & | & 1 & 0 \\ 1 & 4 & | & -1 & 1 \end{bmatrix}$$

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0 of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane 3x + 2y + z = 0.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$\vec{a}_{2} = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^{T} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.$$

Hence $A^{T}A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}.$ So for $(A^{T}A)^{-1}$, consider

$$\left[\begin{array}{cc|c} 5 & 6 & 1 & 0 \\ 6 & 10 & 0 & 1 \end{array}\right] \xrightarrow{R_2 \to R_2 - R_1} \left[\begin{array}{cc|c} 5 & 6 & 1 & 0 \\ 1 & 4 & -1 & 1 \end{array}\right]$$

Page 368 Number 6 (continued 1)

Solution (continued).

Page 368 Number 6 (continued 1)

Solution (continued).

 $\underbrace{\overset{K_{1} \leftrightarrow K_{2}}{\longrightarrow}}_{5 \ 6 \ 6 \ 1 \ 0 \ 1 \ 0 \ -14 \ 6 \ -5 \ -5} \begin{bmatrix} 1 & 4 & -1 & 1 \\ 5 & 6 & 1 & 0 \end{bmatrix} \overset{K_{2} \leftrightarrow R_{2} - 5R_{1}}{\overset{K_{2} \leftrightarrow R_{2} - 5R_{1}}{\longrightarrow}} \begin{bmatrix} 1 & 4 & -1 & 1 \\ 0 & -14 & 6 & -5 \end{bmatrix} \overset{R_{2} \leftrightarrow R_{2} / (-14)}{\overset{K_{2} \leftrightarrow R_{2} / (-14)}{\longrightarrow}}$ $\begin{bmatrix} 1 & 4 & -1 & 1 \\ 0 & 1 & -6/14 & 5/14 \end{bmatrix} \xrightarrow{\kappa_1 \leftrightarrow \kappa_1 - 4\kappa_2} \begin{bmatrix} 1 & 0 & 10/14 & -6/14 \\ 0 & 1 & -6/14 & 5/14 \end{bmatrix}$ and so $(A^T A)^{-1} = \frac{1}{14} \begin{bmatrix} 10 & -6 \\ -6 & 5 \end{bmatrix}$. So the projection matrix is $P = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 2 \end{bmatrix} \begin{pmatrix} 1 \\ 14 \begin{bmatrix} 10 & -6 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}$ $= \frac{1}{14} \begin{vmatrix} -0 & 5 \\ 10 & -6 \\ -2 & -3 \end{vmatrix} \begin{vmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{vmatrix} = \begin{vmatrix} 1 \\ 14 \end{vmatrix} \begin{vmatrix} 5 & -6 & -3 \\ -6 & 10 & -2 \\ -3 & -2 & 13 \end{vmatrix}.$

Page 368 Number 6 (continued 2)

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0 of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane 3x + 2y + z = 0.

Solution (continued). So the projection of $\vec{b} = [4, 2, -1]$ onto the plane is

$$\vec{b}_W = P\vec{b}^T = \frac{1}{14} \begin{bmatrix} 5 & -6 & -3 \\ -6 & 10 & -2 \\ -3 & -2 & 13 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix} = \begin{vmatrix} 1 \\ \frac{1}{14} \begin{bmatrix} 11 \\ -2 \\ -29 \end{bmatrix}.$$

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W. The projection matrix can be found by selecting any basis $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ for W and computing $P = A(A^T A)^{-1}A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1}A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{e}_i$ is the *i*th column of P; that is, P is the standard matrix representation of the linear transformation.

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W. The projection matrix can be found by selecting any basis $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ for W and computing $P = A(A^T A)^{-1}A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1}A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{e}_i$ is the *i*th column of P; that is, P is the standard matrix representation of the linear transformation. Since the standard matrix representation of a linear transformation is unique (assume P' is another standard matrix representation of the linear transformation and then $P\hat{e}_i = P'\hat{e}_i$ is the *i*th column of both P and P'). So the matrix P is unique, as claimed.

(

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W. The projection matrix can be found by selecting any basis $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ for W and computing $P = A(A^T A)^{-1}A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1}A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{e}_i$ is the *i*th column of P; that is, P is the standard matrix representation of the linear transformation. Since the standard matrix representation of a linear transformation is unique (assume P' is another standard matrix representation of the linear transformation and then $P\hat{e}_i = P'\hat{e}_i$ is the *i*th column of both P and P'). So the matrix P is unique, as claimed.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2 = P$) and symmetric (that is, $P = P^T$). Conversely, every $n \times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P = A(A^T A)^{-1}A^T$ we have

$$P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})$$
$$= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P$$

and so P is idempotent, as claimed.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2 = P$) and symmetric (that is, $P = P^T$). Conversely, every $n \times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P = A(A^T A)^{-1}A^T$ we have

$$P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})$$
$$= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P$$

and so P is idempotent, as claimed. Next,

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}(A^{T})$$

= $A((A^{T}A)^{T})^{-1}A^{T}$ since $(A^{T})^{T} = A$ by Note 1.3.A
and $(A^{-1})^{T} = (A^{T})^{-1}$ by Exercise 1.5.24
= $A(A^{T}A)^{-1}A^{T} = P$ and so P is symmetric.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2 = P$) and symmetric (that is, $P = P^T$). Conversely, every $n \times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P = A(A^T A)^{-1}A^T$ we have

$$P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})$$
$$= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P$$

and so P is idempotent, as claimed. Next,

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}(A^{T})$$

= $A((A^{T}A)^{T})^{-1}A^{T}$ since $(A^{T})^{T} = A$ by Note 1.3.A
and $(A^{-1})^{T} = (A^{T})^{-1}$ by Exercise 1.5.24
= $A(A^{T}A)^{-1}A^{T} = P$ and so P is symmetric.

Theorem 6.12 (continued 1)

Proof (continued). For the converse, let P be an $n \times n$ symmetric and idempotent matrix. Let $\vec{b} \in \mathbb{R}^n$. If we show $P\vec{b} \in W$ and $\vec{b} - P\vec{b}$ is perpendicular to every vector in W where W is some subspace of \mathbb{R}^n (the subspace here will be the column space of matrix P), that is the two conditions of the note after Theorem 6.10 are satisfied, then we know P is a projection matrix (based on the uniqueness of a projection matrix for a given subspace W, as given by Theorem 6.11). Now $P\vec{b}$ is in the column space of P (see Note 1.3.A). Let $p\vec{x}$ be any vector in the column space of P. Then

$$\begin{split} [(\vec{b} - P\vec{b}) \cdot P\vec{x}] &= (\vec{b} - P\vec{b})^T P\vec{x} = ((\mathcal{I} - P)\vec{b})^T P\vec{x} \\ &= \vec{b}^T (\mathcal{I} - P)^T P\vec{x} = \vec{b}^T (\mathcal{I}^T - P^T) P\vec{x} \\ &= \vec{b}^T (\mathcal{I} - P) P\vec{x} \text{ since } P \text{ is symmetric} \\ &= \vec{b}^T (P - P^2) \vec{x} = \vec{b}^T (P - P) \vec{x} \text{ since } P \text{ is idempotent} \\ &= \vec{b}^T (0) \vec{x} = [0]. \end{split}$$

Theorem 6.12 (continued 1)

Proof (continued). For the converse, let P be an $n \times n$ symmetric and idempotent matrix. Let $\vec{b} \in \mathbb{R}^n$. If we show $P\vec{b} \in W$ and $\vec{b} - P\vec{b}$ is perpendicular to every vector in W where W is some subspace of \mathbb{R}^n (the subspace here will be the column space of matrix P), that is the two conditions of the note after Theorem 6.10 are satisfied, then we know P is a projection matrix (based on the uniqueness of a projection matrix for a given subspace W, as given by Theorem 6.11). Now $P\vec{b}$ is in the column space of P (see Note 1.3.A). Let $p\vec{x}$ be any vector in the column space of P. Then

$$\begin{split} [(\vec{b} - P\vec{b}) \cdot P\vec{x}] &= (\vec{b} - P\vec{b})^T P\vec{x} = ((\mathcal{I} - P)\vec{b})^T P\vec{x} \\ &= \vec{b}^T (\mathcal{I} - P)^T P\vec{x} = \vec{b}^T (\mathcal{I}^T - P^T) P\vec{x} \\ &= \vec{b}^T (\mathcal{I} - P) P\vec{x} \text{ since } P \text{ is symmetric} \\ &= \vec{b}^T (P - P^2) \vec{x} = \vec{b}^T (P - P) \vec{x} \text{ since } P \text{ is idempotent} \\ &= \vec{b}^T (0) \vec{x} = [0]. \end{split}$$

Theorem 6.12 (continued 2)

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2 = P$) and symmetric (that is, $P = P^T$). Conversely, every $n \times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof (continued). So $(\vec{b} - P\vec{b}) \cdot P\vec{x} = 0$ and $\vec{b} - P\vec{b}$ is orthogonal to every vector in the column space of *P*, as claimed.

Page 369 Number 28. Find the projection matrix for the subspace *W* spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Solution. We have
$$A = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$
 and so

Page 369 Number 28. Find the projection matrix for the subspace *W* spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Page 369 Number 28 (continued)

Page 369 Number 28. Find the projection matrix for the subspace *W* spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Solution (continued). ...

Page 369 Number 32. Find the projection of $\vec{b} = [4, -12, -4, 0]$ onto W the subspace of \mathbb{R}^4 given in Exercise 6.4.28.

Solution. We use the projection matrix of Exercise 6.4.28:

$$\vec{b}_W = P\vec{b}^T = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -12 \\ -4 \\ 0 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} -4 \\ -28 \\ 4 \\ -20 \end{bmatrix} = \begin{bmatrix} -1 \\ -7 \\ 1 \\ -5 \end{bmatrix}.$$

Page 369 Number 32. Find the projection of $\vec{b} = [4, -12, -4, 0]$ onto W the subspace of \mathbb{R}^4 given in Exercise 6.4.28.

Solution. We use the projection matrix of Exercise 6.4.28:

$$\vec{b}_W = P\vec{b}^T = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -12 \\ -4 \\ 0 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} -4 \\ -28 \\ 4 \\ -20 \end{bmatrix} = \begin{bmatrix} -1 \\ -7 \\ 1 \\ -5 \end{bmatrix}.$$