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Chapter 2. Dimension, Rank, and Linear

Transformations

2.3 Linear Transformations of Euclidean Spaces

Note. We start with another quote from Fraleigh and Beauregard (see page 142):

“Functions are used throughout mathematics to study the structures of

sets and relationships between sets. You are familiar with the notation

y = f(x), where f is a function that acts on numbers signified by the

input variable x, and produces numbers signified by the output variable

y. In linear algebra, we are interested in functions ~y = f(~x), where f

acts on vectors, signified by the input variable ~x, and produces vectors

signified by the output variable ~y.”

Definition. Let X and Y be sets. A function f : X → Y is a rule that associates

with each x ∈ X an element y ∈ Y , denoted y = f(x). (We read “f : X → Y ” as

“f maps X into Y .”) Set X is the domain of f and set Y is the codomain of f . For

H ⊂ X (“H a subset of X”), define f [H] = {f(h) | h ∈ H}; f [H] is the image of

H under f . The image of domain X under f , f [X ], is the range of f . For K ⊂ Y ,

the set f−1[K] = {x ∈ K | f(x) ∈ K} is the inverse image of K under f .
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Note. See Figure 2.2 for an illustration of an image and inverse image. Notice

that an inverse image is defined even if f is not invertible (that is, even if f is not

one-to-one).

Note. We are interested in “linear transformations” mapping R
n into R

m (after

all, this is linear algebra!). We’ll see that such transformations are associated with

matrices (and conversely), justifying our earlier exploration of matrices.

Definition 2.3. A linear transformation T : R
n → R

m is a function whose domain

is R
n and whose codomain is R

m, where

(1) T (~u + ~v) = T (~u) + T (~v) for all ~u,~v ∈ R
n, and

(2) T (r~u) = rT (~u) for all ~u ∈ R
n and for all r ∈ R.
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Example. Page 153 Number 32. Let T : R
n → R

m be a linear transformation.

Prove that

T (r~u + s~v) = rT (~u) + sT (~v)

for all ~u,~v ∈ R
n and r and s. (As the text says, “linear transformations preserve

linear combinations.”)

Note. An immediate property of a linear transformation is that it maps zero

vectors to zero vectors:

T (~0) = T (0~0) since 0~v = ~0 for any vector ~v

= 0T (~0) by Definition 2.3(2), “Linear Transformation”

= ~0.

Example. Page 144 Example 3. Let A be an m× n matrix and let TA : R
n → R

m

be defined by TA(~x) = A~x for each column vector ~x ∈ R
n. Prove that TA is a linear

transformation.

Note. The previous example shows that matrix multiplication is an example of

linear transformations mapping R
n into R

m. We’ll see later (in Corollary 2.3.A)

that the converse holds and that every linear transformation from R
n into R

m is

represented by a matrix.

Example. Page 152 number 4.
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Example. Page 145 Example 4. Notice that every linear transformation of R → R

is of the form

T ([x]) = [mx].

The graphs of such functions (with vectors in standard position) are lines through

the origin.

Note. The following result shows that a linear transformation mapping R
n into

R
m is determined by its values on the elements of a basis of R

n. This shouldn’t be

surprising since each element of R
n is a linear combination of basis vectors.

Theorem 2.7. Bases and Linear Transformations.

Let T : R
n → R

m be a linear transformation and let B = {~b1, ~b2, . . . , ~bn} be a

basis for R
n. For any vector ~v ∈ R

n, the vector T (~v) is uniquely determined by

T (~b1), T (~b2), . . . , T (~bn).

Corollary 2.3.A. Standard Matrix Representation of Linear Transforma-

tions.

Let T : R
n → R

m be linear, and let A be the m × n matrix whose jth column is

T (êj). Then T (~x) = A~x for each ~x ∈ R
n. A is the standard matrix representation

of T .
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Note. Combining Example 3 and Corollary 2.3.A, we see that every linear com-

bination T mapping R
n → R

m corresponds to some m × n matrix A (namely, the

standard matrix representation of T ), and conversely every matrix A corresponds

to a linear transformation (namely TA defined as TA(~x) = A~x).

Example. Page 152 number 10.

Note. Since we have a one-to-one correspondence between linear transformations

mapping R
n → R

m and m × n matrices, we can extend many of the ideas about

matrices to linear transformations.

Definition. Let T : R
n → R

m be a linear transformation with standard matrix

representation A. The kernel of T is the nullspace of A, denoted ker(T ).

Theorem 2.3.A. Let T : R
n → R

m be a linear transformation with standard

matrix representation A.

(1) The range T [Rn] of T is the column space of A.

(2) If W is a subspace of R
n, then T [W ] is a subspace of R

m (i.e. T preserves

subspaces).
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Note 2.3.A. If A is the standard matrix representation for T , then from Theorem

2.5, “Rank Equation,” we have:

dim(range T ) + dim(ker T ) = dim(domain T ).

Definition. For a linear transformation T , we define rank and nullity as follows:

rank(T ) = dim(range T ), nullity(T ) = dim(ker T ).

Definition. If T : R
n → R

m and T ′ : R
m → R

k, then the composition of T and T ′

is (T ′ ◦ T ) : R
n → R

k where (T ′ ◦ T )~x = T ′(T (~x)).

Note. In Exercise 31, it is shown that a composition of linear transformations is

linear. Therefore a composition of linear transformations has a standard matrix

representation by Corollary 2.3.A. The following result relates the standard matrix

representation of a composition of linear transformations to the standard matrices

of the constituent linear transformations.

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.

A composition of two linear transformations T and T ′ with standard matrix rep-

resentation A and A′ yields a linear transformation T ′ ◦ T with standard matrix

representation A′A.

Example. Page 153 number 20.
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Note. Since we have defined a composition of linear transformations (provided

the codomain of the first transformation equals the domain of the second linear

transformation) then we can define the inverse of a linear transformation. However,

as with matrices, inverses may not always exist.

Definition. If T : R
n → R

n and there exists T ′ : R
n → R

n such that T ◦T ′(~x) = ~x

for all ~x ∈ R
n, then T ′ is the inverse of T denoted T ′ = T−1. (Notice that if

T : R
m → R

n where m 6= n, then T−1 is not defined; there are domain/codomain

problems.)

Note. The following result follows easily from Theorem 2.3.B.

Theorem 2.3.C. Invertible Matrices and Inverse Transformations.

Let T : R
n → R

n have standard matrix representation A: T (~x) = A~x. Then T is

invertible if and only if A is invertible and T−1(~x) = A−1~x.

Example. Page 153 Number 23.
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