Chapter 2. Dimension, Rank, and Linear Transformations2.1. Independence and Dimension

Note. In Section 1.6 we defined a basis for a subspace of \mathbb{R}^n (see Definition 1.17). In this section we explore some properties of such a basis and prove that every subspace of \mathbb{R}^n actually does have a basis (see Theorem 2.3(1)). We are particularly interested in the size of a basis.

Definition 2.1. Let $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ be a set of vectors in \mathbb{R}^n . A dependence relation in this set is an equation of the form

$$r_1 \vec{w_1} + r_2 \vec{w_2} + \dots + r_k \vec{w_k} = \vec{0}$$

with at least one $r_j \neq 0$. If such a dependence relation exists, then $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ is a *linearly dependent* set. A set of vectors which is not linearly dependent is *linearly independent*.

Note 2.1.A. Notice that Definition 2.1 gives that for a linearly independent set $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$, the equation $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = \vec{0}$ implies $r_1 = r_2 = \cdots = r_k = 0$. In Exercise 29 it is shown that a set of two vectors $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if one of the vectors is a multiple of the other.

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n . A subset $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ of W is a basis for W if and only if

(1) $W = sp(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$ and

(2) the vector $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k}$ are linearly independent.

Theorem 2.1.A. Finding a Basis for $W = \mathbf{sp}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k)$.

Let $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k} \in \mathbb{R}^n$ and let $W = \operatorname{sp}(\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k})$. Form the matrix A whose jth column vector is $\vec{w_j}$. If we row-reduce A to row-echelon form H, then the set of all $\vec{w_j}$ such that the jth column of H contains a pivot, is a basis for W.

Examples. Page 134 number 8 and 10.

Example. Page 138 number 22.

Note. You are familiar with the concept of dimension: A line is 1-dimensional, a plane is 2-dimensional, the physical space we live in is 3-dimensional, and the spacetime of relativity is 4-dimensional. We associate a dimension with a vector space, but we need some technical results before we can give a definition.

Theorem 2.2. Relative Sizes of Spanning and Independent Sets.

Let W be a subspace of \mathbb{R}^n . Let $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k}$ be vectors in W that span W and let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$ be vectors in W that are independent. Then $k \ge m$.

Corollary 2.1.A. Invariance of Dimension.

Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Note. Now that we know that all bases of a given subspace of \mathbb{R}^n are of the same size, then we can give this common parameter a name.

Definition 2.2. Let W be a subspace of \mathbb{R}^n . The number of elements in a basis for W is the *dimension* of W, denoted dim(W).

Note. The standard basis $\{\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_n\}$ of \mathbb{R}^n has n vectors, so dim $(\mathbb{R}^n) = n$.

Note. We now give some properties of bases of a subspace of \mathbb{R}^n . In particular, notice in the following that every subspace of \mathbb{R}^n has a basis.

Theorem 2.3. Existence and Determination of Bases.

- (1) Every subspace $W \neq \{\vec{0}\}$ of \mathbb{R}^n has a basis and $\dim(W) \leq n$.
- (2) Every independent set of vectors in \mathbb{R}^n can be enlarged to become a basis of \mathbb{R}^n .
- (3) If W is a subspace of \mathbb{R}^n and $\dim(W) = k$ then
 - (a) every independent set of k vectors in W is a basis for W, and
 - (b) every set of k vectors in W that spans W is a basis of W.

Examples. Page 136 numbers 34 and 38.

Revised: 6/19/2018