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Chapter 1. Vectors, Matrices, and Linear Spaces

1.3. Matrices and Their Algebra

Note. We define a “matrix” and give a way to add and multiply matrices. We

state and prove some properties of this addition and multiplication (that is, this

“algebra”).

Definition. A matrix is a rectangular array of numbers. An m × n matrix is a

matrix with m rows and n columns:
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Definition 1.8. Let A = [aik] be an m × n matrix and let B = [bkj ] be an

n × s matrix. The matrix product AB is the m × s matrix C = [cij] where cij

is the dot product of the ith row vector of A and the jth column vector of B:

cij =
∑n

k=1
aikbkj.



1.3 Matrices and Their Algebra 2

Note. We can draw a picture of this process as:

Note 1.3.A. For A = [aij] =
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and ~x =
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we have

A~x =
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So any product of the form A~x is a linear combination of the columns of matrix A

with coefficients as the components of vector ~x.

Example. Page 46 Number 16.

Definition. The main diagonal of an n × n matrix is the set {a11, a22, . . . , ann}.

A square matrix which has zeros off the main diagonal is a diagonal matrix. We

denote the n × n diagonal matrix with all diagonal entries 1 as I:

I =
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Definition 1.9/1.10. Let A = [aij] and B = [bij] be m × n matrices. The sum

A + B is the m × n matrix C = [cij] where cij = aij + bij. Let r be a scalar. Then

rA is the matrix D = [dij ] where dij = raij.

Example. Page 46 Number 6.



1.3 Matrices and Their Algebra 4

Definition 1.11. Matrix B is the transpose of A, denoted B = AT , if bij = aji. If

A is a matrix such that A = AT then A is symmetric.

Example. Page 47 Number 38. If A is square, then A + AT is symmetric.

Proof. Let A = [aij] then AT = [aji]. Let C = [cij] = A + AT = [aij] + [aji] =

[aij + aji]. Notice cij = aij + aji and cji = aji + aij, therefore C = A + AT is

symmetric.

Theorem 1.3.A. Properties of Matrix Algebra.

Let A, B, and C be matrices such that the sums and products below are defined

and let r and s be scalars. Then

1. Commutative Law of Addition: A + B = B + A

2. Associative Law of Addition: (A + B) + C = A + (B + C)

3. Additive Identity: A + 0 = 0 + A = A (here “0” represents the m× n matrix of

all zeros)

4. Left Distribution Law: r(A + B) = rA + rB

5. Right Distribution Law: (r + s)A = rA + sA

6. Associative Law of Scalar Multiplication: (rs)A = r(sA)

7. Scalars “Pull Through”: (rA)B = A(rB) = r(AB)

8. Associativity of Matrix Multiplication: A(BC) = (AB)C

9. Matrix Multiplicative Identity: IA = A = AI

10. Distributive Laws of Matrix Multiplication: A(B + C) = AB + AC and

(A + B)C = AC + BC.
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Note. The proof of the Left Distributive Law, A(B + C) = AB + AC, is given in

Example 11 on page 45.

Page 47 Number 33. Let A, B, and C be matrices where the products (AB)C

and A(BC) are defined. Then matrix multiplication is associative: (AB)C =

A(BC).

Example 1.3.A. Show that IA = AI = A for A =
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and I is 3 × 3.

Note 1.3.B. Properties of the Transpose Operator.

(AT )T = A (A + B)T = AT + BT (AB)T = BTAT .

Example. Page 47 number 32. Prove (AB)T = BTAT .

Proof. Let C = [cij ] = (AB)T . The (i, j)-entry of AB is

n
∑

k=1

aikbkj , so cij =

n
∑

k=1

ajkbki. Let BT = [bij]
T = [bt

ij] = [bji] and AT = [aij]
T = [at

ij] = [aji]. Then the

(i, j)-entry of BT AT is

n
∑

k=1

bt
ika

t
kj =

n
∑

k=1

bkiajk =

n
∑

k=1

ajkbki = cij

and therefore C = (AB)T = BTAT .
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