
1.1 Vectors in Euclidean Space 1

Chapter 1. Vectors, Matrices, and Linear Spaces

1.1. Vectors in Euclidean Spaces

Note. In the first half of this section of the text, Fraleigh and Beauregard motivate

the study and properties of vectors with the physical model of forces.

Note. Euclidean 1-space is simply the line, denoted R. Euclidean 2-space is the

collection of all ordered pairs (x, y) where x, y ∈ R, and is denoted R2; you are

familiar with R2 since you have used the Cartesian plane in algebra and calculus.

We can generalize these ideas as follows.

Definition 1.A. The space Rn, or Euclidean n-space, is either (1) the collection of

all n-tuples of the form (x1, x2, . . . , xn) where the xi’s are real numbers (the n-tuples

are called points), or (2) the collection of all n-tuples of the form [x1, x2, . . . , xn]

where the xi’s are real numbers (the n-tuples are called vectors).

Note. R1 is just the collection of real numbers (which we know to have an algebraic

structure—addition and subtraction, say). R2 is the collection of all points in the

Cartesian plane.

Note. We, as yet, make no distinction between points and vectors.
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Note. As is common, the text uses bold faced lower case letters to denote vectors:

x,y,v,w. In these class notes and when writing by hand we denote vectors with

lower case letters with little arrows over them: ~x, ~y,~v, ~w. We will be dealing with

points, vectors, and numbers (which we will call “scalars”) so it is essential that we

use a notation when distinguishes these different mathematical objects from one

another.

Definition. For ~x ∈ Rn, say ~x = [x1, x2, . . . , xn], the ith component of ~x is xi.

Definition. Two vectors in Rn, ~v = [v1, v2, . . . , vn] and ~w = [w1, w2, . . . , wn] are

equal if each of their components are equal. The zero vector, ~0, in Rn is the vector

of all zero components.

Note. You are probably familiar with the idea from physics of describing forces

and velocities as “vector quantities” with both magnitude and direction. We use

this as motivation for our approach to vectors (in particular when defining vector

sums).
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Note. We have the following geometric interpretation of vectors: A vector

~v ∈ R2 can be drawn in standard position in the Cartesian plane by drawing an

arrow from the point (0, 0) to the point (v1, v2) where ~v = [v1, v2]:

On the right of this picture, ~v is translated to point P . Notice that both of these

are representations of the same vector ~v. The vector in R2 with its tail at point

(x1, y1) and its head at point (x2, y2) is ~v = [x2 − x1, y2 − y1]:

These ideas can each be extended to vectors in Rn in the obvious way.
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Note. In physics, forces are represented by “arrows” (or vectors) and if two forces

~F1 and ~F2 are applied to an object, the resulting force ~F1 + ~F2 satisfies a “parallel-

ogram” property:

Figure 1.1.5, page 5

You can also talk about scaling a force by a constant c (we call these constants

scalars — as opposed to vectors and points):

With physics as our motivation, we now define properties of addition and scalar

multiplication of vectors.
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Definition 1.1. Let ~v = [v1, v2, . . . , vn] and ~w = [w1, w2, . . . , wn] be vectors in Rn

and let r ∈ R be a scalar. Define

1. Vector addition: ~v + ~w = [v1 + w1, v2 + w2, . . . , vn + wn],

2. Vector subtraction: ~v − ~w = [v1 − w1, v2 − w2, . . . , vn − wn], and

3. Scalar multiplication: r~v = [rv1, rv2, . . . , rvn].

Note. By Definition 1.1, we can associate the parallelogram property with the

addition and subtraction of vectors in Rn (this claim is algebraically established in

Example 1.2.7). So to compute the vector sum ~v + ~w geometrically, we can place

~v in standard position and translate ~w so that its tail coincides with the head of ~v.

Then the point at the head of this translation of ~w determines the head of ~v + ~w

when in standard position (see Figure 1.6 below). We can similarly interpret ~v− ~w

as a vector with its head at the head of ~v and its tail at the head of ~w, where ~v

and ~w are in standard position (see Figure 1.8 below).

Examples. Page 16 numbers 10 and 14.
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Theorem 1.1. Properties of Vector Algebra in Rn.

Let ~u,~v, ~w ∈ Rn and let r, s be scalars in R. Then

A1. Associativity of Vector Addition. (~u + ~v) + ~w = ~u + (~v + ~w)

A2. Commutivity of Vector Addition. ~v + ~w = ~w + ~v

A3. Additive Identity. ~0 + ~v = ~v

A4. Additive Inverses. ~v + (−~v) = ~0

S1. Distribution of Scalar Multiplication over Vector Addition.

r(~v + ~w) = r~v + r ~w

S2. Distribution of Scalar Addition over Scalar Multiplication.

(r + s)~v = r~v + s~v

S3. Associativity. r(s~v) = (rs)~v

S4. “Preservation of Scale.” 1~v = ~v

Note. The proofs of A2 and S2 are given in Examples 1.1.3 and 1.1.4 of the text.

Examples. Page 17 Number 40a (prove A1) and Page 17 Number 41(a) (prove

S1).

Definition 1.2. Two nonzero vectors ~v, ~w ∈ Rn are parallel, denoted ~v ‖ ~w, if one

is a scalar multiple of the other. If ~v = r ~w with r > 0, then ~v and ~w have the same

direction and if ~v = r ~w with r < 0 then ~v and ~w have opposite directions.

Example. Page 16 number 22.
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Definition 1.3. Given vectors ~v1, ~v2, . . . , ~vk ∈ Rn and scalars r1, r2, . . . , rk ∈ R,

the vector

r1~v1 + r2~v2 + · · ·+ rk~vk =
k∑

`=1

r`~v`

is a linear combination of the given vectors with the given scalars as scalar coeffi-

cients.

Note. Sometimes there are “special” vectors for which it is easy to express a vector

in terms of a linear combination of these special vectors.

Definition. The standard basis vectors in R2 are ı̂ = [1, 0] and ̂ = [0, 1]. The

standard basis vectors in R3 are

ı̂ = [1, 0, 0], ̂ = [0, 1, 0], and k̂ = [0, 0, 1].

Note. It’s easy to write a vector in terms of the standard basis vectors:

~b = [b1, b2] = b1[1, 0] + b2[0, 1] = b1ı̂ + b2̂ and

~b = [b1, b2, b3] = b1[1, 0, 0] + b2[0, 1, 0] + b3[0, 0, 1] = b1ı̂ + b2̂ + b3k̂.

Definition. In Rn, the rth standard basis vector, denoted êr, is

êr = [0, 0, . . . , 0, 1, 0, . . . , 0],

where the rth component is 1 and all other components are 0.
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Notice. A vector ~b ∈ Rn can be uniquely expressed in terms of the standard

basis vectors:

~b = [b1, b2, . . . , bn] = b1ê1 + b2ê2 + · · ·+ bnên =
n∑

`=1

b`ê`.

Definition. If ~v ∈ Rn is a nonzero vector, then the line along ~v is the collection

of all vectors of the form r~v for some scalar r ∈ R (notice ~0 is on all such lines).

For two nonzero nonparallel vectors ~v, ~w ∈ Rn, the collection of all possible linear

combinations of these vectors: r~v + s~w where r, s ∈ R, is the plane spanned by ~v

and ~w.

Definition. A column vector in Rn is a representation of a vector as

~x =


x1

x2

...

xn

 .

A row vector in Rn is a representation of a vector as

~x = [x1, x2, . . . , xn].

The transpose of a row vector, denoted ~xT , is a column vector, and conversely:
x1

x2

...

xn



T

= [x1, x2, . . . , xn], and [x1, x2, . . . , xn]
T =


x1

x2

...

xn

 .
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Note. A linear combination of column vectors can easily be translated into a

system of linear equations:

r

 1

3

 + s

 −2

5

 =

 −1

19

 ⇐⇒
r − 2s = −1

3r + 5s = 19
.

Note. Throughout what follows, we will use set notation. Informally, a set is a

collection of objects called elements. Most often, the sets with which we deal will

be sets of vectors. We might have a set V = {~v1, ~v2, ~v3}, in which case we write, for

example, ~v1 ∈ V to represent “~v1 is an element of V .” We may describe a set by

giving properties of the elements of the set. For example, V = {~v = [x1, x2, x3] ∈

R3 | x3 = 0} is the set of all vectors ~v = [x1, x2, x3] in R3 such that (the symbol

“|” should be read “such that”) the third component is 0, x3 = 0. We should note

that elements are either in a set or not in the set; elements are not in a set multiple

times (they are not repeated in the set). For a more formal treatment of sets you

might start with my online notes on Introduction to Set Theory.

Definition 1.4. Let ~v1, ~v2, . . . , ~vk ∈ Rn. The span of these vectors is the set of all

linear combinations of them, denoted sp(~v1, ~v2, . . . , ~vk):

sp(~v1, ~v2, . . . , ~vk) = {r1~v1 + r2~v2 + · · ·+ rk~vk | r1, r2, . . . , rk ∈ R}

=

{
k∑

`=1

r`~v`

∣∣∣∣∣ r1, r2, . . . , rk ∈ R

}
.

Example. Page 16 number 28.
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