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Chapter 2. Dimension, Rank, and Linear

Transformations

2.3 Linear Transformations of Euclidean Spaces

Note. We start with another quote from Fraleigh and Beauregard (see page 142):

“Functions are used throughout mathematics to study the structures of
sets and relationships between sets. You are familiar with the notation
y = f(x), where f is a function that acts on numbers signified by the
input variable x, and produces numbers signified by the output variable
y. In linear algebra, we are interested in functions y = f(Z), where f
acts on vectors, signified by the input variable Z, and produces vectors

signified by the output variable 7.”

Definition. Let X and Y be sets. A function f : X — Y is a rule that associates
with each x € X an element y € Y, denoted y = f(x). (Weread “f : X — Y as
“f maps X into Y.”) Set X is the domain of f and set Y is the codomain of f. For
H C X (“H asubset of X”), define f[H] = {f(h) | h € H}; f[H] is the image of
H under f. The image of domain X under f, f[X], is the range of f. For K C Y,
the set f1[K] = {z € K | f(z) € K} is the inverse image of K under f.
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Note. See Figure 2.2 for an illustration of an image and inverse image. Notice
that an inverse image is defined even if f is not invertible (that is, even if f is not

one-to-one).

Note. We are interested in “linear transformations” mapping R" into R™ (after
all, this is linear algebral!). We'll see that such transformations are associated with

matrices (and conversely), justifying our earlier exploration of matrices.

Definition 2.3. A linear transformation T : R"™ — R™ is a function whose domain
is R" and whose codomain is R™, where

(1) T(u+ v) =T(u) + T (V) for all @,v € R", and

(2) T'(ru) = rI'(u) for all @ € R" and for all r € R.
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Example. Page 153 Number 32. Let T : R” — R™ be a linear transformation.
Prove that

T(ri + sv) = rT (1) + sT(?)
for all @, v € R" and r and s. (As the text says, “linear transformations preserve

linear combinations.”)

Note. An immediate property of a linear transformation is that it maps zero

vectors to zero vectors:

T(0) = T(00) since 07 = 0 for any vector @
— 07'(0) by Definition 2.3(2), “Linear Transformation”

= 0.

Example. Page 144 Example 3. Let A be an m X n matrix and let T4 : R" — R™
be defined by T'4(Z) = AZ for each column vector ¥ € R™. Prove that T is a linear

transformation.

Note. The previous example shows that matrix multiplication is an example of
linear transformations mapping R" into R™. We’ll see later (in Corollary 2.3.A)
that the converse holds and that every linear transformation from R™ into R™ is

represented by a matrix.

Example. Page 152 number 4.
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Example. Page 145 Example 4. Notice that every linear transformation of R — R
is of the form

I([2]) = [ma].

The graphs of such functions (with vectors in standard position) are lines through

the origin.

Note. The following result shows that a linear transformation mapping R" into
R™ is determined by its values on the elements of a basis of R". This shouldn’t be

surprising since each element of R" is a linear combination of basis vectors.

Theorem 2.7. Bases and Linear Transformations.
Let T : R® — R™ be a linear transformation and let B = {b:,b;,...,b;} be a
basis for R". For any vector ¢ € R", the vector T'(¥) is uniquely determined by

T(b1), T(bs), ..., T(by).

Corollary 2.3.A. Standard Matrix Representation of Linear Transforma-
tions.

Let T : R™ — R™ be linear, and let A be the m x n matrix whose jth column is
T(€;). Then T(Z) = A% for each ¥ € R". A is the standard matriz representation

of T.



2.3 Linear Transformations of Euclidean Spaces )

Note. Combining Example 3 and Corollary 2.3.A, we see that every linear com-
bination 7" mapping R" — R™ corresponds to some m X n matrix A (namely, the
standard matrix representation of 7), and conversely every matrix A corresponds

—

to a linear transformation (namely 74 defined as T4 (Z) = AZ)

Example. Page 152 number 10.

Note. Since we have a one-to-one correspondence between linear transformations
mapping R" — R™ and m X n matrices, we can extend many of the ideas about

matrices to linear transformations.

Definition. Let T : R — R™ be a linear transformation with standard matrix

representation A. The kernel of T is the nullspace of A, denoted ker (7).

Theorem 2.3.A. Let T' : R” — R be a linear transformation with standard
matrix representation A.

(1) The range T[R"] of T is the column space of A.

(2) If W is a subspace of R™, then T[W] is a subspace of R™ (i.e. T preserves

subspaces).
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Note 2.3.A. If A is the standard matrix representation for 7', then from Theorem

2.5, “Rank Equation,” we have:

dim(range T') + dim(ker T") = dim(domain 7).

Definition. For a linear transformation 7', we define rank and nullity as follows:

rank(7") = dim(range 7'),  nullity(7") = dim(ker 7).

Definition. If 7 : R” — R™ and 7" : R™ — RF¥, then the composition of T and T"
is (T' o T) : R* — RF where (1" o T)Z = T'(T(Z)).

Note. In Exercise 31, it is shown that a composition of linear transformations is
linear. Therefore a composition of linear transformations has a standard matrix
representation by Corollary 2.3.A. The following result relates the standard matrix
representation of a composition of linear transformations to the standard matrices

of the constituent linear transformations.

Theorem 2.3.B. Matrix Multiplication and Composite Transformations.
A composition of two linear transformations 7" and 7" with standard matrix rep-
resentation A and A’ yields a linear transformation 77 o T" with standard matrix

representation A'A.

Example. Page 153 number 20.
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Note. Since we have defined a composition of linear transformations (provided
the codomain of the first transformation equals the domain of the second linear
transformation) then we can define the inverse of a linear transformation. However,

as with matrices, inverses may not always exist.

Definition. If 7': R” — R" and there exists 7" : R" — R" such that T oT"(¥) = &
for all Z € R™, then T’ is the inverse of T denoted 7" = T~!. (Notice that if
T : R™ — R"™ where m # n, then T~ ! is not defined; there are domain/codomain

problems.)

Note. The following result follows easily from Theorem 2.3.B.

Theorem 2.3.C. Invertible Matrices and Inverse Transformations.
Let T : R™ — R" have standard matrix representation A: T(¥) = AZ. Then T is

invertible if and only if A is invertible and T-}(Z) = A~'Z.

Example. Page 153 Number 23.
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