Linear Algebra

Chapter 6: Orthogonality Section 6.4. The Projection Matrix—Proofs of Theorems

Table of contents

- [Example 6.4.2](#page-6-0)
- [Page 368 Number 6](#page-8-0)
- [Theorem 6.11. Projection Matrix](#page-15-0)
- [Theorem 6.12. Characterization Projection Matrices](#page-18-0)
- [Page 369 Number 28](#page-24-0)
	- [Page 369 Number 32](#page-27-0)

Theorem 6.10. The Rank of $(A^{\mathcal{T}})A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^{\mathcal{T}})A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem) 2.5). If \vec{v} is in the nullspace of A then $A\vec{v}=\vec{0}$ and so $A^{\mathcal{T}}(A\vec{v})=A^{\mathcal{T}}\vec{0}$ or $(A^T A)\vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of $A^T A$.

Theorem 6.10. The Rank of $(A^{\mathcal{T}})A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^{\mathcal{T}})A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v}=\vec{0}$ and so $A^{\mathcal{T}}(A\vec{v})=A^{\mathcal{T}}\vec{0}$ or $(A^{\mathcal{T}}A)\vec{v}=\vec{0}.$ Hence \vec{v} is in the nullspace of $A^{\mathcal{T}}A$. Conversely, suppose \vec{w} is in the nullspace of A^TA so that $(A^TA)\vec w=\vec 0$. Then $\vec w^{\,T}(A^TA)\vec w=\vec w^{\,T}\vec 0$ or $(\vec w)^{\,T}(A\vec w)=\vec w^{\,T}\vec 0=[0]$ (notice that $\vec w$ is $n\times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^{\,T} \vec{0}$ is $1 \times 1)$. Now $(A\vec{w})^{\top} (A\vec{w}) = [A\vec{w}\cdot A\vec{w}] = [\|A\vec{w}\|^2]$ and so $\|A\vec{w}\| = 0$ or $A\vec{w} = \vec{0}$. That is, \vec{w} is in the nullspace of A^TA and nullity($A) =$ nullity(A^TA).

Theorem 6.10. The Rank of $(A^{\mathcal{T}})A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^{\mathcal{T}})A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v}=\vec{0}$ and so $A^{\mathcal{T}}(A\vec{v})=A^{\mathcal{T}}\vec{0}$ or $(A^{\mathcal{T}}A) \vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of $A^{\mathcal{T}}A$. Conversely, suppose \vec{w} is in the nullspace of A^TA so that $(A^TA)\vec w=\vec 0.$ Then $\vec w^{\,T}(A^TA)\vec w=\vec w^{\,T}\vec 0$ or $(\vec w)^{\,T}(A\vec w)=\vec w^{\,T}\vec 0=[0]$ (notice that $\vec w$ is $n\times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^{\, \mathcal{T}} \vec{0}$ is $1 \times 1)$. Now $(A\vec w)^\mathsf{T} (A\vec w) = [A\vec w\cdot A\vec w] = [\|A\vec w\|^2]$ and so $\|A\vec w\| = 0$ or $A\vec w = \vec 0$. That is, \vec{w} is in the nullspace of A^TA and nullity $(A) =$ nullity (A^TA) . Since both A and A ${}^{\mathcal{T}}$ A have n columns then by the rank-nullity equation (Theorem 2.5) rank(A) + nullity(A) = number of columns(A) = $n =$ number of columns $(A^T A)=\mathsf{rank}(A^T A)+\mathsf{nullity}(A^T A)$ and so rank (A) = rank $(A^T A)$, as claimed.

Theorem 6.10. The Rank of $(A^{\mathcal{T}})A$.

Let A be an $m \times n$ matrix of rank r. Then the $n \times n$ symmetric matrix $(A^{\mathcal{T}})A$ also has rank r.

Proof. We work with nullspaces and the rank-nullity equation (Theorem 2.5). If \vec{v} is in the nullspace of A then $A\vec{v}=\vec{0}$ and so $A^{\mathcal{T}}(A\vec{v})=A^{\mathcal{T}}\vec{0}$ or $(A^{\mathcal{T}}A) \vec{v} = \vec{0}$. Hence \vec{v} is in the nullspace of $A^{\mathcal{T}}A$. Conversely, suppose \vec{w} is in the nullspace of A^TA so that $(A^TA)\vec w=\vec 0.$ Then $\vec w^{\,T}(A^TA)\vec w=\vec w^{\,T}\vec 0$ or $(\vec w)^{\,T}(A\vec w)=\vec w^{\,T}\vec 0=[0]$ (notice that $\vec w$ is $n\times 1$ and $\vec{0}$ is $n \times 1$ so that $\vec{w}^{\, \mathcal{T}} \vec{0}$ is $1 \times 1)$. Now $(A\vec w)^\mathsf{T} (A\vec w) = [A\vec w\cdot A\vec w] = [\|A\vec w\|^2]$ and so $\|A\vec w\| = 0$ or $A\vec w = \vec 0$. That is, \vec{w} is in the nullspace of A^TA and nullity $(A) =$ nullity (A^TA) . Since both A and A^TA have \emph{n} columns then by the rank-nullity equation (Theorem 2.5) rank (A) + nullity (A) = number of columns (A) = n = number of columns $(A^T A)=\mathsf{rank}(A^T A)+\mathsf{nullity}(A^T A)$ and so rank $(A) = \text{rank}(A^T A)$, as claimed.

Example 6.4.2

Example 6.4.2. Use the definition to find the projection matrix for the subspace in \mathbb{R}^3 of the x_2x_2 -plane (which is spanned by $\hat{j} = [0,1,0]$ and $\hat k = [0,0,1]).$

Solution. We have
$$
A = [\hat{i}\hat{j}] = \begin{bmatrix} 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}
$$
 and $A^T = \begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$. Then
\n $A^T A = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = (A^T A)^{-1}$, so
\n $P = A(A^T A)^{-1} A^T = A A^T = \begin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$.
\nNotice that $P \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ b_2 \\ b_2 \end{bmatrix}$, as expected. \square

Example 6.4.2

Example 6.4.2. Use the definition to find the projection matrix for the subspace in \mathbb{R}^3 of the x_2x_2 -plane (which is spanned by $\hat{j} = [0,1,0]$ and $\hat k = [0,0,1]).$

Solution. We have
$$
A = \begin{bmatrix} \hat{i} \ \hat{j} \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}
$$
 and $A^T = \begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$. Then
\n $A^T A = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = (A^T A)^{-1}$, so
\n $P = A(A^T A)^{-1} A^T = A A^T = \begin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$.
\nNotice that $P \begin{bmatrix} b_1 \ b_2 \ b_2 \end{bmatrix} = \begin{bmatrix} 0 \ b_2 \ b_2 \end{bmatrix}$, as expected. \square

Page 368 Number 6. Find the projection for subspace $3x + 2y + z = 0$ of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane $3x + 2y + z = 0$.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$
\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.
$$

Page 368 Number 6. Find the projection for subspace $3x + 2y + z = 0$ of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane $3x + 2y + z = 0$.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$
\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.
$$

Hence $A^T A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}.$

Page 368 Number 6. Find the projection for subspace $3x + 2y + z = 0$ of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane $3x + 2y + z = 0$.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$
\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.
$$

Hence $A^T A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}$. So for

 $(A^T A)^{-1}$, consider

$$
\left[\begin{array}{ccc|c} 5 & 6 & 1 & 0 \\ 6 & 10 & 0 & 1 \end{array}\right] \xrightarrow{R_2 \rightarrow R_2 - R_1} \left[\begin{array}{ccc|c} 5 & 6 & 1 & 0 \\ 1 & 4 & -1 & 1 \end{array}\right]
$$

Page 368 Number 6. Find the projection for subspace $3x + 2y + z = 0$ of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane $3x + 2y + z = 0$.

Solution. We choose two (nonzero) linearly independent vectors in the plane as a spanning set of the plane. Say, $\vec{a}_1 = [0, 1, -2]$ and

$$
\vec{a}_2 = [1, 0, -3]. \text{ We set } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} \text{ and so } A^T = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix}.
$$

Hence $A^T A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 10 \end{bmatrix}$. So for
 $(A^T A)^{-1}$, consider

Page 368 Number 6 (continued 1)

Solution (continued).

$$
\frac{R_1 \leftrightarrow R_2}{\left[\begin{array}{cc} 1 & 4 \\ 5 & 6 \end{array} \right] - 1 & 1 \atop 1 & 0} \frac{R_2 \leftrightarrow R_2 - 5R_1}{\left[\begin{array}{cc} 1 & 4 \\ 0 & -14 \end{array} \right] - 6 - 14} \left[\begin{array}{cc} 1 & 1 \\ 6 & -5 \end{array} \right] \frac{R_2 \leftrightarrow R_2/(-14)}{\left[\begin{array}{cc} 1 & 4 \\ 0 & 1 \end{array} \right] - 6/14} \frac{1}{5/14} \frac{R_1 \leftrightarrow R_1 - 4R_2}{\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] - 6/14} \frac{10/14}{5/14} \frac{-6/14}{5/14}
$$
\nand so $(A^TA)^{-1} = \frac{1}{14} \left[\begin{array}{cc} 10 & -6 \\ -6 & 5 \end{array} \right]$. So the projection matrix is\n
$$
P = A(A^TA)^{-1}A^T = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \\ -2 & -3 \end{array} \right] \left(\frac{1}{14} \left[\begin{array}{cc} 10 & -6 \\ -6 & 5 \end{array} \right] \right) \left[\begin{array}{cc} 0 & 1 & -2 \\ 1 & 0 & -3 \\ -3 & -2 & 13 \end{array} \right]
$$

Page 368 Number 6 (continued 1)

Solution (continued).

 $\overbrace{ \begin{array}{c} R_1 \leftrightarrow R_2 \ \hline 5 \end{array} }^{R_1 \leftrightarrow R_2} \left[\begin{array}{cc} 1 & 4 & | & -1 & 1 \ \hline 5 & 6 & | & 1 & 0 \end{array} \right]^{R_2 \leftrightarrow R_2-5R_1} \left[\begin{array}{cc} 1 & 4 & | & -1 & 1 \ \hline 0 & -14 & | & 6 & -5 \end{array} \right]$ 0 −14 6 −5 $\bigg\} \stackrel{R_2\leftrightarrow R_2/(-14)}{=}$ $\begin{bmatrix} 1 & 4 & -1 & 1 \\ 0 & 1 & -6/14 & 5/14 \end{bmatrix}$ $\stackrel{R_1 \leftrightarrow R_1 - 4R_2}{\sim}$ $\begin{bmatrix} 1 & 0 & 10/14 & -6/14 \\ 0 & 1 & -6/14 & 5/14 \end{bmatrix}$ and so $(A^T A)^{-1} = \frac{1}{14} \left[\begin{array}{cc} 10 & -6 \ -6 & 5 \end{array} \right]$. So the projection matrix is $P = A(A^T A)^{-1} A^T =$ \lceil $\overline{1}$ 0 1 1 0 -2 -3 1 $\overline{1}$ $\left(\frac{1}{14}\left[\begin{array}{cc}10 & -6\\-6 & 5\end{array}\right]\right)\left[\begin{array}{cc}0 & 1 & -2\\1 & 0 & -3\end{array}\right]$ 1 $=\frac{1}{1}$ 14 \lceil $\overline{}$ −6 5 10 −6 -2 -3 1 $\overline{1}$ $\begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$ $1 \t 0 \t -3$ $=\frac{1}{12}$ 14 $\sqrt{ }$ $\overline{}$ $5 -6 -3$ -6 10 -2 −3 −2 13 1 $|\cdot$

Page 368 Number 6 (continued 2)

Page 368 Number 6. Find the projection for subspace $3x + 2y + z = 0$ of \mathbb{R}^3 and find the projection of $\vec{b} = [4, 2, -1]$ onto the plane $3x + 2y + z = 0$.

Solution (continued). So the projection of $\vec{b} = [4, 2, -1]$ onto the plane is

$$
\vec{b}_W = P\vec{b}^T = \frac{1}{14} \begin{bmatrix} 5 & -6 & -3 \\ -6 & 10 & -2 \\ -3 & -2 & 13 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{14} \begin{bmatrix} 11 \\ -2 \\ -29 \end{bmatrix}.
$$

 \Box

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W . The projection matrix can be found by selecting any basis $\{\vec a_1, \vec a_2, \dots, \vec a_k \}$ for W and computing $P = A(A^T A)^{-1} A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1} A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{\textbf{e}}_i$ is the i th column of $P;$ that is, P is the standard matrix representation of the linear transformation.

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W . The projection matrix can be found by selecting any basis $\{\vec a_1, \vec a_2, \dots, \vec a_k \}$ for W and computing $P = A(A^T A)^{-1} A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1} A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{\textbf{e}}_i$ is the i th column of $P;$ that is, P is the standard matrix representation of the linear transformation. Since the standard matrix representation of a linear transformation is unique (assume P' is another standard matrix representation of the linear transformation and then $P\hat{e}_i = P'\hat{e}_i$ is the *i*th column of both P and P'). So the matrix P is unique, as claimed.

Theorem 6.11. Projection Matrix.

Let W be a subspace of \mathbb{R}^n . There is a unique $n \times n$ matrix P such that, for each column vector $\vec{b} \in \mathbb{R}^n$, the vector $P\vec{b}$ is the projection of \vec{b} onto W . The projection matrix can be found by selecting any basis $\{\vec a_1, \vec a_2, \dots, \vec a_k \}$ for W and computing $P = A(A^T A)^{-1} A^T$, where A is the $n \times k$ matrix having column vectors $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k$.

Proof. We know from above that $P = A(A^T a)^{-1} A^T$ satisfies the requirements of a projection matrix. For any vector $\vec{x} \in \mathbb{R}^n$, the transformation mapping $\vec{x} \mapsto P(\vec{x})$ is a linear transformation by Theorem 1.3.A(7) and (10). Now with the *i*th standard basis vector of \mathbb{R}^n as \hat{e}_i , we have that $P\hat{\textbf{e}}_i$ is the i th column of $P;$ that is, P is the standard matrix representation of the linear transformation. Since the standard matrix representation of a linear transformation is unique (assume P' is another standard matrix representation of the linear transformation and then $P\hat{e}_i = P'\hat{e}_i$ is the *i*th column of both P and P'). So the matrix P is unique, as claimed.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2=P)$ and symmetric (that is, $P=P^{\mathcal{T}}).$ Conversely, every $n\times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P=A(A^TA)^{-1}A^T$ we have

$$
P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})
$$

$$
= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P
$$

and so P is idempotent, as claimed.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2=P)$ and symmetric (that is, $P=P^{\mathcal{T}}).$ Conversely, every $n\times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P=A(A^TA)^{-1}A^T$ we have

$$
P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})
$$

$$
= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P
$$

and so P is idempotent, as claimed. Next,

$$
P^{T} = (A(A^{T}A)^{-1}A^{T})^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}(A^{T})
$$

= $A((A^{T}A)^{T})^{-1}A^{T}$ since $(A^{T})^{T} = A$ by Note 1.3.A
and $(A^{-1})^{T} = (A^{T})^{-1}$ by Exercise 1.5.24
= $A(A^{T}A)^{-1}A^{T} = P$ and so P is symmetric.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2=P)$ and symmetric (that is, $P=P^{\mathcal{T}}).$ Conversely, every $n\times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and symmetric (this is Exercise 6.4.16). For $P=A(A^TA)^{-1}A^T$ we have

$$
P^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T}) = A(A^{T}A)^{-1}(A^{T}A(A^{T}A)^{-1}A^{T})
$$

$$
= A(A^{T}A)^{-1}\mathcal{I}A^{T} = A(A^{T}A)^{-1}A^{T} = P
$$

and so P is idempotent, as claimed. Next,

$$
P^{T} = (A(A^{T}A)^{-1}A^{T})^{T} = (A^{T})^{T}((A^{T}A)^{-1})^{T}(A^{T})
$$

= $A((A^{T}A)^{T})^{-1}A^{T}$ since $(A^{T})^{T} = A$ by Note 1.3.A
and $(A^{-1})^{T} = (A^{T})^{-1}$ by Exercise 1.5.24
= $A(A^{T}A)^{-1}A^{T} = P$ and so P is symmetric.

Theorem 6.12 (continued 1)

Proof (continued). For the converse, let P be an $n \times n$ symmetric and idempotent matrix. Let $\vec{b} \in \mathbb{R}^n$. If we show $P\vec{b} \in W$ and $\vec{b} - P\vec{b}$ is perpendicular to every vector in W where W is some subspace of \mathbb{R}^n (the subspace here will be the column space of matrix P), that is the two conditions of the note after Theorem 6.10 are satisfied, then we know P is a projection matrix (based on the uniqueness of a projection matrix for a given subspace W, as given by Theorem 6.11). Now $P\vec{b}$ is in the column **space of P (see Note 1.3.A).** Let $p\vec{x}$ be any vector in the column space of P. Then

$$
[(\vec{b} - P\vec{b}) \cdot P\vec{x}] = (\vec{b} - P\vec{b})^T P\vec{x} = ((\mathcal{I} - P)\vec{b})^T P\vec{x}
$$

\n
$$
= \vec{b}^T (\mathcal{I} - P)^T P\vec{x} = \vec{b}^T (\mathcal{I}^T - P^T) P\vec{x}
$$

\n
$$
= \vec{b}^T (\mathcal{I} - P) P\vec{x} \text{ since } P \text{ is symmetric}
$$

\n
$$
= \vec{b}^T (P - P^2) \vec{x} = \vec{b}^T (P - P) \vec{x} \text{ since } P \text{ is idempotent}
$$

\n
$$
= \vec{b}^T (0) \vec{x} = [0].
$$

Theorem 6.12 (continued 1)

Proof (continued). For the converse, let P be an $n \times n$ symmetric and idempotent matrix. Let $\vec{b} \in \mathbb{R}^n$. If we show $P\vec{b} \in W$ and $\vec{b} - P\vec{b}$ is perpendicular to every vector in W where W is some subspace of \mathbb{R}^n (the subspace here will be the column space of matrix P), that is the two conditions of the note after Theorem 6.10 are satisfied, then we know P is a projection matrix (based on the uniqueness of a projection matrix for a given subspace W, as given by Theorem 6.11). Now $P\vec{b}$ is in the column space of P (see Note 1.3.A). Let $p\vec{x}$ be any vector in the column space of P. Then

$$
[(\vec{b} - P\vec{b}) \cdot P\vec{x}] = (\vec{b} - P\vec{b})^T P\vec{x} = ((\mathcal{I} - P)\vec{b})^T P\vec{x}
$$

\n
$$
= \vec{b}^T (\mathcal{I} - P)^T P\vec{x} = \vec{b}^T (\mathcal{I}^T - P^T) P\vec{x}
$$

\n
$$
= \vec{b}^T (\mathcal{I} - P) P\vec{x} \text{ since } P \text{ is symmetric}
$$

\n
$$
= \vec{b}^T (P - P^2) \vec{x} = \vec{b}^T (P - P) \vec{x} \text{ since } P \text{ is idempotent}
$$

\n
$$
= \vec{b}^T (0) \vec{x} = [0].
$$

Theorem 6.12 (continued 2)

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of \mathbb{R}^n is both idempotent (that is, $P^2=P)$ and symmetric (that is, $P=P^{\mathcal{T}}).$ Conversely, every $n\times n$ matrix that is both idempotent and symmetric is a projection matrix (specifically, it is the projection matrix for its column space).

Proof (continued). So $(\vec{b} - P\vec{b}) \cdot P\vec{x} = 0$ and $\vec{b} - P\vec{b}$ is orthogonal to every vector in the column space of P , as claimed.

Page 369 Number 28. Find the projection matrix for the subspace W spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Solution. We have
$$
A = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}
$$
 and so

$$
P = AA^T = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \left(\frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \right) \dots
$$

Page 369 Number 28. Find the projection matrix for the subspace W spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Solution. We have
$$
A = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}
$$
 and so

$$
P = AA^T = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \left(\frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \right) \dots
$$

Page 369 Number 28 (continued)

Page 369 Number 28. Find the projection matrix for the subspace W spanned by the orthonormal vectors $\vec{a}_1 = [1/2, 1/2, 1/2, 1/2]$, $\vec{a}_2 = [-1/2, 1/2, -1/2, 1/2]$, and $\vec{a}_3 = [1/2, 1/2, -1/2, -1/2]$.

Solution (continued). ...

$$
= \begin{bmatrix} 3 & 1 & 1 & -1 \\ \frac{1}{4} & 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix}.
$$

Page 369 Number 32. Find the projection of $\vec{b} = [4, -12, -4, 0]$ onto W the subspace of \mathbb{R}^4 given in Exercise 6.4.28.

Solution. We use the projection matrix of Exercise 6.4.28:

$$
\vec{b}_{W} = P\vec{b}^{T} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -12 \\ -4 \\ 0 \end{bmatrix}
$$

$$
= \frac{1}{4} \begin{bmatrix} -4 \\ -28 \\ 4 \\ -20 \end{bmatrix} = \begin{bmatrix} -1 \\ -7 \\ 1 \\ -5 \end{bmatrix}.
$$

 \Box

Page 369 Number 32. Find the projection of $\vec{b} = [4, -12, -4, 0]$ onto W the subspace of \mathbb{R}^4 given in Exercise 6.4.28.

Solution. We use the projection matrix of Exercise 6.4.28:

$$
\vec{b}_{W} = P\vec{b}^{T} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -12 \\ -4 \\ 0 \end{bmatrix}
$$

$$
= \frac{1}{4} \begin{bmatrix} -4 \\ -28 \\ 4 \\ -20 \end{bmatrix} = \begin{bmatrix} -1 \\ -7 \\ 1 \\ -5 \end{bmatrix}.
$$

 \Box