Linear Algebra

Chapter 6: Orthogonality Section 6.5. The Method of Least Squares—Proofs of Theorems

Table of contents

Theorem 6.5.A

Theorem 6.5.A. Let $\vec{b} \in \mathbb{R}^n$ and let W be a subspace of \mathbb{R}^n . Then the projection of \vec{b} onto W, denoted \vec{b}_W (see Theorem 6.1 and Definition 6.2), is the unique vector in W which minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$.

Proof. By Theorem 6.1, $\vec{b} = \vec{b}_W + \vec{b}_{W^{\perp}}$ where $\vec{b}_W \in W$ and $\vec{b}_{W^{\perp}} \in W^{\perp}$. To minimize $\|\vec{b} - \vec{w}\|$ we consider $\|\vec{b} - \vec{w}\|^2$:

Theorem 6.5.A

Theorem 6.5.A. Let $\vec{b} \in \mathbb{R}^n$ and let W be a subspace of \mathbb{R}^n . Then the projection of \vec{b} onto W, denoted \vec{b}_W (see Theorem 6.1 and Definition 6.2), is the unique vector in W which minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$.

Proof. By Theorem 6.1, $\vec{b} = \vec{b}_W + \vec{b}_{W^{\perp}}$ where $\vec{b}_W \in W$ and $\vec{b}_{W^{\perp}} \in W^{\perp}$. To minimize $\|\vec{b} - \vec{w}\|$ we consider $\|\vec{b} - \vec{w}\|^2$:

$$\begin{split} \|\vec{b} - \vec{w}\|^2 &= (\vec{b} - \vec{w}) \cdot (\vec{b} - \vec{w}) \\ &= \left((\vec{b} - \vec{b}_W) + (\vec{b}_W - \vec{w}) \right) \cdot \left((\vec{b} - \vec{b}_W) + (\vec{b}_W - \vec{w}) \right) \\ &= (\vec{b} - \vec{b}_W) \cdot (\vec{b} - \vec{b}_W) + 2(\vec{b} - \vec{b}_W) \cdot (\vec{b}_W - \vec{w}) \\ &+ (\vec{b}_W - \vec{w}) \cdot (\vec{b}_W - \vec{w}) \\ &= \|\vec{b} - \vec{b}_W\|^2 + 2\vec{b}_{W^{\perp}} \cdot (\vec{b}_W - \vec{w}) + \|\vec{b}_W - \vec{w}\|^2 \\ &= \|\vec{b} - \vec{b}_W\|^2 + \|\vec{b}_W - \vec{w}\|^2 \text{ since } \vec{b}_{W^{\perp}} \perp (\vec{b}_W - \vec{w}) \\ &\text{ because } \vec{b}_W - \vec{w} \in W \dots \end{split}$$

Theorem 6.5.A

Theorem 6.5.A. Let $\vec{b} \in \mathbb{R}^n$ and let W be a subspace of \mathbb{R}^n . Then the projection of \vec{b} onto W, denoted \vec{b}_W (see Theorem 6.1 and Definition 6.2), is the unique vector in W which minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$.

Proof. By Theorem 6.1, $\vec{b} = \vec{b}_W + \vec{b}_{W^{\perp}}$ where $\vec{b}_W \in W$ and $\vec{b}_{W^{\perp}} \in W^{\perp}$. To minimize $\|\vec{b} - \vec{w}\|$ we consider $\|\vec{b} - \vec{w}\|^2$:

$$\begin{split} \|\vec{b} - \vec{w}\|^2 &= (\vec{b} - \vec{w}) \cdot (\vec{b} - \vec{w}) \\ &= \left((\vec{b} - \vec{b}_W) + (\vec{b}_W - \vec{w}) \right) \cdot \left((\vec{b} - \vec{b}_W) + (\vec{b}_W - \vec{w}) \right) \\ &= (\vec{b} - \vec{b}_W) \cdot (\vec{b} - \vec{b}_W) + 2(\vec{b} - \vec{b}_W) \cdot (\vec{b}_W - \vec{w}) \\ &+ (\vec{b}_W - \vec{w}) \cdot (\vec{b}_W - \vec{w}) \\ &= \|\vec{b} - \vec{b}_W\|^2 + 2\vec{b}_{W^{\perp}} \cdot (\vec{b}_W - \vec{w}) + \|\vec{b}_W - \vec{w}\|^2 \\ &= \|\vec{b} - \vec{b}_W\|^2 + \|\vec{b}_W - \vec{w}\|^2 \text{ since } \vec{b}_{W^{\perp}} \perp (\vec{b}_W - \vec{w}) \\ &\text{ because } \vec{b}_W - \vec{w} \in W \dots \end{split}$$

Theorem 6.5.A (continued)

Theorem 6.5.A. Let $\vec{b} \in \mathbb{R}^n$ and let W be a subspace of \mathbb{R}^n . Then the projection of \vec{b} onto W, denoted \vec{b}_W (see Theorem 6.1 and Definition 6.2), is the unique vector in W which minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$.

Proof(continued). ...

$$\begin{aligned} \|\vec{b} - \vec{w}\|^2 &= \|\vec{b} - \vec{b}_W\|^2 + \|\vec{b}_W - \vec{w}\|^2 \\ &\geq \|\vec{b} - \vec{b}_W\|^2. \end{aligned}$$

So $\|\vec{b} - \vec{w}\| \ge \|\vec{b} - \vec{b}_W\|$ and $\vec{w} = \vec{b}_W$ minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$. From the computation we see that the minimum is attained only when $vecw = \vec{b}_W$, so the choice of \vec{w} is unique.

Theorem 6.5.A (continued)

Theorem 6.5.A. Let $\vec{b} \in \mathbb{R}^n$ and let W be a subspace of \mathbb{R}^n . Then the projection of \vec{b} onto W, denoted \vec{b}_W (see Theorem 6.1 and Definition 6.2), is the unique vector in W which minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$.

Proof(continued). ...

$$\begin{aligned} \|\vec{b} - \vec{w}\|^2 &= \|\vec{b} - \vec{b}_W\|^2 + \|\vec{b}_W - \vec{w}\|^2 \\ &\geq \|\vec{b} - \vec{b}_W\|^2. \end{aligned}$$

So $\|\vec{b} - \vec{w}\| \ge \|\vec{b} - \vec{b}_W\|$ and $\vec{w} = \vec{b}_W$ minimizes the quantity $\|\vec{b} - \vec{w}\|$ where $\vec{w} \in W$. From the computation we see that the minimum is attained only when $vecw = \vec{b}_W$, so the choice of \vec{w} is unique.