## **Chapter 2.** Dimension, Rank, and Linear Transformations

**2.4** Linear Transformations of the Plane

Note. By Corollary 2.3.A, "Standard Matrix Representation of Linear Transformations," we know that every linear transformation form  $\mathbb{R}^2$  to  $\mathbb{R}^2$  is represented by a 2 × 2 matrix. In this section we describe various types of such transformations and classify invertible transformations of  $\mathbb{R}^2$  in terms of certain elementary types of transformations.

**Note.** If A is a  $2 \times 2$  matrix with rank 0 then it is the matrix

| A = | 0 | 0  |  |
|-----|---|----|--|
|     | 0 | 0_ |  |

The linear transformation which is represented by A "collapses" all of  $\mathbb{R}^2$  down to the zero vector.

Note. If a 2 × 2 matrix A is of rank 1 then either A has exactly one nonzero column or A has two nonzero columns and each is a multiple of the other. Two special cases are  $A_x = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$  and  $A_y = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ . Notice that  $A_x \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$  and  $A_y \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ . Geometrically,  $A_x$  projects vectors onto the x-axis and  $A_y$  projects vectors onto the y-axis:



**Note.** If A is rank 1 and each column is a multiple of the other, then  $A = \begin{bmatrix} a & ka \\ b & kb \end{bmatrix}$  for some constant k. Then

$$A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} a & ka\\ b & kb\end{bmatrix} \begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} ax + kay\\ ax + kby\end{bmatrix} = \begin{bmatrix} ax + kay\\ (b/a)(ax + kay) \end{bmatrix}.$$
  
Here, the second entry is  $b/a$  times the first entry (if  $a \neq 0$ ). So the vector  $A\begin{bmatrix} x\\ y\end{bmatrix}$  has *its* second entry as  $b/a$  times its first entry and so the vector (when in standard position) lies along the line  $y = (b/a)x$ . So  $A\begin{bmatrix} x\\ y\end{bmatrix}$  geometrically collapses  $\mathbb{R}^2$  onto the line  $y = (b/a)x$  (notice that this is independent of the value of  $k$  and only depends on the ratio of  $b$  to  $a$ ). We will explore projections in more detail in Chapter 6; matrix  $A$  here does not represent a projection.

Note. If  $T_A : \mathbb{R}^2 \to \mathbb{R}^2$  is an invertible linear transformation given by  $T_A(\vec{x}) = A\vec{x}$ then A is an invertible  $2 \times 2$  matrix by Theorem 2.3.A. We now consider some special invertible transformations. Note. We now consider a *rotation* about the origin of a vector through an angle  $\theta$ . To find the standard matrix representing such a rotation, we only need to consider rotations of  $\hat{e}_1$  and  $\hat{e}_2$ :



We see that  $T(\hat{e}_1) = [\cos \theta, \sin \theta]$  and  $T(\hat{e}_2) = [-\sin \theta, \cos \theta]$ . So we have the standard matrix representation of such a rotation as

$$A = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

This is an example of a *rigid* transformation of the plane since lengths are not changed under this transformation. We can illustrate it as follows:



**Example.** Page 165 Number 4.

**Note.** We can *reflect* a vector in  $\mathbb{R}^2$  about the *x*-axis by applying  $T_X$  where

$$X = \left[ \begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array} \right]$$

•

We can *reflect* a vector in  $\mathbb{R}^2$  about the *y*-axis by applying  $T_Y$  where

$$Y = \left[ \begin{array}{rr} -1 & 0 \\ 0 & 1 \end{array} \right].$$

We can *reflect* a vector in  $\mathbb{R}^2$  about the line y = x by applying  $T_Z$  where

$$Z = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Notice that X, Y, and Z are elementary matrices since they differ from  $\mathcal{I}$  by an operation of row scaling (for X and Y), or by an operation of row interchange (for Z). Geometrically, we have:



## **Example.** Page 165 Number 6.

Note. Transformation  $T_A$  where

$$A = \left[ \begin{array}{cc} r & 0 \\ 0 & 1 \end{array} \right]$$

is a horizontal expansion if r > 1, and is a horizontal contraction if 0 < r < 1. Transformation  $T_B$  where

$$B = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}$$

is a vertical expansion if r > 1, and is a vertical contraction if 0 < r < 1. Notice that A and B are elementary matrices since they differ from  $\mathcal{I}$  by an operation of row scaling.



Note. Transformation  $T_A$  where

$$A = \left[ \begin{array}{cc} 1 & r \\ 0 & 1 \end{array} \right]$$

is a *horizontal shear*. Transformation  $T_B$  where

$$B = \left[ \begin{array}{cc} 1 & 0 \\ r & 1 \end{array} \right]$$

is a *vertical shear* (see Figure 2.2.16 on page 163). Notice that A and B are elementary matrices since they differ from  $\mathcal{I}$  by an operation of row addition.



**Example.** Page 165 Number 8(iii, iv).

## Theorem 2.4.A. Geometric Description of Invertible Transformations of $\mathbb{R}^2$ .

A linear transformation T of the plane  $\mathbb{R}^2$  into itself is invertible if and only if T consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line y = x;
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Examples. Page 165 Number 14, Page 166 Number 18, Page 166 Number 20.

Revised: 10/3/2018