
Linear Algebra

December 14, 2018

Chapter 6: Orthogonality
Section 6.4. The Projection Matrix—Proofs of Theorems

() Linear Algebra December 14, 2018 1 / 14



Table of contents

1 Theorem 6.10. The Rank of (AT )A

2 Example 6.4.2

3 Page 368 Number 6

4 Theorem 6.11. Projection Matrix

5 Theorem 6.12. Characterization Projection Matrices

6 Page 369 Number 28

7 Page 369 Number 32

() Linear Algebra December 14, 2018 2 / 14



Theorem 6.10. The Rank of (AT )A

Theorem 6.10

Theorem 6.10. The Rank of (AT )A.
Let A be an m × n matrix of rank r . Then the n × n symmetric matrix
(AT )A also has rank r .

Proof. We work with nullspaces and the rank-nullity equation (Theorem
2.5). If ~v is in the nullspace of A then A~v = ~0 and so AT (A~v) = AT~0 or
(ATA)~v = ~0. Hence ~v is in the nullspace of ATA.

Conversely, suppose ~w
is in the nullspace of ATA so that (ATA)~w = ~0. Then
~wT (ATA)~w = ~wT~0 or (~w)T (A~w) = ~wT~0 = [0] (notice that ~w is n × 1
and ~0 is n × 1 so that ~wT~0 is 1× 1). Now
(A~w)T (A~w) = [A~w · A~w ] = [‖A~w‖2] and so ‖A~w‖ = 0 or A~w = ~0. That
is, ~w is in the nullspace of ATA and nullity(A) = nullity(ATA). Since both
A and ATA have n columns then by the rank-nullity equation (Theorem
2.5) rank(A) + nullity(A) = number of columns(A) = n =
number of columns(ATA) = rank(ATA) + nullity(ATA) and so
rank(A) = rank(ATA), as claimed.
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Example 6.4.2

Example 6.4.2

Example 6.4.2. Use the definition to find the projection matrix for the
subspace in R3 of the x2x2-plane (which is spanned by ĵ = [0, 1, 0] and
k̂ = [0, 0, 1]).

Solution. We have A = [̂i ĵ ] =

 0 0
1 0
0 1

 and AT =

[
0 1 0
0 0 1

]
. Then

ATA =

[
1 0
0 1

]
= (ATA)−1, so

P = A(ATA)−1AT = AAT =

 0 0 0
0 1 0
0 0 1

 .

Notice that P

 b1

b2

b2

 =

 0
b2

b2

, as expected. �
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Page 368 Number 6

Page 368 Number 6

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0
of R3 and find the projection of ~b = [4, 2,−1] onto the plane
3x + 2y + z = 0.

Solution. We choose two (nonzero) linearly independent vectors in the
plane as a spanning set of the plane. Say, ~a1 = [0, 1,−2] and

~a2 = [1, 0,−3]. We set A =

 0 1
1 0

−2 −3

 and so AT =

[
0 1 −2
1 0 −3

]
.

Hence ATA =

[
0 1 −2
1 0 −3

] 0 1
1 0

−2 −3

 =

[
5 6
6 10

]
. So for

(ATA)−1, consider[
5 6 1 0
6 10 0 1

] R2→R2−R1

˜
[

5 6 1 0
1 4 −1 1

]
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Page 368 Number 6

Page 368 Number 6 (continued 1)

Solution (continued).

R1↔R2

˜
[

1 4 −1 1
5 6 1 0

] R2↔R2−5R1

˜
[

1 4 −1 1
0 −14 6 −5

] R2↔R2/(−14)

˜[
1 4 −1 1
0 1 −6/14 5/14

] R1↔R1−4R2

˜
[

1 0 10/14 −6/14
0 1 −6/14 5/14

]
and so (ATA)−1 = 1

14

[
10 −6
−6 5

]
. So the projection matrix is

P = A(ATA)−1AT =

 0 1
1 0

−2 −3

(
1

14

[
10 −6
−6 5

]) [
0 1 −2
1 0 −3

]

=
1

14

 −6 5
10 −6
−2 −3

[
0 1 −2
1 0 −3

]
= 1

14

 5 −6 −3
−6 10 −2
−3 −2 13

 .
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Page 368 Number 6

Page 368 Number 6 (continued 1)

Solution (continued).
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Page 368 Number 6

Page 368 Number 6 (continued 2)

Page 368 Number 6. Find the projection for subspace 3x + 2y + z = 0
of R3 and find the projection of ~b = [4, 2,−1] onto the plane
3x + 2y + z = 0.

Solution (continued). So the projection of ~b = [4, 2,−1] onto the plane
is

~bW = P~bT =
1

14

 5 −6 −3
−6 10 −2
−3 −2 13

 4
2

−1

 = 1
14

 11
−2
−29

 .

�
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Theorem 6.11. Projection Matrix

Theorem 6.11

Theorem 6.11. Projection Matrix.
Let W be a subspace of Rn. There is a unique n × n matrix P such that,
for each column vector ~b ∈ Rn, the vector P~b is the projection of ~b onto
W . The projection matrix can be found by selecting any basis
{~a1,~a2, . . . ,~ak} for W and computing P = A(ATA)−1AT , where A is the
n × k matrix having column vectors ~a1,~a2, . . . ,~ak .

Proof. We know from above that P = A(ATa)−1AT satisfies the
requirements of a projection matrix. For any vector ~x ∈ Rn, the
transformation mapping ~x 7→ P(~x) is a linear transformation by Theorem
1.3.A(7) and (10). Now with the ith standard basis vector of Rn as êi , we
have that Pêi is the ith column of P; that is, P is the standard matrix
representation of the linear transformation.

Since the standard matrix
representation of a linear transformation is unique (assume P ′ is another
standard matrix representation of the linear transformation and then
Pêi = P ′êi is the ith column of both P and P ′). So the matrix P is
unique, as claimed.

() Linear Algebra December 14, 2018 8 / 14



Theorem 6.11. Projection Matrix

Theorem 6.11

Theorem 6.11. Projection Matrix.
Let W be a subspace of Rn. There is a unique n × n matrix P such that,
for each column vector ~b ∈ Rn, the vector P~b is the projection of ~b onto
W . The projection matrix can be found by selecting any basis
{~a1,~a2, . . . ,~ak} for W and computing P = A(ATA)−1AT , where A is the
n × k matrix having column vectors ~a1,~a2, . . . ,~ak .

Proof. We know from above that P = A(ATa)−1AT satisfies the
requirements of a projection matrix. For any vector ~x ∈ Rn, the
transformation mapping ~x 7→ P(~x) is a linear transformation by Theorem
1.3.A(7) and (10). Now with the ith standard basis vector of Rn as êi , we
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Theorem 6.12. Characterization Projection Matrices

Theorem 6.12

Theorem 6.12. Characterization Projection Matrices.
The projection matrix P for a subspace W of Rn is both idempotent (that
is, P2 = P) and symmetric (that is, P = PT ). Conversely, every n × n
matrix that is both idempotent and symmetric is a projection matrix
(specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and
symmetric (this is Exercise 6.4.16). For P = A(ATA)−1AT we have

P2 = (A(ATA)−1AT )(A(ATA)−1AT ) = A(ATA)−1(ATA(ATA)−1AT )

= A(ATA)−1IAT = A(ATA)−1AT = P

and so P is idempotent, as claimed.

Next,

PT = (A(ATA)−1AT )T = (AT )T ((ATA)−1)T (AT )

= A((ATA)T )−1AT since (AT )T = A by Note 1.3.A

and (A−1)T = (AT )−1 by Exercise 1.5.24

= A(ATA)−1AT = P and so P is symmetric.

() Linear Algebra December 14, 2018 9 / 14



Theorem 6.12. Characterization Projection Matrices

Theorem 6.12

Theorem 6.12. Characterization Projection Matrices.
The projection matrix P for a subspace W of Rn is both idempotent (that
is, P2 = P) and symmetric (that is, P = PT ). Conversely, every n × n
matrix that is both idempotent and symmetric is a projection matrix
(specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and
symmetric (this is Exercise 6.4.16). For P = A(ATA)−1AT we have

P2 = (A(ATA)−1AT )(A(ATA)−1AT ) = A(ATA)−1(ATA(ATA)−1AT )

= A(ATA)−1IAT = A(ATA)−1AT = P

and so P is idempotent, as claimed. Next,

PT = (A(ATA)−1AT )T = (AT )T ((ATA)−1)T (AT )

= A((ATA)T )−1AT since (AT )T = A by Note 1.3.A

and (A−1)T = (AT )−1 by Exercise 1.5.24

= A(ATA)−1AT = P and so P is symmetric.
() Linear Algebra December 14, 2018 9 / 14



Theorem 6.12. Characterization Projection Matrices

Theorem 6.12

Theorem 6.12. Characterization Projection Matrices.
The projection matrix P for a subspace W of Rn is both idempotent (that
is, P2 = P) and symmetric (that is, P = PT ). Conversely, every n × n
matrix that is both idempotent and symmetric is a projection matrix
(specifically, it is the projection matrix for its column space).

Proof. First, we show that a projection matrix P is idempotent and
symmetric (this is Exercise 6.4.16). For P = A(ATA)−1AT we have

P2 = (A(ATA)−1AT )(A(ATA)−1AT ) = A(ATA)−1(ATA(ATA)−1AT )

= A(ATA)−1IAT = A(ATA)−1AT = P

and so P is idempotent, as claimed. Next,

PT = (A(ATA)−1AT )T = (AT )T ((ATA)−1)T (AT )

= A((ATA)T )−1AT since (AT )T = A by Note 1.3.A

and (A−1)T = (AT )−1 by Exercise 1.5.24

= A(ATA)−1AT = P and so P is symmetric.
() Linear Algebra December 14, 2018 9 / 14



Theorem 6.12. Characterization Projection Matrices

Theorem 6.12 (continued 1)

Proof (continued). For the converse, let P be an n × n symmetric and
idempotent matrix. Let ~b ∈ Rn. If we show P~b ∈ W and ~b − P~b is
perpendicular to every vector in W where W is some subspace of Rn (the
subspace here will be the column space of matrix P), that is the two
conditions of the note after Theorem 6.10 are satisfied, then we know P is
a projection matrix (based on the uniqueness of a projection matrix for a
given subspace W , as given by Theorem 6.11). Now P~b is in the column
space of P (see Note 1.3.A). Let p~x be any vector in the column space of
P. Then

[(~b − P~b) · P~x ] = (~b − P~b)TP~x = ((I − P)~b)TP~x

= ~bT (I − P)TP~x = ~bT (IT − PT )P~x

= ~bT (I − P)P~x since P is symmetric

= ~bT (P − P2)~x = ~bT (P − P)~x since P is idempotent

= ~bT (0)~x = [0].
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Theorem 6.12. Characterization Projection Matrices

Theorem 6.12 (continued 2)

Theorem 6.12. Characterization Projection Matrices.
The projection matrix P for a subspace W of Rn is both idempotent (that
is, P2 = P) and symmetric (that is, P = PT ). Conversely, every n × n
matrix that is both idempotent and symmetric is a projection matrix
(specifically, it is the projection matrix for its column space).

Proof (continued). So (~b − P~b) · P~x = 0 and ~b − P~b is orthogonal to
every vector in the column space of P, as claimed.
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Page 369 Number 28

Page 369 Number 28

Page 369 Number 28. Find the projection matrix for the subspace W
spanned by the orthonormal vectors ~a1 = [1/2, 1/2, 1/2, 1/2],
~a2 = [−1/2, 1/2,−1/2, 1/2], and ~a3 = [1/2, 1/2,−1/2,−1/2].

Solution. We have A = 1
2


1 −1 1
1 1 1
1 −1 −1
1 1 −1

 and so

P = AAT =
1

2


1 −1 1
1 1 1
1 −1 −1
1 1 −1


1

2

 1 1 1 1
−1 1 −1 1

1 1 −1 −1

 . . .

() Linear Algebra December 14, 2018 12 / 14



Page 369 Number 28

Page 369 Number 28
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Page 369 Number 28

Page 369 Number 28 (continued)

Page 369 Number 28. Find the projection matrix for the subspace W
spanned by the orthonormal vectors ~a1 = [1/2, 1/2, 1/2, 1/2],
~a2 = [−1/2, 1/2,−1/2, 1/2], and ~a3 = [1/2, 1/2,−1/2,−1/2].

Solution (continued). . . .

= 1
4


3 1 1 −1
1 3 −1 1
1 −1 3 1

−1 1 1 3

 .
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Page 369 Number 32

Page 369 Number 32

Page 369 Number 32. Find the projection of ~b = [4,−12,−4, 0] onto
W the subspace of R4 given in Exercise 6.4.28.

Solution. We use the projection matrix of Exercise 6.4.28:

~bW = P~bT =
1

4


3 1 1 −1
1 3 −1 1
1 −1 3 1

−1 1 1 3




4
−12
−4

0



=
1

4


−4
−28

4
−20

 =


−1
−7

1
−5

 .

�
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